Betalains: A Narrative Review on Pharmacological Mechanisms Supporting the Nutraceutical Potential Towards Health Benefits
<p>Chemical structures of the main subclasses of betalains. In the center, betalamic acid, the common precursor of betalains, gives rise to two main subclasses: betaxanthins (left, yellow/orange), which result from the conjugation of betalamic acid with amino acids or amines, and betacyanins (right, red/purple), formed by conjugation with cyclo-DOPA groups. Examples of betaxanthins include indicaxanthin, vulgaxanthin I, and tryptophan-betaxanthin, while examples of betacyanins include betanin, isobetanin, and neobetanin. The arrows indicate the biosynthetic pathways between betalamic acid and its derived subclasses. Adapted from Khan et al., 2015 [<a href="#B9-foods-13-03909" class="html-bibr">9</a>].</p> "> Figure 2
<p>A representative diagram highlights oxidative stress and inflammation as participants in the pathophysiological mechanisms of diseases and the inhibition of these processes by betalains. The excessive generation of free radicals triggers important molecular alterations including genetic mutation, lipid peroxidation, and the impairment of the endogenous antioxidant system. In addition, it can activate inflammatory signaling routes, resulting in inflammatory components that aggravate the damage. ROS: reactive oxygen species. RNS: reactive nitrogen species. Nrf2: nuclear factor erythroid 2-related factor 2. GSH: glutathione. SOD: superoxide dismutase. MDA: malondialdehyde. STAT3: signal transducer and activator of transcription 3. NF-κB: nuclear transcription factor kappa B. COX-2: cyclooxygenase-2. iNOS: inducible nitric oxide synthase. TNF-α: tumor necrosis factor-alpha. IL: interleukin. Created using <a href="http://BioRender.com" target="_blank">http://BioRender.com</a> (accessed on 21 November 2024).</p> "> Figure 3
<p>Representative scheme of the main biological properties and plant sources of betalains. Created using <a href="https://BioRender.com" target="_blank">https://BioRender.com</a> (accessed on 30 October 2024).</p> ">
Abstract
:1. Introduction
2. Chemical Structures of Betalains
3. Beneficial Health Effects of Betalains
3.1. Antioxidant
3.2. Anti-Inflammatory
3.3. Antihypertensive
3.4. Hypolipidemic
3.5. Antidiabetic
3.6. Hepatoprotective
3.7. Neuroprotection
Betalains Source | Major Compound | Disease Model | Mechanisms | Reference |
---|---|---|---|---|
Betanin (isolated compound) | Betanin | PD model: 6-OHDA and H2O2–induced oxidative damage and apoptosis in PC12 cells | ↓ ROS levels; modulation of SAPK/JNK and PI3K pathways to ↑ cell survival | [87] |
Betanin (isolated compound) | Betanin | Rotenone-induced Parkinson-like mice model | ↓ TNF-α, IL-1β, IL-6; ↓ MDA; ↑ GSH; ↓ expression of TLR4, MyD88, NF-κB | [89] |
Betanin (isolated compounds) | Betanin | REMD simulations and Molecular Docking | ↓ amyloid-beta aggregation | [92] |
Hylocereus polyrhizus | betacyanins | Anti-A β aggregation activity and citotoxicity in SH-SY5Y cell culture | ↓ amyloid-beta aggregation and no citotoxicity | [93] |
Indicaxanthin (isolated compound) | Indicaxan-thin | High-fat diet-induced neuronal damage in mice | ↓ expression of proapoptotic genes; ↑ expression of antiapoptotic genes; ↓ expression of neuroinflammatory genes and proteins; ↓ high-fat diet-induced oxidative stress | [95] |
3.8. Anticancer
Betalain Source | Major Compound | Disease Model | Mechanisms | Reference |
---|---|---|---|---|
Betanin (isolated compound) | Betanin | Cancer cells | Induction of apoptosis through mitochondria, activation of caspases, promotion of DNA fragmentation in cancer cells without affecting normal cells | [99] |
Beta vulgaris | Betavulgarin | Breast cancer stem cells (BCSCs) | ↓ proliferation, migration, colony formation, ↓ mammosphere formation, CD44+/CD24- subpopulation, and self-renewal proteins (C-Myc, Nanog, Oct4) | [100] |
Beta vulgaris (young shoots/root) | Betalains | Breast cancer cells (MCF-7, MDA-MB-231) | ↓ cancer cell proliferation, promoted antiproliferative and apoptotic responses, particularly in estrogen-dependent cells | [101] |
Betalain-rich extracts and compounds | Tryptophan-betaxanthin | Caenorhabditis elegans JK1466 mutants | ↓ tumor size by 56.4%, ↑ lifespan by 9.3%, modulated DAF-16 transcription factor and insulin signaling pathway | [102] |
Beta vulgaris + Chitosan nanoparticles | Betalains and chitosan | Human lung (A549), breast (T-47D), colorectal (Caco-2) carcinomas | ↓ 83–89% of cancer cells, induced apoptosis and necrosis, ↑ expression of apoptotic markers (Caspase 3, P53) | [103,105] |
Beta vulgaris (hydroalcoholic extract) | Betanin | Colorectal cancer (Caco-2, HT-29) | ↓ cancer cell growth (IC50 64–107 μg/mL), ↑ expression of pro-apoptotic genes (BAD, Caspase-3, Caspase-8, Caspase-9, Fas-R), ↓ Bcl-2 | [106] |
Beta vulgaris (encapsulated in liposomes) | Betanin | Photodynamic therapy for cancer | Enhanced photosynthetic effect, improved stability and effectiveness, interaction with Bcl-2 proteins to induce apoptosis | [104,107] |
3.9. Antimicrobial
4. Pharmacokinetics, Bioavailability and Toxicity
5. Stability and Enhanced Stabilization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Polturak, G.; Aharoni, A. “La Vie en Rose”: Biosynthesis, Sources, and Applications of Betalain Pigments. Mol. Plant 2018, 11, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Timoneda, A.; Feng, T.; Sheehan, H.; Walker-Hale, N.; Pucker, B.; Lopez-Nieves, S.; Guo, R.; Brockington, S. The evolution of betalain biosynthesis in Caryophyllales. New Phytol. 2019, 224, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Castro-Enríquez, D.D.; Montaño-Leyva, B.; Del Toro-Sánchez, C.L.; Juaréz-Onofre, J.E.; Carvajal-Millan, E.; Burruel-Ibarra, S.E.; Tapia-Hernández, J.A.; Barreras-Urbina, C.G.; Rodríguez-Félix, F. Stabilization of betalains by encapsulation—A review. J. Food Sci. Technol. 2020, 57, 1587–1600. [Google Scholar] [CrossRef] [PubMed]
