Antioxidant Bio-Compounds from Chestnut Waste: A Value-Adding and Food Sustainability Strategy
<p>DPPH assay. Absorbance decrease in three cultivar extracts analyzed compared to control, ascorbic acid (AA). Antioxidant activity (expressed as %AA) of chestnut varieties was measured at varying extract concentrations (0–500 µg/mL). (<b>A</b>–<b>C</b>) represent cultivars <span class="html-italic">Bastarda Rossa</span>, <span class="html-italic">Cecio</span>, and <span class="html-italic">Marroni</span>, respectively.</p> "> Figure 2
<p>(<b>A</b>) The 1H NMR spectrum of an aqueous extract. (<b>B</b>) The aromatic region of the spectrum shows signals of gallic acid (*) and ellagic acid (+) for the cultivar <span class="html-italic">Bastarda Rossa</span> (RB, blue), <span class="html-italic">Cecio</span> (RC, red), and <span class="html-italic">Marroni</span> (RM, green). Signal integration allowed for polyphenol quantification, reported in <a href="#foods-14-00042-t005" class="html-table">Table 5</a>.</p> "> Figure 3
<p>13C NMR normalized spectra of <span class="html-italic">Bastarda Rossa</span> (RB, blue), <span class="html-italic">Cecio</span> (RC, red), and <span class="html-italic">Marroni</span> (RM, green).</p> "> Figure 4
<p>Cytotoxicity of chestnut extracts (RM: <span class="html-italic">Marroni</span>, RB: <span class="html-italic">Bastarda Rossa</span>, RC: <span class="html-italic">Cecio</span>) on SaOS-2 cells at varying concentrations (31.5–500 µg/mL) after 24 h (<b>top panel</b>) and 48 h (<b>bottom panel</b>) of treatment. Cell viability was measured using the MTT assay, and the results are expressed as a percentage of the untreated control group (CTR). Extract concentrations ranged from 31.5 to 500 µg/mL, with bars representing the mean ± standard deviation from three independent experiments.</p> "> Figure 5
<p>Cytotoxicity of chestnut extracts (RM: <span class="html-italic">Marroni</span>, RB: <span class="html-italic">Bastarda Rossa</span>, RC: <span class="html-italic">Cecio</span>) on chondrocyte varying concentrations (31.5–500 µg/mL) after 24 h (<b>top panel</b>) and 48 h (<b>bottom panel</b>) of treatment. Cell viability was measured using the MTT assay, and the results are expressed as a percentage of the untreated control group (CTR). Extract concentrations ranged from 31.5 to 500 µg/mL, with bars representing the mean ± standard deviation from three independent experiments.</p> "> Figure 6
<p>Cytotoxicity of chestnut extracts (RM: <span class="html-italic">Marroni</span>, RB: <span class="html-italic">Bastarda Rossa</span>, RC: <span class="html-italic">Cecio</span>) on fibroblasts at varying concentrations (31.5–500 µg/mL) after 24 h (<b>top panel</b>) and 48 h (<b>bottom panel</b>) of treatment. Cell viability was measured using the MTT assay, and the results are expressed as a percentage of the untreated control group (CTR). Extract concentrations ranged from 31.5 to 500 µg/mL, with bars representing the mean ± standard deviation from three independent experiments.</p> "> Figure 7
