Effects of Ultrasound-Assisted Treatment on Physicochemical Properties and Biological Activities of Polysaccharides from Sargassum
<p>Technology roadmap. (SPA: alkali-assisted extraction of polysaccharide from <span class="html-italic">Sargassum</span>; SPB: acid-assisted extraction of polysaccharides from <span class="html-italic">Sargassum</span>; SPC: hot water extraction of polysaccharides from <span class="html-italic">Sargassum</span>; USPA: ultrasonic treatment SPA; USPB: ultrasonic treatment SPB; and USPC: ultrasonic treatment SPC).</p> "> Figure 2
<p>Particle size and zeta potential (<b>A</b>); FT-IR (<b>B</b>); oil-binding capacity (OBC) and water-holding capacity (WHC) (<b>C</b>); and viscosity (<b>D</b>) of SPs. Data are expressed as mean ± SD (<span class="html-italic">n</span> = 3). Significant differences (<span class="html-italic">p</span> < 0.05) are indicated with different letters.</p> "> Figure 3
<p>SEM images of SPs (magnification: 300×).</p> "> Figure 4
<p><span class="html-italic">α</span>-glucosidase inhibition assay of SPs. Data are expressed as mean ± SD (<span class="html-italic">n</span> = 3). Significant differences (<span class="html-italic">p</span> < 0.05) are indicated with different letters.</p> "> Figure 5
<p>Antioxidant test, including DPPH (<b>A</b>) and ABTS (<b>B</b>) free radical scavenging capacity. Data are expressed as mean ± SD (<span class="html-italic">n</span> = 3). Significant differences (<span class="html-italic">p</span> < 0.05) are indicated with different letters.</p> "> Figure 6
<p>Anti-glycosylation assay, including the inhibition of fructosamine (<b>A</b>), dicarbonyl compounds (<b>B</b>), and AGEs (<b>C</b>), di-tyrosine (<b>D</b>), kynurenine (<b>E</b>), and <span class="html-italic">N’</span>-formyl kynurenine (<b>F</b>). Data are expressed as mean ± SD (<span class="html-italic">n</span> = 3). Significant differences (<span class="html-italic">p</span> < 0.05) are indicated with different letters.</p> ">
Abstract
:1. Introduction
2. Method and Materials
2.1. Material and Reagent
2.2. Extraction of Sargassum Polysaccharides (SPs)
2.3. Ultrasonic Treatment
2.4. Chemical Composition Analysis
2.5. Determination of Mw
2.6. Measurement of Particle Size and Zeta Potential
2.7. Fourier Transform Infrared Spectrometry (FT-IR) Analysis
2.8. Water-Holding Capacity (WHC)
2.9. Oil-Binding Capacity (OBC)
2.10. Rheological Property
2.11. Scanning Electron Microscopy (SEM)
2.12. α-Glucosidase Inhibition Assay
2.13. Antioxidant Activity
2.14. Anti-Glycation Activity
2.15. Statistical Analysis
3. Results and Discussion
3.1. The Chemical Composition of SPs
3.2. The Mw of SPs
3.3. Zeta Potential and Particle Size Distribution of SPs
3.4. FT-IR Spectroscopy of SPs
3.5. WHC and OBC of SPs
3.6. Apparent Viscosity Analysis of SPs
3.7. SEM Analysis of SPs
3.8. Analysis of α-Glucosidase Inhibition
3.9. Antioxidant Capacity Analysis
3.10. Anti-Glycosylation Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.-L.; Shi, L. Methods of study on conformation of polysaccharides from natural products: A review. Int. J. Biol. Macromol. 2024, 263, 130275. [Google Scholar] [CrossRef]
- Shobier, A.H.; Ismail, M.M.; Hassan, S.W.M. Variation in Anti-inflammatory, Anti-arthritic, and Antimicrobial Activities of Different Extracts of Common Egyptian Seaweeds with an Emphasis on Their Phytochemical and Heavy Metal Contents. Biol. Trace Elem. Res. 2023, 201, 2071–2087. [Google Scholar] [CrossRef]