- Hadipour, E.; Taleghani, A.; Tayarani-Najaran, N.; Tayarani-Najaran, Z. Biological effects of red beetroot and betalains: A review. Phyther Res. 2020, 34, 1847–1867. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S.; Ullah, R.; Bari, A.; Ercisli, S.; Skrovankova, S.; Adamkova, A.; Zvonkova, M.; Mlcek, J. Nutritional and bioactive properties and antioxidant potential of Amaranthus tricolor, A. lividus, A. viridis, and A. spinosus leafy vegetables. Heliyon 2024, 10, 30453. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rodríguez, P.; Henarejos-Escudero, P.; Pagán-López, D.J.; Hernández-García, S.; Guerrero-Rubio, M.A.; Gómez-Pando, L.R.; Gandía-Herrero, F. Dopamine-derived pigments in nature: Identification of decarboxybetalains in Amaranthaceae species. Plant Physiol. 2024, 196, 446–460. [Google Scholar] [CrossRef]
- Henarejos-Escudero, P.; Hernández-García, S.; Martínez-Rodríguez, P.; García-Carmona, F.; Gandía-Herrero, F. Bioactive potential and spectroscopical characterization of a novel family of plant pigments betalains derived from dopamine. Food Res. Int. 2022, 162, 111956. [Google Scholar] [CrossRef]
- Coy-Barrera, E. Analysis of betalains (betacyanins and betaxanthins). In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Sadowska-Bartosz, I.; Bartosz, G. Biological properties and applications of betalains. Molecules 2021, 26, 2520. [Google Scholar] [CrossRef]
- Esquivel, P. Betalains. In Handbook on Natural Pigments in Food and Beverages: Industrial Applications for Improving Food Color, 2nd ed.; Woodhead Publishing: Sawston, UK, 2024; pp. 147–167. [Google Scholar]
- Fu, Y.; Shi, J.; Xie, S.Y.; Zhang, T.Y.; Soladoye, O.P.; Aluko, R.E. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. J. Agric. Food Chem. 2020, 68, 11595–11611. [Google Scholar] [CrossRef]
- Khan, M.I. Plant Betalains: Safety, Antioxidant Activity, Clinical Efficacy, and Bioavailability. Compr. Rev. Food Sci. Food Saf. 2016, 15. [Google Scholar] [CrossRef]
- Naqvi, S.F.H.; Husnain, M. Betalains: Potential drugs with versatile phytochemistry. Crit. Rev. Eukaryot. Gene Expr. 2020, 30, 169–189. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Parvin, K.; Bhuiyan, T.F.; Anee, T.I.; Nahar, K.; Hossen, S.; Zulfiqar, F.; Alam, M.; Fujita, M. Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. Int. J. Mol. Sci. 2020, 21, 8695. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.M.; Longhi-Balbinot, D.T.; Zarpelon, A.C.; Staurengo-Ferrari, L.; Baracat, M.M.; Georgetti, S.R.; Sassonia, R.C.; Verri, W.A., Jr.; Casagrande, R. Anti-inflammatory activity of betalain-rich dye of Beta vulgaris: Effect on edema, leukocyte recruitment, superoxide anion and cytokine production. Arch. Pharm. Res. 2015, 38, 494–504. [Google Scholar] [CrossRef]
- Leyane, T.S.; Jere, S.W.; Houreld, N.N. Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int. J. Mol. Sci. 2022, 23, 7273. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, Y.; Hu, Z.; Wu, S.; Jin, C. Beetroot as a functional food with huge health benefits: Antioxidant, antitumor, physical function, and chronic metabolomics activity. Food Sci. Nutr. 2021, 9, 6406–6420. [Google Scholar] [CrossRef] [PubMed]
- Sakihama, Y.; Maeda, M.; Hashimoto, M.; Tahara, S.; Hashidoko, Y. Beetroot betalain inhibits peroxynitrite-mediated tyrosine nitration and DNA strand cleavage. Free Radic. Res. 2012, 46, 93–99. [Google Scholar] [CrossRef]
- Gómez-Maqueo, A.; Soccio, M.; Cano, M.P. In Vitro Antioxidant Capacity of Opuntia spp. Fruits Measured by the LOX-FL Method and its High Sensitivity Towards Betalains. Plant Foods Hum. Nutr. 2021, 76, 354–362. [Google Scholar] [CrossRef]
- Smeriglio, A.; Bonasera, S.; Germanò, M.P.; D’Angelo, V.; Barreca, D.; Denaro, M.; Monforte, M.T.; Galati, E.M.; Trombetta, D. Opuntia ficus-indica (L.) Mill. fruit as source of betalains with antioxidant, cytoprotective, and anti-angiogenic properties. Phyther Res. 2019, 33, 1526–1537. [Google Scholar] [CrossRef]
- Khoo, H.E.; He, X.; Tang, Y.; Li, Z.; Li, C.; Zeng, Y.; Tang, J.; Sun, J. Betacyanins and Anthocyanins in Pulp and Peel of Red Pitaya (Hylocereus polyrhizus cv. Jindu), Inhibition of Oxidative Stress, Lipid Reducing, and Cytotoxic Effects. Front. Nutr. 2022, 9, 894438. [Google Scholar] [CrossRef]
- Escribano, J.; Cabanes, J.; Jiménez-Atiénzar, M.; Ibañez-Tremolada, M.; Gómez-Pando, L.R.; García-Carmona, F.; Gandía-Herrero, F. Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chem. 2017, 234, 285–294. [Google Scholar] [CrossRef]
- Khan, S.A.; Alsulami, M.N.; Alsehimi, A.A.; Alzahrani, M.S.; Mosule, D.A.; Albohiri, H.H. Beta vulgaris Betalains Mitigate Parasitemia and Brain Oxidative Stress Induced by Plasmodium berghei in Mice. Pharmaceuticals 2024, 17, 1064. [Google Scholar] [CrossRef] [PubMed]
- Saito, P.; Pinto, I.C.; Rodrigues, C.C.A.; de Matos, R.L.N.; Vale, D.L.; Melo, C.P.B.; Fattori, V.; Saraiva-Santos, T.; Mendes-Pierotti, S.; Bertozzi, M.M.; et al. Resolvin D5 Protects Female Hairless Mouse Skin from Pathological Alterations Caused by UVB Irradiation. Antioxidants 2024, 13, 1008. [Google Scholar] [CrossRef] [PubMed]
- Gómez-López, I.; Lobo-Rodrigo, G.; Portillo, M.P.; Cano, M.P. Ultrasound-assisted “green” extraction (Uae) of antioxidant compounds (betalains and phenolics) from opuntia stricta var. dilenii’s fruits: Optimization and biological activities. Antioxidants 2021, 10, 1786. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fernando, G.S.N.; Sergeeva, N.N.; Vagkidis, N.; Chechik, V.; Do, T.; Marshall, L.J.; Boesch, C. Uptake and Immunomodulatory Properties of Betanin, Vulgaxanthin I and Indicaxanthin towards Caco-2 Intestinal Cells. Antioxidants 2022, 11, 1627. [Google Scholar] [CrossRef] [PubMed]
- Tesoriere, L.; Attanzio, A.; Allegra, M.; Gentile, C.; Livrea, M.A. Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells. Br. J. Nutr. 2014, 111, 415–423. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, X.; Tian, Z.; Ma, Y.; Sun, C. Betalain exerts cardioprotective and anti-inflammatory effects against the experimental model of heart failure. Hum. Exp. Toxicol. 2021, 40 (Suppl. 12), S16–S28. [Google Scholar] [CrossRef]