<p>Oxidative stress recovery in various cell lines treated with chestnut extracts. RM = <span class="html-italic">Marroni</span>; RB = <span class="html-italic">Bastarda Rossa</span>; RC = <span class="html-italic">Cecio</span>. (<b>A</b>) SaOS-2; (<b>B</b>) chondrocytes; and (<b>C</b>) fibroblasts, at different concentrations (3.125–100 µg/mL). Oxidative stress was induced in cells using hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), with untreated stressed cells (CNS) and untreated non-stressed cells (CS) serving as controls. Cell viability was measured using MTT, and results are expressed as a percentage of the untreated non-stressed control (CS). Data represent the mean ± standard deviation from three independent experiments.</p> "> Figure 8
<p>An overview of the target/ligand complexes. (<b>A</b>) is ellagic acid in complex with the NEK6 kinase 3D structure; (<b>B</b>) is gallic acid in complex with the carbonic anhydrase III 3D structure. The enlarged pictures display the interaction network established among the target-binding residues and the ligand. The binding residues involved in hydrogen bonds, salt bridges, and hydrophobic interactions are labeled cyan, yellow, and gray, respectively. Hydrogen bonds and salt bridges are pictured as orange and blue dashed lines, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. C. sativa Shells
2.2. C. Sativa Shell Extract Preparation
2.3. Total Phenolic Content (TPC)
2.4. Total Flavonoid Content (TFC)
2.5. Antioxidant Activity Evaluation
2.5.1. FRAP Assay
2.5.2. DPPH Free Radical-Scavenging Activity
2.6. NMR Analysis
2.7. Cell Line Isolation and Culture
2.8. Cytotoxicity Assay
2.9. Protective Effect Under Oxidative Stress Conditions
2.10. Statistical Analysis
2.11. Structural Optimization and Resources
2.12. Docking Simulations and Interaction Network
3. Results
3.1. C. sativa Extracts’ Total Phenolic Contents
3.2. C. sativa Extracts’ Flavonoid Contents
3.3. C. sativa Extracts’ Antioxidant Activity
3.4. C. sativa Extracts’ Antiradical Activity
3.5. Phenolic Compound Determination by NMR Analysis
3.6. Citotoxicity of C. sativa Shell Extracts
3.7. Evaluation of Antioxidant Power of Three Cultivar Extracts
3.8. In Silico Results
Target Identification and Docking Simulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, X.; Liu, F.; Lin, Z.; Qiu, J.; Peng, C.; Lu, Y.; Guo, X. Phytochemical Profiles and Cellular Antioxidant Activities in Chestnut (Castanea mollissima BL.) Kernels of Five Different Cultivars. Molecules 2020, 25, 178. [Google Scholar] [CrossRef] [PubMed]
- Cravotto, C.; Grillo, G.; Binello, A.; Gallina, L.; Olivares-Vicente, M.; Herranz-López, M.; Micol, V.; Barrajón-Catalán, E.; Cravotto, G. Bioactive Antioxidant Compounds from Chestnut Peels through Semi-Industrial Subcritical Water Extraction. Antioxidants 2022, 11, 988. [Google Scholar] [CrossRef] [PubMed]
- Echegaray, N.; Gómez, B.; Barba, F.J.; Franco, D.; Estévez, M.; Carballo, J.; Marszałek, K.; Lorenzo, J.M. Chestnuts and By-products as Source of Natural Antioxidants in Meat and Meat Products: A Review. Trends Food Sci. Technol. 2018, 82, 110–121. [Google Scholar] [CrossRef]
- Comandini, P.; Lerma-García, M.J.; Simó-Alfonso, E.F.; Toschi, T.G. Tannin Analysis of Chestnut Bark Samples (Castanea sativa Mill.) by HPLC-DAD-MS. Food Chem. 2014, 157, 290–295. [Google Scholar] [CrossRef]
- Trezza, A.; Geminiani, M.; Cutrera, G.; Dreassi, E.; Frusciante, L.; Lamponi, S.; Spiga, O.; Santucci, A. A Drug Discovery Approach to Reveal a Novel Antioxidant Natural Source: The Case of Chestnut Burr Biomass. Int. J. Mol. Sci. 2024, 25, 2517. [Google Scholar] [CrossRef]