- Gong, P.; Pei, S.; Long, H.; Yang, W.; Yao, W.; Li, N.; Wang, J.; Zhao, Y.; Chen, F.; Xie, J.; et al. Potential inhibitory effect of Auricularia auricula polysaccharide on advanced glycation end-products (AGEs). Int. J. Biol. Macromol. 2024, 262, 129856. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, J.; Wang, B.; Cheng, Z.; Xu, J.; Gao, W.; Chen, K. Structural characterization and antioxidant activities of Bletilla striata polysaccharide extracted by different methods. Carbohydr. Polym. 2021, 266, 118149. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, P.; Zhou, H.; Li, Y. Extraction, characterization and in vitro antioxidant activity of polysaccharides from Carex meyeriana Kunth using different methods. Int. J. Biol. Macromol. 2018, 120, 2155–2164. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, S.; Zhou, T.; Waterhouse, G.I.N.; Du, Y.; Sun-Waterhouse, D.; Wu, P. Green approaches for dietary fibre-rich polysaccharide production from the cooking liquid of Adzuki beans: Enzymatic extraction combined with ultrasonic or high-pressure homogenisation. Food Hydrocoll. 2022, 130, 107679. [Google Scholar] [CrossRef]
- Zheng, Q.; Jia, R.-B.; Luo, D.; Lin, L.; Chen, C.; Zhao, M. The effect of extraction solution pH level on the physicochemical properties and α-glucosidase inhibitory potential of Fucus vesiculosus polysaccharide. LWT 2022, 169, 114028. [Google Scholar] [CrossRef]
- Dou, Z.; Chen, C.; Fu, X. The effect of ultrasound irradiation on the physicochemical properties and α-glucosidase inhibitory effect of blackberry fruit polysaccharide. Food Hydrocoll. 2019, 96, 568–576. [Google Scholar] [CrossRef]
- Gao, M.; Li, H.; Yang, T.; Li, Z.; Hu, X.; Wang, Z.; Jiang, Y.; Zhu, L.; Zhan, X. Production of prebiotic gellan oligosaccharides based on the irradiation treatment and acid hydrolysis of gellan gum. Carbohydr. Polym. 2022, 279, 119007. [Google Scholar] [CrossRef]
- Lin, S.; Al-Wraikat, M.; Niu, L.; Zhou, F.; Zhang, Y.; Wang, M.; Ren, J.; Fan, J.; Zhang, B.; Wang, L. Degradation enhances the anticoagulant and antiplatelet activities of polysaccharides from Lycium barbarum L. leaves. Int. J. Biol. Macromol. 2019, 133, 674–682. [Google Scholar] [CrossRef]
- Liu, X.; Ren, Z.; Yu, R.; Chen, S.; Zhang, J.; Xu, Y.; Meng, Z.; Luo, Y.; Zhang, W.; Huang, Y.; et al. Structural characterization of enzymatic modification of Hericium erinaceus polysaccharide and its immune-enhancement activity. Int. J. Biol. Macromol. 2021, 166, 1396–1408. [Google Scholar] [CrossRef]
- Huang, S.; Chen, F.; Cheng, H.; Huang, G. Modification and application of polysaccharide from traditional Chinese medicine such as Dendrobium officinale. Int. J. Biol. Macromol. 2020, 157, 385–393. [Google Scholar] [CrossRef]
- Mao, Y.H.; Song, A.X.; Li, L.Q.; Yang, Y.; Yao, Z.P.; Wu, J.Y. A high-molecular weight exopolysaccharide from the Cs-HK1 fungus: Ultrasonic degradation, characterization and in vitro fecal fermentation. Carbohydr. Polym. 2020, 246, 116636. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Yuan, X.-h.; Tu, T.-T.; Wang, L.; Mao, Y.-H.; Luo, Y.; Qiu, S.-Y.; Song, A.-X. Characterization and prebiotic potential of polysaccharides from Rosa roxburghii Tratt pomace by ultrasound-assisted extraction. Int. J. Biol. Macromol. 2024, 268, 131910. [Google Scholar] [CrossRef]
- Chu, J.; Zhao, H.; Lu, Z.; Lu, F.; Bie, X.; Zhang, C. Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto. Food Chem. 2019, 294, 79–86. [Google Scholar] [CrossRef]
- Xian, R.; Yang, R.; Zhang, P.; Chen, W.; Luo, Q.; Chen, J.; Chen, H. Carotenoid Differences and Genetic Diversity in Populations of Sargassum hemiphyllum and Sargassum fusiforme. Mol. Biotechnol. 2023, 65, 1378–1386. [Google Scholar] [CrossRef]
- Gnanavel, V.; Roopan, S.M.; Rajeshkumar, S. Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products. Aquaculture 2019, 507, 1–6. [Google Scholar] [CrossRef]
- Lee, M.K.; Jeong, H.H.; Kim, M.J.; Seo, J.S.; Hwang, J.Y.; Jung, W.K.; Moon, K.M.; Lee, I.; Lee, B. The Beneficial Roles of Sargassum spp. in Skin Disorders. J. Med. Food 2024, 27, 359–368. [Google Scholar] [CrossRef]
- Flores-Contreras, E.A.; Araújo, R.G.; Rodríguez-Aguayo, A.A.; Guzmán-Román, M.; García-Venegas, J.C.; Nájera-Martínez, E.F.; Sosa-Hernández, J.E.; Iqbal, H.M.N.; Melchor-Martínez, E.M.; Parra-Saldivar, R. Polysaccharides from the Sargassum and Brown Algae Genus: Extraction, Purification, and Their Potential Therapeutic Applications. Plants 2023, 12, 2445. [Google Scholar] [CrossRef]