- Martinez, R.M.; Hohmann, M.S.; Longhi-Balbinot, D.T.; Zarpelon, A.C.; Baracat, M.M.; Georgetti, S.R.; Vicentini, F.T.M.C.; Sassonia, R.C.; Verri, W.A.; Casagrande, R. Analgesic activity and mechanism of action of a Beta vulgaris dye enriched in betalains in inflammatory models in mice. Inflammopharmacology 2020, 28, 1663–1675. [Google Scholar] [CrossRef]
- Musharraf, H.M.; Arman, M.S.I. Prophetic medicine is the cheapest, safest and the best remedy in the prevention and treatment of hypertension (high blood pressure)—A mini review. Int. J. Mol. Biol. Open Access 2018, 3, 245–250. [Google Scholar] [CrossRef]
- Oparil, S.; Acelajado, M.C.; Bakris, G.L.; Berlowitz, D.R.; Cífková, R.; Dominiczak, A.F.; Grassi, G.; Jordan, J.; Poulter, N.R.; Rodgers, A.; et al. Hypertension. Nat. Rev. Dis. Prim. 2018, 4, 18014. [Google Scholar] [CrossRef]
- Deussen, A.; Kopaliani, I. Targeting inflammation in hypertension. Curr. Opin. Nephrol. Hypertens. 2023, 32, 111–117. [Google Scholar] [CrossRef]
- Dos Passos, R.R.; Santos, C.V.; Priviero, F.; Briones, A.M.; Tostes, R.C.; Clinton Webb, R.; Bomfim, G.F. Immunomodulatory Activity of Cytokines in Hypertension: A Vascular Perspective. Hypertens. 2024, 81, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.; Gori, T.; Münzel, T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens. Res. 2011, 34, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Grönroos, R.; Eggertsen, R.; Bernhardsson, S.; Praetorius Björk, M. Effects of beetroot juice on blood pressure in hypertension according to European Society of Hypertension Guidelines: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 2240–2256. [Google Scholar] [CrossRef] [PubMed]
- Milton-Laskibar, I.; Alfredo Martínez, J.; Portillo, M.P. Current knowledge on beetroot bioactive compounds: Role of nitrate and betalains in health and disease. Foods 2021, 10, 1314. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Carlström, M.; Weitzberg, E. Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metab. 2018, 28, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Madrigal-Santillán, E.; Portillo-Reyes, J.; Madrigal-Bujaidar, E.; Sánchez-Gutiérrez, M.; Izquierdo-Vega, J.A.; Izquierdo-Vega, J.; Delgado-Olivares, L.; Vargas-Mendoza, N.; Álvarez-González, I.; Morales-González, Á.; et al. Opuntia spp. in Human Health: A Comprehensive Summary on Its Pharmacological, Therapeutic and Preventive Properties. Part 2. Plants 2022, 11, 2333. [Google Scholar] [CrossRef]
- Del Socorro Santos DIáz, M.; Barba De La Rosa, A.P.; Héliès-Toussaint, C.; Guéraud, F.; Nègre-Salvayre, A. Opuntia spp.: Characterization and Benefits in Chronic Diseases. Oxid. Med. Cell. Longev. 2017, 2017, 8634249. [Google Scholar] [CrossRef]
- Rahimi, P.; Mesbah-Namin, S.A.; Ostadrahimi, A.; Abedimanesh, S.; Separham, A.; Asghary Jafarabadi, M. Effects of betalains on atherogenic risk factors in patients with atherosclerotic cardiovascular disease. Food Funct. 2019, 10, 8286–8297. [Google Scholar] [CrossRef]
- Cheok, A.; Xu, Y.; Zhang, Z.; Caton, P.W.; Rodriguez-Mateos, A. Betalain-rich dragon fruit (pitaya) consumption improves vascular function in men and women: A double-blind, randomized controlled crossover trial. Am. J. Clin. Nutr. 2022, 115, 1418–1431. [Google Scholar] [CrossRef]
- Tawa, M.; Masuoka, T.; Yamashita, Y.; Nakano, K.; Ishibashi, T. Effect of betanin, a beetroot component, on vascular tone in isolated porcine arteries. Am. J. Hypertens. 2020, 33, 305–309. [Google Scholar] [CrossRef]
- Krantz, C.; Monier, M.; Wahlström, B. Absorption, excretion, metabolism and cardiovascular effects of beetroot extract in the rat. Food Cosmet. Toxicol. 1980, 18, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Bhaswant, M.; Brown, L.; McAinch, A.J.; Mathai, M.L. Beetroot and Sodium Nitrate Ameliorate Cardiometabolic Changes in Diet-Induced Obese Hypertensive Rats. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.V.T.D.; Baiao, D.D.S.; Ferreira, V.F.; Paschoalin, V.M.F. Betanin as a multipath oxidative stress and inflammation modulator: A beetroot pigment with protective effects on cardiovascular disease pathogenesis. Crit. Rev. Food Sci. Nutr. 2021, 62, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Tesoriere, L.; Butera, D.; D’Arpa, D.; Di Gaudio, F.; Allegra, M.; Gentile, C.; Livrea, M. Increased resistance to oxidation of betalain-enriched human low density lipoproteins. Free Radic. Res. 2003, 37, 689–696. [Google Scholar] [CrossRef]
- Attanzio, A.; Frazzitta, A.; Busa, R.; Tesoriere, L.; Livrea, M.A.; Allegra, M. Indicaxanthin from Opuntia ficus indica (L. Mill) Inhibits Oxidized LDL-Mediated Human Endothelial Cell Dysfunction through Inhibition of NF-κB Activation. Oxid. Med. Cell Longev. 2019, 2019, 3457846. [Google Scholar] [CrossRef]
- Sawicki, T.; Martinez-Villaluenga, C.; Frias, J.; Wiczkowski, W.; Peñas, E.; Bączek, N.; Zieliński, H. The effect of processing and in vitro digestion on the betalain profile and ACE inhibition activity of red beetroot products. J. Funct. Foods 2019, 55, 229–237. [Google Scholar] [CrossRef]
- Myung, S.K.; Ju, W.; Cho, B.; Oh, S.W.; Park, S.M.; Koo, B.K.; Park, B.J. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: Systematic review and meta-analysis of randomised controlled trials. BMJ 2013, 346, f10. [Google Scholar] [CrossRef]
- Park, E.; Edirisinghe, I.; Choy, Y.Y.; Waterhouse, A.; Burton-Freeman, B. Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: A randomised, double-blinded, two-arm, parallel, placebo-controlled trial. Br. J. Nutr. 2016, 115, 226–238. [Google Scholar] [CrossRef]
- Sani, H.A.; Baharoom, A.; Ahmad, M.A.; Ismail, I.I. Effectiveness of Hylocereus polyrhizus Extract in Decreasing Serum Lipids and Liver MDA-TBAR Level in Hypercholesterolemic Rats. Sains Malays. 2009, 38, 271–279. [Google Scholar]