- De Vasconcelos, M.C.; Bennett, R.N.; Rosa, E.A.; Ferreira-Cardoso, J.V. Composition of European Chestnut (Castanea sativa Mill.) and Association with Health Effects: Fresh and Processed Products. J. Sci. Food Agric. 2010, 90, 1578–1589. [Google Scholar] [CrossRef]
- Trezza, A.; Barletta, R.; Geminiani, M.; Frusciante, L.; Olmastroni, T.; Sannio, F.; Docquier, J.-D.; Santucci, A. Chestnut Burrs as Natural Source of Antimicrobial Bioactive Compounds: A Valorization of Agri-Food Waste. Appl. Sci. 2024, 14, 6552. [Google Scholar] [CrossRef]
- Sorice, A.; Siano, F.; Capone, F.; Guerriero, E.; Picariello, G.; Budillon, A.; Ciliberto, G.; Paolucci, M.; Costantini, S.; Volpe, M.G. Potential Anticancer Effects of Polyphenols from Chestnut Shell Extracts: Modulation of Cell Growth, and Cytokinomic and Metabolomic Profiles. Molecules 2016, 21, 1411. [Google Scholar] [CrossRef]
- Pinto, D.; Braga, N.; Silva, A.M.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Valorization of Fruit Processing By-Products; Academic Press: Cambridge, MA, USA, 2019; pp. 128–141. [Google Scholar]
- Liberti, A.; Goretti, G.; Russo, M.V. PCDD and PCDF formation in the combustion of vegetable wastes. Chemosphere 1983, 12, 661–663. [Google Scholar] [CrossRef]
- Silva, V.; Falco, V.; Dias, M.I.; Barros, L.; Silva, A.; Capita, R.; Alonso-Calleja, C.; Amaral, J.S.; Igrejas, G.; Ferreira, C.F.R.; et al. Evaluation of the Phenolic Profile of Castanea sativa Mill. By-Products and Their Antioxidant and Antimicrobial Activity against Multiresistant Bacteria. Antioxidants 2020, 9, 87. [Google Scholar] [CrossRef]
- Neves, J.M.; Matos, C.; Moutinho, C.; Queiroz, G.; Gomes, L.R. Ethnopharmacological Notes about Ancient Uses of Medicinal Plants in Trás-os-Montes (Northern Portugal). J. Ethnopharmacol. 2009, 124, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Corregidor, V.; Antonio, A.L.; Alves, L.C.; Cabo Verde, S. Castanea sativa Shells and Fruits: Compositional Analysis by Proton Induced X-Ray Emission. Nucl. Instrum. Methods Phys. Res. Sect. B 2020, 477, 98–103. [Google Scholar] [CrossRef]
- Bongaarts, J. Human Population Growth and the Demographic Transition. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2985–2990. [Google Scholar] [CrossRef] [PubMed]
- Di Vaio, A.; Hasan, S.; Palladino, R.; Hassan, R. The Transition Towards Circular Economy and Waste within Accounting and Accountability Models: A Systematic Literature Review and Conceptual Framework. Environ. Dev. Sustain. 2023, 25, 734–810. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, G. Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific Journal Publications from 2015 to 2021. Circ. Econ. Sustain. 2022, 2, 231–279. [Google Scholar] [CrossRef]
- Ghangrekar, M.M.; Das, S.; Das, S. 15—Microbial Electrochemical Technologies for CO2 Sequestration. In Biomass, Biofuels, Biochemicals; Pandey, A., Tyagi, R.D., Varjani, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 413–443. [Google Scholar]
- Faraoni, P.; Laschi, S. Bioactive Compounds from Agrifood Byproducts: Their Use in Medicine and Biology. Int. J. Mol. Sci. 2024, 25, 5776. [Google Scholar] [CrossRef]
- Hadidi, M.; Liñán-Atero, R.; Tarahi, M.; Christodoulou, C.M.; Aghababaei, F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants 2024, 13, 1001. [Google Scholar] [CrossRef]