- Naeem Rabeh, M.; Marwa Ibrahim, E. Antihypercholesterolemic effects of beet (Beta vulgaris L.) root waste extract on hypercholesterolemia rats and its antioxidant potential properties. Pakistan J. Nutr. 2014, 13, 500–505. [Google Scholar] [CrossRef]
- Wroblewska, M.; Juskiewicz, J.; Wiczkowski, W. Physiological properties of beetroot crisps applied in standard and dyslipidaemic diets of rats. Lipids Health Dis. 2011, 10, 178. [Google Scholar] [CrossRef]
- Lira, S.M.; Holanda, M.O.; Silva, J.Y.G.D.; Marques, C.G.; Coelho, L.C.; Lima, C.L.S.; Costa, J.T.G.; Dantas, J.B.; Maciel, G.L.; Silva, G.S.D.; et al. Pitaya [Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose] effect on glycemia and oxidative stress in aloxan-induced diabetic mice. Food Sci. Technol. 2023, 43, e56822. [Google Scholar]
- Colaco e Clemente, A.; Desai, P.V. Evaluation of the hematological, hypoglycemic, hypolipidemic and antioxidant properties of Amaranthus Tricolor leaf extract in rat. Trop. J. Pharm. Res. 2011, 10, 595–602. [Google Scholar] [CrossRef]
- Yang, B.; Cao, F.; Zhao, H.; Zhang, J.; Jiang, B.; Wu, Q. Betanin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation, oxidative stress-myeloperoxidase/low-density lipoprotein in rat. Int. J. Clin. Exp. Pathol. 2016, 9, 2777–2786. [Google Scholar]
- Gómez-López, I.; Eseberri, I.; Cano, M.P.; Portillo, M.P. Anti-Obesity Effect of Different Opuntia stricta var. dillenii’s Prickly Pear Tissues and Industrial By-Product Extracts in 3T3-L1 Mature Adipocytes. Nutrients 2024, 16, 499. [Google Scholar] [CrossRef] [PubMed]
- Eseberri, I.; Gómez-Maqueo, A.; Trepiana, J.; Gómez-López, I.; Proença, C.; Cano, M.P.; Portillo, M.P. In Vitro Screening and Lipid-Lowering Effect of Prickly Pear (Opuntia ficus-indica, L. Mill.) Fruit Extracts in 3T3-L1 Pre-Adipocytes and Mature Adipocytes. Plant Foods Hum. Nutr. 2024, 79, 143–150. [Google Scholar] [CrossRef]
- Holy, B.; Isaac, N.N.; Ngoye, B.O. Post-prandial effect of beetroot (Beta vulgaris) juice on glucose and lipids levels of apparently healthy subjects. Eur. J. Pharm. Med. Res. 2018, 4, 60–62. [Google Scholar]
- Singh, A.; Verma, S.K.; Singh, V.K.; Nanjappa, C.; Roopa, N.; Raju, P.S.; Singh, S.N. Beetroot juice supplementation increases high density lipoprotein-cholesterol and reduces oxidative stress in physically active individuals. J. Pharm. Nutr. Sci. 2015, 5, 179–185. [Google Scholar] [CrossRef]
- Araujo-León, J.A.; Sánchez-del Pino, I.; Ortiz-Andrade, R.; Hidalgo-Figueroa, S.; Carrera-Lanestosa, A.; Brito-Argáez, L.G.; González-Sánchez, A.; Giácoman-Vallejos, G.; Hernández-Abreu, O.; Peraza-Sánchez, S.R.; et al. HPLC-Based Metabolomic Analysis and Characterization of Amaranthus cruentus Leaf and Inflorescence Extracts for Their Antidiabetic and Antihypertensive Potential. Molecules 2024, 29, 2003. [Google Scholar] [CrossRef]
- Üst, Ö.; Yalçin, E.; Çavuşoğlu, K.; Özkan, B. LC–MS/MS, GC–MS and molecular docking analysis for phytochemical fingerprint and bioactivity of Beta vulgaris L. Sci. Rep. 2024, 14, 7491. [Google Scholar] [CrossRef]
- Mousavi, M.; Abedimanesh, N.; Mohammadnejad, K.; Sharini, E.; Nikkhah, M.; Eskandari, M.R.; Motlagh, B.; Mohammadnejad, J.; Khodabandehloo, H.; Fathi, M.; et al. Betanin alleviates oxidative stress through the Nrf2 signaling pathway in the liver of STZ-induced diabetic rats. Mol. Biol. Rep. 2022, 49, 9345–9354. [Google Scholar] [CrossRef]
- Dhananjayan, I.; Kathiroli, S.; Subramani, S.; Veerasamy, V. Ameliorating effect of betanin, a natural chromoalkaloid by modulating hepatic carbohydrate metabolic enzyme activities and glycogen content in streptozotocin—Nicotinamide induced experimental rats. Biomed. Pharmacother. 2017, 88, 1069–1079. [Google Scholar] [CrossRef]
- González-Cortazar, M.; Gutiérrez-Román, A.S.; Vargas-Ruiz, R.; Montiel-Ruiz, R.M.; Ble-González, E.A.; Pérez-Terán, Y.Y.; Tortoriello, J.; Jiménez-Ferrer, E. Antidiabetic Activity of Xoconostle Fruit from Opuntia matudae Scheivar in Mice. J. Med. Food 2022, 25, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Karimzadeh, L.; Behrouz, V.; Sohrab, G.; Hedayati, M.; Emami, G. A randomized clinical trial of beetroot juice consumption on inflammatory markers and oxidative stress in patients with type 2 diabetes. J. Food Sci. 2022, 87, 5430–5441. [Google Scholar] [CrossRef]
- Aliahmadi, M.; Amiri, F.; Bahrami, L.S.; Hosseini, A.F.; Abiri, B.; Vafa, M. Effects of raw red beetroot consumption on metabolic markers and cognitive function in type 2 diabetes patients. J. Diabetes Metab. Disord. 2021, 20, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Abd Hadi, N.; Mohamad, M.; Rohin, M.A.K.; Yusof, R.M. Effects of red pitaya fruit (Hylocereus polyrhizus) consumption on blood glucose level and lipid profile in type 2 diabetic subjects. Borneo Sci. 2013, 31, 113–129. [Google Scholar]
- Van Proeyen, K.; Ramaekers, M.; Pischel, I.; Hespel, P. Opuntia ficus-indica ingestion stimulates peripheral disposal of oral glucose before and after exercise in healthy men. Int. J. Sport. Nutr. Exerc. Metab. 2012, 22, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Gengatharan, A.; Dykes, G.A.; Choo, W.S. Betalains: Natural plant pigments with potential application in functional foods. LWT 2015, 64. [Google Scholar] [CrossRef]
- Haswell, C.; Ali, A.; Page, R.; Hurst, R.; Rutherfurd-Markwick, K. Potential of beetroot and blackcurrant compounds to improve metabolic syndrome risk factors. Metabolites 2021, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Choo, W.S. Betalains: Application in Functional Foods. In Bioactive Molecules in Food; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1471–1498. [Google Scholar]
- González-Ponce, H.A.; Rincón-Sánchez, A.R.; Jaramillo-Juárez, F.; Moshage, H. Natural dietary pigments: Potential mediators against hepatic damage induced by over-the-counter non-steroidal anti-inflammatory and analgesic drugs. Nutrients 2018, 10, 117. [Google Scholar] [CrossRef]
- Veith, A.; Moorthy, B. Role of the cytochrome P450S in the generation and metabolism of reactive oxigen species. Curr. Opin. Toxicol. 2018, 7, 44–51. [Google Scholar] [CrossRef]
- Ingawale, D.K.; Mandlik, S.K.; Naik, S.R. Models of hepatotoxicity and the underlying cellular, biochemical and immunological mechanism(s): A critical discussion. Environ. Toxicol. Pharmacol. 2014, 37, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef] [PubMed]
- Krajka-Kuzniak, V.; Paluszczak, J.; Szaefer, H.; Baer-Dubowska, W. Betanin, a beetroot component, induces nuclear factor erythroid-2-related factor 2-mediated expression of detoxifying/antioxidant enzymes in human liver cell lines. Br. J. Nutr. 2013, 110, 2138–2149. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, Z.; Yang, S.; Wang, J.; Yang, X.; Tan, D. Betanin attenuates paraquat-induced liver toxicity through a mitochondrial pathway. Food Chem. Toxicol. 2014, 70, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Gao, C.; Yang, S.; Wang, J.; Tan, D. Betanin attenuates carbon tetrachloride (CCl4)-induced liver injury in common carp (Cyprinus carpio L.). Fish. Physiol. Biochem. 2014, 40, 865–874. [Google Scholar] [CrossRef]
- Ahmadian, E.; Khosroushahi, A.Y.; Eghbal, M.A.; Eftekhari, A. Betanin reduces organophosphate induced cytotoxicity in primary hepatocyte via an anti-oxidative and mitochondrial dependent pathway. Pestic. Biochem. Physiol. 2018, 144, 71–78. [Google Scholar] [CrossRef]
- Villa-Jaimes, G.S.; Moshage, H.; Avelar-González, F.J.; González-Ponce, H.A.; Buist-Homan, M.; Guevara-Lara, F.; Sánchez-Alemán, E.; Martínez-Hernández, S.L.; Ventura-Juárez, J.; Muñoz-Ortega, M.H.; et al. Molecular and Antioxidant Characterization of Opuntia robusta Fruit Extract and Its Protective Effect against Diclofenac-Induced Acute Liver Injury in an In Vivo Rat Model. Antioxidants 2023, 12, 113. [Google Scholar] [CrossRef]
- González-Ponce, H.A.; Martínez-Saldaña, M.C.; Tepper, P.G.; Quax, W.J.; Buist-Homan, M.; Faber, K.N.; Moshage, H. Betacyanins, major components in Opuntia red-purple fruits, protect against acetaminophen-induced acute liver failure. Food Res. Int. 2020, 137, 109461. [Google Scholar] [CrossRef]
- Rahimi, P.; Mesbah-Namin, S.A.; Ostadrahimi, A.; Separham, A.; Asghari Jafarabadi, M. Betalain- and betacyanin-rich supplements’ impacts on the PBMC SIRT1 and LOX1 genes expression and Sirtuin-1 protein levels in coronary artery disease patients: A pilot crossover clinical trial. J. Funct. Foods 2019, 60, 103401. [Google Scholar] [CrossRef]
- Li, Y.; Xi, Y.; Tao, G.; Xu, G.; Yang, Z.; Fu, X.; Liang, Y.; Qian, J.; Cui, Y.; Jiang, T. Sirtuin 1 activation alleviates primary biliary cholangitis via the blocking of the NF-κB signaling pathway. Int. Immunopharmacol. 2020, 83, 106386. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Niculescu, A.G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef] [PubMed]
- Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019, 18, e13031. [Google Scholar] [CrossRef] [PubMed]
- Hadipour, E.; Fereidoni, M.; Tayarani-Najaran, Z. Betanin Attenuates Oxidative Stress Induced by 6-OHDA in PC12 Cells via SAPK/JNK and PI3 K Pathways. Neurochem. Res. 2020, 45, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Caplan, I.F.; Maguire-Zeiss, K.A. Toll-like receptor 2 signaling and current approaches for therapeutic modulation in synucleinopathies. Front. Pharmacol. 2018, 9, 417. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, M.H.; Atif, H.M.; Eladl, M.A.; Elaidy, S.M.; Helaly, A.M.; Hisham, F.A.; Farag, N.E.; Osman, N.M.; Ibrahiem, A.T.; Khella, H.W.; et al. Betanin improves motor function and alleviates experimental Parkinsonism via downregulation of TLR4/MyD88/NF-κB pathway: Molecular docking and biological investigations. Biomed. Pharmacother. 2023, 164, 114917. [Google Scholar] [CrossRef]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef]
- Allan Butterfield, D.; Boyd-Kimball, D. Oxidative Stress, Amyloid-β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 62, 1345–1367. [Google Scholar] [CrossRef]
- Minh Hung, H.; Nguyen, M.T.; Tran, P.T.; Truong, V.K.; Chapman, J.; Quynh Anh, L.H.; Derreumaux, P.; Vu, V.V.; Ngo, S.T. Impact of the Astaxanthin, Betanin, and EGCG Compounds on Small Oligomers of Amyloid Aβ40Peptide. J. Chem. Inf. Model. 2020, 60, 1399–1408. [Google Scholar] [CrossRef]
- Thwe, P.N.; Yeong, K.Y.; Choo, W.S. Anti-Amyloid β Aggregation Activity and Cell Viability Effect of Betacyanins from Red Pitahaya (Hylocereus polyrhizus) for Alzheimer’s Disease. Plant Foods Hum. Nutr. 2023, 78, 613–619. [Google Scholar] [CrossRef]
- Cavaliere, G.; Trinchese, G.; Penna, E.; Cimmino, F.; Pirozzi, C.; Lama, A.; Annunziata, C.; Catapano, A.; Mattace Raso, G.; Meli, R.; et al. High-Fat Diet Induces Neuroinflammation and Mitochondrial Impairment in Mice Cerebral Cortex and Synaptic Fraction. Front. Cell Neurosci. 2019, 13, 509. [Google Scholar] [CrossRef]
- Terzo, S.; Amato, A.; Calvi, P.; Giardina, M.; Nuzzo, D.; Picone, P.; Palumbo-Piccionello, A.; Amata, S.; Giardina, I.C.; Massaro, A.; et al. Positive impact of indicaxanthin from Opuntia ficus-indica fruit on high-fat diet–induced neuronal damage and gut microbiota dysbiosis. Neural Regen. Res. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Armas Diaz, Y.; Qi, Z.; Yang, B.; Martínez López, N.M.; Briones Urbano, M.; Cianciosi, D. Betalains: The main bioactive compounds of Opuntia spp. and their possible health benefits in the Mediterranean diet. Med. J. Nutrition Metab. 2023, 16, 181–190. [Google Scholar] [CrossRef]
- Nobari, H.; Saedmocheshi, S.; Johnson, K.; Suzuki, K.; Maynar-Mariño, M. A Brief Overview of the Effects of Exercise and Red Beets on the Immune System in Patients with Prostate Cancer. Sustainability 2022, 14, 6492. [Google Scholar] [CrossRef]
- Tan, M.L.; Hamid, S.B.S. Beetroot as a Potential Functional Food for Cancer Chemoprevention, a Narrative Review. J. Cancer Prev. 2021, 26, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zand, A.; Enkhbilguun, S.; Macharia, J.M.; Varajti, K.; Szabó, I.; Gerencsér, G.; Tisza, B.B.; Raposa, B.L.; Gyöngyi, Z.; Varjas, T. Betanin Attenuates Epigenetic Mechanisms and UV-Induced DNA Fragmentation in HaCaT Cells: Implications for Skin Cancer Chemoprevention. Nutrients 2024, 16, 860. [Google Scholar] [CrossRef]