- Golmei, P.; Kasna, S.; Roy, K.P.; Kumar, S. A Review on Pharmacological Advancement of Ellagic Acid. J. Pharmacol. Pharmacother. 2024, 15, 93–104. [Google Scholar] [CrossRef]
- De, R.; Sarkar, A.; Ghosh, P.; Ganguly, M.; Karmakar, B.C.; Saha, D.R.; Halder, A.; Chowdhury, A.; Mukhopadhyay, A.K. Antimicrobial Activity of Ellagic Acid against Helicobacter pylori Isolates from India and during Infections in Mice. J. Antimicrob. Chemother. 2018, 73, 1595–1603. [Google Scholar] [CrossRef]
- Khan, B.A.; Mahmood, T.; Menaa, F.; Shahzad, Y.; Yousaf, A.M.; Hussain, T.; Ray, S.D. New Perspectives on the Efficacy of Gallic Acid in Cosmetics & Nanocosmeceuticals. Curr. Pharm. Des. 2018, 24, 5181–5187. [Google Scholar]
- Evtyugin, D.D.; Magina, S.; Evtuguin, D.V. Recent Advances in the Production and Applications of Ellagic Acid and Its Derivatives: A Review. Molecules 2020, 25, 2745. [Google Scholar] [CrossRef] [PubMed]
- Younesi, F.S.; Miller, A.E.; Barker, T.H.; Rossi, F.M.V.; Hinz, B. Fibroblast and Myofibroblast Activation in Normal Tissue Repair and Fibrosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 617–638. [Google Scholar] [CrossRef] [PubMed]
- Goldring, M.B. Chondrogenesis, Chondrocyte Differentiation, and Articular Cartilage Metabolism in Health and Osteoarthritis. Ther. Adv. Musculoskelet. Dis. 2012, 4, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, G.; Domazetovic, V.; Nediani, C.; Ruzzolini, J.; Favre, C.; Brandi, M.L. Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches. Antioxidants 2023, 12, 373. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.; Shahidi, F. Optimization of Extraction of Phenolic Compounds from Wheat Using Response Surface Methodology. Food Chem. 2005, 93, 47–56. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Chang, C.F.; Yang, M.-H.; Wen, H.-M.; Chern, J.C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2020, 28, 413–418. [Google Scholar]
- Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant Activity of Grape Seed (Vitis vinifera) Extracts on Peroxidation Models in Vitro. Food Chem. 2001, 73, 285–290. [Google Scholar] [CrossRef]
- Yen, G.-C.; Chen, H.-Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Braconi, D.; Bernardini, G.; Bianchini, C.; Laschi, M.; Millucci, L.; Amato, L.; Tinti, L.; Serchi, T.; Chellini, F.; Spreafico, A.; et al. Biochemical and Proteomic Characterization of Alkaptonuric Chondrocytes. J. Cell. Physiol. 2012, 227, 3333–3343. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2022, 51, D523–D531. [Google Scholar] [CrossRef]
- Janson, G.; Paiardini, A. PyMod 3: A complete suite for structural bioinformatics in PyMOL. Bioinformatics 2021, 37, 1471–1472. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Rullmann, J.A.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for Checking the Quality of Protein Structures Solved by NMR. J. Biomol. NMR 1996, 8, 477–486. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures. J. Appl. Cryst. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM General Force Field: A Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 Update: Improved Access to Chemical Data. Nucleic Acids Res. 2019, 47, D1102–D1109. [Google Scholar] [CrossRef] [PubMed]