- Liu, R.; Choi, H.S.; Zhen, X.; Kim, S.L.; Kim, J.H.; Ko, Y.C.; Yun, B.S.; Lee, D.S. Betavulgarin Isolated from Sugar Beet (Beta vulgaris) Suppresses Breast Cancer Stem Cells through Stat3 Signaling. Molecules 2020, 25, 2999. [Google Scholar] [CrossRef]
- Piasna-Słupecka, E.; Leszczyńska, T.; Drozdowska, M.; Dziadek, K.; Domagała, B.; Domagała, D.; Koronowicz, A. Young Shoots of Red Beet and the Root at Full Maturity Inhibit Proliferation and Induce Apoptosis in Breast Cancer Cell Lines. Int. J. Mol. Sci. 2023, 24, 6889. [Google Scholar] [CrossRef]
- Henarejos-Escudero, P.; Hernández-García, S.; Alejandra Guerrero-Rubio, M.; García-Carmona, F.; Gandía-Herrero, F. Antitumoral Drug Potential of Tryptophan-Betaxanthin and Related Plant Betalains in the Caenorhabditis elegans Tumoral Model. Antioxidants 2020, 9, 646. [Google Scholar] [CrossRef]
- Moreno-Ley, C.M.; Osorio-Revilla, G.; Hernández-Martínez, D.M.; Ramos-Monroy, O.A.; Gallardo-Velázquez, T. Anti-inflammatory activity of betalains: A comprehensive review. Hum. Nutr. Metab. 2021, 25, 200126. [Google Scholar] [CrossRef]
- Madadi, E.; Mazloum-Ravasan, S.; Yu, J.S.; Ha, J.W.; Hamishehkar, H.; Kim, K.H. Therapeutic application of betalains: A review. Plants 2020, 9, 1219. [Google Scholar] [CrossRef]
- El-ghannam, G.; Moawad, M.; Abo-Elfadl, M.T.; Elfeky, S.A. Beetroot extract@chitosan nanocomposite as a promising approach towards cancer therapy. Int. J. Biol. Macromol. 2024, 261 Pt 1, 129700. [Google Scholar] [CrossRef]
- Saber, A.; Abedimanesh, N.; Somi, M.H.; Khosroushahi, A.Y.; Moradi, S. Anticancer properties of red beetroot hydro-alcoholic extract and its main constituent; betanin on colorectal cancer cell lines. BMC Complement. Med. Ther. 2023, 23, 246. [Google Scholar] [CrossRef] [PubMed]
- Fadeel, D.A.; Fadel, M.; El-Kholy, A.I.; El-Rashedy, A.A.; Mohsen, E.; Ezzat, M.I.; Issa, M.Y. Nano-Liposomal Beetroot Phyto-Pigment in Photodynamic Therapy as a Prospective Green Approach for Cancer Management: In Vitro Evaluation and Molecular Dynamic Simulation. Pharmaceutics 2024, 16, 1038. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, V.N.; Choo, W.S. Antimicrobial betalains. J. Appl. Microbiol. 2022, 133, 3347. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.H.A.A.; Rasmy, N.M.H.; Yasin, N.M.N.; Afifi, E.A. Phytochemical And Physicochemical Properties Of Betalains Extracted From Red Beetroot (Beta vulgaris L.). Egypt. J. Chem. 2024, 67, 283–295. [Google Scholar]
- Calva-Estrada, S.J.; Jiménez-Fernández, M.; Lugo-Cervantes, E. Betalains and their applications in food: The current state of processing, stability and future opportunities in the industry. Food Chem. Mol. Sci. 2022, 4, 100089. [Google Scholar] [CrossRef]
- Wang, Y.; Adekolurejo, O.O.; Wang, B.; McDermott, K.; Do, T.; Marshall, L.J.; Boesch, C. Bioavailability and excretion profile of betacyanins—Variability and correlations between different excretion routes. Food Chem. 2024, 437 Pt 1, 137663. [Google Scholar] [CrossRef]
- Sorrenti, V.; Ali, S.; Mancin, L.; Davinelli, S.; Paoli, A.; Scapagnini, G. Cocoa Polyphenols and Gut Microbiota Interplay: Bioavailability, Prebiotic Effect, and Impact on Human Health. Nutrients 2020, 12, 1908. [Google Scholar] [CrossRef]
- Tesoriere, L.; Allegra, M.; Butera, D.; Livrea, M.A. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: Potential health effects of betalains in humans. Am. J. Clin. Nutr. 2004, 80, 941–945. [Google Scholar] [CrossRef]
- Tesoriere, L.; Butera, D.; Allegra, M.; Fazzari, M.; Livrea, M.A. Distribution of betalain pigments in red blood cells after consumption of cactus pear fruits and increased resistance of the cells to ex vivo induced oxidative hemolysis in humans. J. Agric. Food Chem. 2005, 53, 1266–1270. [Google Scholar] [CrossRef]
- Tesoriere, L.; Gentile, C.; Angileri, F.; Attanzio, A.; Tutone, M.; Allegra, M.; Livrea, M.A. Trans-epithelial transport of the betalain pigments indicaxanthin and betanin across Caco-2 cell monolayers and influence of food matrix. Eur. J. Nutr. 2013, 52, 1077–1087. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Romaszko, E.; Szawara-Nowak, D.; Piskula, M.K. The impact of the matrix of red beet products and interindividual variability on betacyanins bioavailability in humans. Food Res. Int. 2018, 108, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Choo, K.Y.; Ong, Y.Y.; Lim, R.L.H.; Tan, C.P.; Ho, C.W. Study on bioaccessibility of betacyanins from red dragon fruit (Hylocereus polyrhizus). Food Sci. Biotechnol. 2019, 28, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, T.; Topolska, J.; Romaszko, E.; Wiczkowski, W. Profile and Content of Betalains in Plasma and Urine of Volunteers after Long-Term Exposure to Fermented Red Beet Juice. J. Agric. Food Chem. 2018, 66, 4155–4163. [Google Scholar] [CrossRef]
- Sawicki, T.; Topolska, J.; Bączek, N.; Szawara-Nowak, D.; Juśkiewicz, J.; Wiczkowski, W. Characterization of the profile and concentration of betacyanin in the gastric content, blood and urine of rats after an intragastric administration of fermented red beet juice. Food Chem. 2020, 313, 126169. [Google Scholar] [CrossRef]
- Rahimi, P.; Abedimanesh, S.; Mesbah-Namin, S.A.; Ostadrahimi, A. Betalains, the nature-inspired pigments, in health and diseases. Crit. Rev. Food Sci. Nutr. 2019, 59, 2949–2978. [Google Scholar] [CrossRef] [PubMed]
- Reynoso, R.C.; Giner, T.V.; De Mejia, E.G. Safety of a Filtrate of Fermented Garambullo Fruit: Biotransformation and Toxicity Studies. Food Chem. Toxicol. 1999, 37, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Denny Joseph, K.M.; Muralidhara; Ramesh, H.P.; Giridhar, P.; Ravishankar, G.A. Acute, subacute and subchronic safety assessment of betalains rich Rivina humilis L. berry juice in rats. Food Chem. Toxicol. 2011, 49, 3154–3157. [Google Scholar] [CrossRef]