- Garullo, G.; Saponara, S.; Ahmed, A.; Gorelli, B.; Mazzotta, S.; Trezza, A.; Gianibbi, B.; Campiani, G.; Fusi, F.; Aiello, F. Novel Labdane Diterpenes-Based Synthetic Derivatives: Identification of a Bifunctional Vasodilator That Inhibits CaV1.2 and Stimulates KCa1.1 Channels. Mar. Drugs 2022, 20, 515. [Google Scholar] [CrossRef] [PubMed]
- Rosignoli, S.; Paiardini, A. DockingPie: A Consensus Docking Plugin for PyMOL. Bioinformatics 2022, 38, 4233–4234. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully Automated Protein-Ligand Interaction Profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, Scalable Generation of High-Quality Protein Multiple Sequence Alignments Using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef] [PubMed]
- Gassel, M.; Breitenlechner, C.B.; Rüger, P.; Jucknischke, U.; Schneider, T.; Huber, R.; Bossemeyer, D.; Engh, R.A. Mutants of Protein Kinase A That Mimic the ATP-Binding Site of Protein Kinase B (AKT). J. Mol. Biol. 2003, 329, 1021–1034. [Google Scholar] [CrossRef] [PubMed]
- Fares, M.; Eldehna, W.M.; Bua, S.; Lanzi, C.; Lucarini, L.; Masini, E.; Peat, T.S.; Abdel-Aziz, H.A.; Nocentini, A.; Keller, P.A.; et al. Discovery of Potent Dual-Tailed Benzenesulfonamide Inhibitors of Human Carbonic Anhydrases Implicated in Glaucoma and in Vivo Profiling of Their Intraocular Pressure-Lowering Action. J. Med. Chem. 2020, 63, 3317–3326. [Google Scholar] [CrossRef]
- Song, F.-L.; Gan, R.-Y.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H.-B. Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. Int. J. Mol. Sci. 2010, 11, 2362–2372. [Google Scholar] [CrossRef]
- Eliopoulos, C.; Markou, G.; Langousi, I.; Arapoglou, D. Reintegration of Food Industry By-Products: Potential Applications. Foods 2022, 11, 3743. [Google Scholar] [CrossRef]
- Guine, R.; Costa, C.; Florença, S.; Correia, P. A Review of the Use of Chestnut in Traditional and Innovative Food Products. J. Nuts 2023, 1, 1–18. [Google Scholar]
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of Agri-Food By-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Salvador, R.; Barros, M.V.; Donner, M.; Brito, P.; Halog, A.; De Francisco, A.C. How to Advance Regional Circular Bioeconomy Systems? Identifying Barriers, Challenges, Drivers, and Opportunities. Sustain. Prod. Consum. 2022, 32, 248–269. [Google Scholar] [CrossRef]
- Vannacci, G.; Bellini, E. Chestnut (Castanea sativa): A Multipurpose European Tree. In Proceedings of the Workshop, Bruxelles, Belgium, 30 September 2010. [Google Scholar]
- Conedera, M.; Krebs, P.; Tinner, W.; Pradella, M.; Torriani, D. The Cultivation of Castanea sativa (Mill.) in Europe, from Its Origin to Its Diffusion on a Continental Scale. Veg. Hist. Archaeobot. 2004, 13, 161–179. [Google Scholar] [CrossRef]
- Frusciante, L.; Geminiani, M.; Olmastroni, T.; Mastroeni, P.; Trezza, A.; Salvini, L.; Lamponi, S.; Spiga, O.; Santucci, A. Repurposing Castanea sativa Spiny Burr By-Products Extract as a Potentially Effective Anti-Inflammatory Agent for Novel Future Biotechnological Applications. Life 2024, 14, 763. [Google Scholar] [CrossRef]
- Pal, P.; Singh, A.K.; Srivastava, R.K.; Rathore, S.S.; Sahoo, U.K.; Subudhi, S.; Sarangi, P.K.; Prus, P. Circular Bioeconomy in Action: Transforming Food Wastes into Renewable Food Resources. Foods 2024, 13, 3007. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical Evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu Assays to Assess the Antioxidant Capacity of Lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Joshi, A.; Arora, B.; Sharma, R. Significance of FRAP, DPPH, and CUPRAC Assays for Antioxidant Activity Determination in Apple Fruit Extracts. Eur. Food Res. Technol. 2020, 246, 591–598. [Google Scholar] [CrossRef]