- Faridah, A.; Holinesti, R.; Syukri, D. Betalains from Red Pitaya Peel (Hylocereus polyrhizus): Extraction, Spectrophotometric and HPLC-DAD identification, bioactivity and toxicity screening. Pakistan J. Nutr. 2015, 14, 976–982. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Betalains. Encycl. Food Chem. 2019, 35–39. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Could fruits be a reliable source of food colorants? Pros and cons of these natural additives. Crit. Rev. Food Sci. Nutr. 2021, 61, 805–835. [Google Scholar] [CrossRef] [PubMed]
- Herbach, K.M.; Stintzing, F.C.; Carle, R. Betalain Stability and Degradation—Structural and Chromatic Aspects. J. Food Sci. 2006, 71, 41–50. [Google Scholar] [CrossRef]
- Miguel, M.G. Betalains in Some Species of the Amaranthaceae Family: A Review. Antioxidants 2018, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Koop, B.L.; da Silva, M.N.; da Silva, F.D.; dos Santos Lima, K.T.; Soares, L.S.; de Andrade, C.J.; Valencia, G.A.; Monteiro, A.R. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res. Int. 2022, 153, 110929. [Google Scholar] [CrossRef] [PubMed]
- Otálora, M.C.; Carriazo, J.G.; Iturriaga, L.; Osorio, C.; Nazareno, M.A. Encapsulating betalains from Opuntia ficus-indica fruits by ionic gelation: Pigment chemical stability during storage of beads. Food Chem. 2016, 202, 373–382. [Google Scholar] [CrossRef]
- Li, Z.C.; Zhang, J.Y.; Wu, Y.Q.; Zhan, Y.L.; Chang, X.L. Adsorption and desorption studies of betaxanthin from yellow beet onto macroporous resins. Sep. Sci. Technol. 2021, 56, 2327–2337. [Google Scholar] [CrossRef]
Betalains Source | Major Compound | Model | Mechanisms | Reference |
---|---|---|---|---|
Beta vulgaris | Betanin | UV/Vis spectral analysis of peroxynitrite scavenging activity | ↓ ONOO- | [18] |
Opuntia spp. | Betalains | Lipoxygenase fluorescein (LOX-FL) method | ↓ LOX-1 | [19] |
Opuntia ficus-indica | Indicaxanthin and betanin | In vitro antioxidant profile | ↑ ORAC, ↑ FRAP, ↓ DPPH, ↑ TEAC | [20] |
Hylocereus polyrhizus | Betacyanins | Mouse embryonic fibroblast (3T3-L1) cells | ↑ FRAP, ↓ DPPH | [21] |
Chenopodium quinoa | Betalains | In vitro antioxidant power of quinoa grains | ↑ FRAP, ↑ ORAC, ↓ ABTS | [22] |
Beta vulgaris | Betalains | Mice infected with Plasmodium berghei | ↑ SOD, ↑ GSH, ↓ MDA | [23] |
Betalains Source | Major Compound | Model | Mechanisms | Reference |
---|---|---|---|---|
Opuntia stricta | Betanin, isobetanin, and neobetanin | Anti-inflammatory in vitro biological activities | ↓ Hyaluronidase | [25] |
Beta vulgaris and Opuntia ficus-indica | Betanin, vulgaxanthin I, and indicaxanthin | Model of intestinal inflammation using cultured Caco-2 cells | ↓ COX-2, ↓ iNOS, ↓ IL-6, ↓ IL-8 | [26] |
Opuntia ficus-indica | Indicaxanthin | Human intestinal epithelial cell line | ↓ NOX-1, ↓ COX-2, ↓ iNOS, ↓ IL-6, ↓ IL-8, ↓ PGE2 | [27] |
Betalain (isolated compound) | Betalain | Cardiac injury model caused by isoproterenol in Wistar rats | ↓ IL-1β, ↓ TNF-α, ↓ IL-6, ↓ CXCR-4, ↓ STAT3 | [28] |
Beta vulgaris | Betalains | Hyperalgesia with carrageenan and bone marrow- derived macrophages | ↓ TNF-α, ↓ IL-1β, ↓ NF-κB | [29] |
Betalain Source | Major Compound | Disease Model | Mechanisms | References |
---|---|---|---|---|
Beta vulgaris and Opuntia stricta | Betalain and betacyanin | Human trial with atherosclerotic cardiovascular disease patients | ↓ SBP, ↓ DBP, ↓ atherosclerotic risk factors | [40] |
Hylocereus polyrhizus | Betalains | Human trial with young and healthy adults | Improved cardiovascular function | [41] |
Betanin (isolated compound) | Betanin | Isolated porcine arteries | Betanin alone did not improve vasorelaxation | [42] |
Beta vulgaris | Beetroot juice | Rats received beetroot extract | Transient increase in blood pressure and heart rate | [43] |
Beta vulgaris | Beetroot juice × sodium nitrate | Hypertensive and obese rats | ↓ SBP, improved cardiovascular and metabolic function similar in both treatments | [44] |
Betanin and Indicaxanthin (isolated compounds) | Betanin and indicaxanthin | LDL isolated from healthy volunteers’ plasma | ↓ LDL cooper- induced oxidation, ↓ atherogenesis | [46] |
Opuntia fícus- indica | Betanin | oxLDL stimulated HUVEC | ↓ expression (ICAM-1, VCAM-1, and ELAM-1) | [47] |
Beta vulgaris | Betacyanins and betaxanthins | In vitro ACE- inhibitory activity | Promotes vasodilation and reduces blood pressure by ↓ ACE | [48] |
Betalains Source | Major Compound | Disease Model | Mechanisms | Reference |
---|---|---|---|---|
Hylocereus polyrhizus | Betacyanin | Hypercholesterolemic rats | ↓ TC, ↓ TG | [51] |
Beta vulgaris | Betalains | Hypercholesterolemic rats | ↓ TC, ↓ TG, ↑ HDL | [52] |
Beta vulgaris | Betalains | Dyslipidemic rats | ↓ TC, ↓ TG | [53] |
Hylocereus polyrhizus | Betalains | Alloxan-induced diabetic mice | ↓ TC, ↑ HDL | [54] |
Amaranthus tricolor | Betalains | Alloxan-induced diabetic rats | ↓ TC, ↓ TG, ↓ LDL, ↑ HDL | [55] |
Betanin (isolated compound) | Betanin | Isoproterenol-induced acute myocardial infarction in rats | ↓ LDL, ↓ iNOS, ↓ NF-κB, ↓ ROS | [56] |
Opuntia stricta | Betalains | 3T3-L1 mature adipocytes | ↓ TG accumulation, ↓ fatty acid synthesis, ↑ TG mobilization | [57] |
Opuntia ficus | Betalains | 3T3-L1 maturing pre-adipocytes and mature adipocytes | ↓ TG accumulation, | [58] |
Beta vulgaris | Betalains | Healthy subjects consuming a carbohydrate rich meal | ↓ TC, ↓ TG, ↓ LDL | [59] |
Beta vulgaris | Betalains | Physically active human individuals | Improvements in antioxidant status, ↓ LDL, ↑ HDL | [60] |
Opuntia stricta and Beta vulgaris | Betacyanin/Betalain | Male patients with coronary artery disease | ↓ TC, ↓ TG, ↓ LDL | [40] |
Betalains Source | Major Compound | Disease Model | Mechanisms | Reference |
---|---|---|---|---|
Betanin (isolated compound) | Betanin | Streptozotocin-induced diabetic rats’ livers | ↓ oxidative stress through the Nrf2 signaling pathway | [63] |