- Sunjic, S.B.; Gasparovic, A.C.; Jaganjac, M.; Rechberger, G.; Meinitzer, A.; Grune, T.; Kohlwein, S.D.; Mihaljevic, B.; Zarkovic, N. Sensitivity of Osteosarcoma Cells to Concentration-Dependent Bioactivities of Lipid Peroxidation Product 4-Hydroxynonenal Depend on Their Level of Differentiation. Cells 2021, 10, 269. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Effect of Antioxidants on the Fibroblast Replicative Lifespan In Vitro. Oxid. Med. Cell. Longev. 2020, 2020, 6423783. [Google Scholar] [CrossRef]
- Yudoh, K.; van Trieu, N.; Nakamura, H.; Hongo-Masuko, K.; Kato, T.; Nishioka, K. Potential Involvement of Oxidative Stress in Cartilage Senescence and Development of Osteoarthritis: Oxidative Stress Induces Chondrocyte Telomere Instability and Downregulation of Chondrocyte Function. Arthritis Res. Ther. 2005, 7, R380. [Google Scholar] [CrossRef]
Samples | Extraction Yield (%) | GAE/mg of Extract | GAE/100 g of Fresh Material |
---|---|---|---|
RB | 16.64 | 0.292961609 | 4.866 |
RC | 20.84 | 0.338665448 | 7.041 |
RM | 7.6 | 0.257312614 | 1.893 |
Samples | Extraction Yield (%) | QE/mg of Extract | QE/100 g of Fresh Material |
---|---|---|---|
RB | 16.64 | 0.0483 | 798.7 |
RC | 20.84 | 0.0508 | 1000 |
RM | 7.6 | 0.0425 | 319.2 |
Samples | Extraction Yield (%) | mmol AAE/mg Extract | AAE/100 g of Fresh Material |
---|---|---|---|
RB | 16.64 | 5.530995 | 91.520 |
RC | 20.84 | 7.037723 | 146.5 |
RM | 7.6 | 4.564747 | 34.96 |
Samples | Extraction Yield (%) | % Abs Decrease, 517 nm |
---|---|---|
RB | 16.64 | 61.11 |
RC | 20.84 | 76.6 |
RM | 7.6 | 52.8 |
Sample | RB | RC | RM |
---|---|---|---|
(+) ellagic acid | 0.61 ± 0.12 | 0.56 ± 0.11 | 0.49 ± 0.10 |
(*) gallic acid | 0.41 ± 0.08 | 0.56 ± 0.11 | 0.22 ± 0.04 |
Calkyl (0–35 ppm) | Calkoxy (50–100 ppm) | Caromatic (100–140 ppm) | Cphenolic (140–160 ppm) | Ccarboxyl/carbonyl (160–215 ppm) | |
---|---|---|---|---|---|
RB | 2.5 | 47.0 | 63.2 | 5.5 | 4.1 |
RC | 3.4 | 38.5 | 54.13 | 7.9 | 1.9 |
RM | 14.5 | 60.7 | 81.2 | 7.0 | 6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barletta, R.; Trezza, A.; Bernini, A.; Millucci, L.; Geminiani, M.; Santucci, A. Antioxidant Bio-Compounds from Chestnut Waste: A Value-Adding and Food Sustainability Strategy. Foods 2025, 14, 42. https://doi.org/10.3390/foods14010042
Barletta R, Trezza A, Bernini A, Millucci L, Geminiani M, Santucci A. Antioxidant Bio-Compounds from Chestnut Waste: A Value-Adding and Food Sustainability Strategy. Foods. 2025; 14(1):42. https://doi.org/10.3390/foods14010042
Chicago/Turabian StyleBarletta, Roberta, Alfonso Trezza, Andrea Bernini, Lia Millucci, Michela Geminiani, and Annalisa Santucci. 2025. "Antioxidant Bio-Compounds from Chestnut Waste: A Value-Adding and Food Sustainability Strategy" Foods 14, no. 1: 42. https://doi.org/10.3390/foods14010042
APA StyleBarletta, R., Trezza, A., Bernini, A., Millucci, L., Geminiani, M., & Santucci, A. (2025). Antioxidant Bio-Compounds from Chestnut Waste: A Value-Adding and Food Sustainability Strategy. Foods, 14(1), 42. https://doi.org/10.3390/foods14010042