Betanin (isolated compound) | Betanin | Streptozotocin–nicotinamide induced rats | Modulated hepatic carbohydrate metabolic enzymes, ↑ Insulin secretion | [64] |
Opuntia matudae | Betalains | Streptozotocin-induced diabetic mice | ↓ Blood glucose levels | [65] |
Amaranthus tricolor | Betalains | Alloxan-induced diabetic rats | ↓ Blood glucose levels, ↓ lipid peroxidation | [55] |
Hylocereus polyrhizus | Betalains | Alloxan-induced diabetic mice | ↓ Blood glucose levels | [54] |
Beta vulgaris | Betalains | In vitro and in silico analyses | ↓ α-amylase and α-glucosidase | [62] |
Amaranthus cruentus | Betacyanin and betaxanthin | In vitro, in silico analyses and normoglycemic murine model | ↓ α-amylase and α-glucosidase (in vitro and in silico), improved glucose homeostasis (murine model) | [61] |
Beta vulgaris | Betalains | Type 2 diabetes patients | ↓ Inflammatory markers (IL-6, TNF-α, and NF-κB) | [66] |
Beta vulgaris | Betalains | Type 2 diabetes patients | ↓ Fasting blood sugar, ↓ glycosylated hemoglobin | [67] |
Hylocereus polyrhizus | Betalains | Type 2 diabetic patients | Controlled blood glucose and improved lipid profiles | [68] |
Opuntia ficus | Not specified | Healthy men | Stimulated peripheral glucose disposal before and after exercise | [69] |
Opuntia stricta and Beta vulgaris | Betacyanin/Betalain | Male patients with coronary artery disease | ↓ Plasma fasting blood glucose | [40] |
Betalains Source | Major Compound | Disease Model | Mechanisms | Reference |
---|---|---|---|---|
Betanin (isolated compound) | Betanin | Human liver cells (in vitro) | ↑ Nrf2 activation and ↑ detoxifying enzymes (HO-1, NQO1, GST) | [77] |
Betanin (isolated compound) | Betanin | STZ-induced diabetic rat liver | ↑ total antioxidant capacity; ↓ lipid peroxidation; ↑ Nrf2, SOD, GPx | [63] |
Betanin (isolated compound) | Betanin | Paraquat-induced oxidative damage in rat liver | ↓ ROS, ↓ CYP3A2 induction, and protection of mitochondria from redox cycling damage. | [78] |
Betanin (isolated compound) | Betanin | Carbon tetrachloride (CCl4)-induced liver toxicity in carp | Inhibition of CYP2E1 activity, ↓ oxidative stress, and protection against liver toxicity | [79] |
Betanin (isolated compound) | Betanin | OP toxicity on primary rat hepatocyte culture | ↓ ROS, ↓ lipid peroxidation, ↑ GSH, protects mitochondria | [80] |
Opuntia robusta | Betacyanins | Diclofenac-induced acute liver injury in rats | Iron chelation, ROS scavenging, ↓ lipid peroxidation, ↑ GSH, Nrf2 activation. | [81] |
Opuntia robusta/ Opuntia streptacantha | Betanin | Acetaminophen (APAP)-induced acute liver failure in rats | ↓ AST, ALT, LDH, ↓ Gadd45b expression with upregulation of antioxidant genes (Sod2, Gclc, HO-1). | [82] |
Opuntia stricta | Betalain-rich extract | Coronary artery disease in humans | ↑ SIRT1 levels, ↓ oxidative stress, with potential liver protection through antioxidant pathways. | [83] |
Betalains Source | Major Compound | Disease Model | Mechanisms | Reference |
---|---|---|---|---|
Betanin (isolated compound) | Betanin | Microbial cells | Generation of reactive oxygen species (ROS), inducing oxidative stress and DNA damage | [96] |
Red beetroot extract | Betalains | Candida albicans (biofilm formation) | Inhibited biofilm formation, ↓ adherence and viability of fungal cells | [109] |
Betalain-rich extracts | Betalains | Mild skin infections | Suggested for topical use, though further research needed | [9] |
Betalains (various sources) | Betalains | Microbial growth in food products | Explored as natural preservatives to extend shelf life by ↓ microbial growth | [110] |
Betalain Source | Major Compound | Model | Absorption Data | Half-Life data | Metabolism/ Excretion Data | Reference |
---|---|---|---|---|---|---|
Cactus pear | Betanin | Human | Plasma peak at 3 h. | 0.94 h | Total clearance: 12 h after intake—3.7% eliminated in the urine. | [113] |
Indicaxanthin | Human | Plasma peak at 3 h. | 2.36 h | Total clearance: 12 h after intake—76% eliminated in the urine. | [113] | |
Cactus pear | Betanin | Human (RBC) | Plasma peak at 3 h (0.03 ± 0.005 μM). | nd | Undetectable after 12 h. | [114] |
Indicaxanthin | Human (RBC) | Plasma peak at 3 h (1.03 ± 0.2 μM). | 5 h (0.55 ± 0.06 μM) | Undetectable after 12 h | [114] | |
Beetroot/ cactus pear | Betanin | Trans-epithelial transport in Caco-2 cell monolayer | Absorption is limited by MRP2-mediated efflux. | na | na | [115] |
Beetroot/ cactus pear | Indicaxanthin | Trans-epithelial transport in Caco-2 cell monolayer | Follows a non-polarized route without relying on membrane transporters. | na | na | [115] |
Fermented red beet juice | Betalains | Human | Plasma peak after the first week (87.65 ± 15.71 nmol/L). | np | Urine peak after the second week (1.14 ± 0.12 μmol). | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, R.M.; Melo, C.P.B.; Pinto, I.C.; Mendes-Pierotti, S.; Vignoli, J.A.; Verri, W.A.; Casagrande, R. Betalains: A Narrative Review on Pharmacological Mechanisms Supporting the Nutraceutical Potential Towards Health Benefits. Foods 2024, 13, 3909. https://doi.org/10.3390/foods13233909
Martinez RM, Melo CPB, Pinto IC, Mendes-Pierotti S, Vignoli JA, Verri WA, Casagrande R. Betalains: A Narrative Review on Pharmacological Mechanisms Supporting the Nutraceutical Potential Towards Health Benefits. Foods. 2024; 13(23):3909. https://doi.org/10.3390/foods13233909
Chicago/Turabian StyleMartinez, Renata M., Cristina P. B. Melo, Ingrid C. Pinto, Soraia Mendes-Pierotti, Josiane A. Vignoli, Waldiceu A. Verri, and Rubia Casagrande. 2024. "Betalains: A Narrative Review on Pharmacological Mechanisms Supporting the Nutraceutical Potential Towards Health Benefits" Foods 13, no. 23: 3909. https://doi.org/10.3390/foods13233909
APA StyleMartinez, R. M., Melo, C. P. B., Pinto, I. C., Mendes-Pierotti, S., Vignoli, J. A., Verri, W. A., & Casagrande, R. (2024). Betalains: A Narrative Review on Pharmacological Mechanisms Supporting the Nutraceutical Potential Towards Health Benefits. Foods, 13(23), 3909. https://doi.org/10.3390/foods13233909