- Lin, P.; Chen, S.; Liao, M.; Wang, W. Physicochemical Characterization of Fucoidans from Sargassum henslowianum C.Agardh and Their Antithrombotic Activity In Vitro. Mar. Drugs 2022, 20, 300. [Google Scholar] [CrossRef]
- Shao, J.; Li, J.; Zhao, Y.; Huang, R.; Guo, A.; Hou, L.; Leng, X.; Li, Q. Extraction and Structural Characterization of Four Grape Polysaccharides and Their Protective Effects in Alcohol-Induced Gastric Mucosal Injury. Foods 2024, 13, 3500. [Google Scholar] [CrossRef]
- Zhou, Q.; Gao, J.; Sun, X.; Du, J.; Wu, Z.; Liang, D.; Ling, C.; Fang, B. Immunomodulatory Mechanisms of Tea Leaf Polysaccharide in Mice with Cyclophosphamide-Induced Immunosuppression Based on Gut Flora and Metabolomics. Foods 2024, 13, 2994. [Google Scholar] [CrossRef]
- Wang, X.; Huang, C.; Fu, X.; Jeon, Y.-J.; Mao, X.; Wang, L. Bioactivities of the Popular Edible Brown Seaweed Sargassum fusiforme: A Review. J. Agric. Food Chem. 2023, 71, 16452–16468. [Google Scholar] [CrossRef]
- Yuan, H.; Lan, P.; He, Y.; Li, C.; Ma, X. Effect of the Modifications on the Physicochemical and Biological Properties of β-Glucan-A Critical Review. Molecules 2019, 25, 57. [Google Scholar] [CrossRef]
- Du, B.; Zeng, H.; Yang, Y.; Bian, Z.; Xu, B. Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication. Int. J. Biol. Macromol. 2016, 91, 100–105. [Google Scholar] [CrossRef]
- Liu, J.; Wu, S.Y.; Chen, L.; Li, Q.J.; Shen, Y.Z.; Jin, L.; Zhang, X.; Chen, P.C.; Wu, M.J.; Choi, J.I.; et al. Different extraction methods bring about distinct physicochemical properties and antioxidant activities of Sargassum fusiforme fucoidans. Int. J. Biol. Macromol. 2020, 155, 1385–1392. [Google Scholar] [CrossRef]
- Cai, W.; Luo, Y.; Xue, J.; Guo, R.; Huang, Q. Effect of ultrasound assisted H2O2/Vc treatment on the hyperbranched Lignosus rhinocerotis polysaccharide: Structures, hydrophobic microdomains, and antitumor activity. Food Chem. 2024, 450, 139338. [Google Scholar] [CrossRef]
- Zeng, W.; Chen, L.; Li, Y.; Ma, J.; Yang, R.; Ding, J.; Yang, J. The effect of in vitro digestion on the chemical and antioxidant properties of Lycium barbarum polysaccharides. Food Hydrocoll. 2023, 139, 108507. [Google Scholar] [CrossRef]
- Dobrinčić, A.; Pedisić, S.; Zorić, Z.; Jurin, M.; Roje, M.; Čož-Rakovac, R.; Dragović-Uzelac, V. Microwave Assisted Extraction and Pressurized Liquid Extraction of Sulfated Polysaccharides from Fucus virsoides and Cystoseira barbata. Foods 2021, 10, 1481. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, D.; Liu, X.; Chen, F.; Liu, Y.; Jiang, Y.; Li, D. Antioxidant activity and semi-solid emulsification of a polysaccharide from coffee cherry peel. Int. J. Biol. Macromol. 2023, 244, 125207. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Wang, D.; Wu, N.; Wang, K.; Zhang, Y. Preparation, chemical structure and α-glucosidase inhibitory activity of sulfated polysaccharide from Grifola frondosa. J. Funct. Foods 2022, 98, 105289. [Google Scholar] [CrossRef]
- Bu, Y.; Yin, B.; Qiu, Z.; Li, L.; Zhang, B.; Zheng, Z.; Li, M. Structural characterization and antioxidant activities of polysaccharides extracted from Polygonati rhizoma pomace. Food Chem. X 2024, 23, 101778. [Google Scholar] [CrossRef]
- Gao, S.; Li, T.; Li, Z.R.; Liao, B.; Huang, Z.; Zhou, C.; Jia, R.B. Effect of Extraction Methods on Chemical Characteristics and Bioactivity of Chrysanthemum morifolium cv. Fubaiju Extracts. Foods 2024, 13, 3057. [Google Scholar] [CrossRef]
- Chen, C.; Wang, P.P.; Huang, Q.; You, L.J.; Liu, R.H.; Zhao, M.M.; Fu, X.; Luo, Z.G. A comparison study on polysaccharides extracted from Fructus Mori using different methods: Structural characterization and glucose entrapment. Food Funct. 2019, 10, 3684–3695. [Google Scholar] [CrossRef]
- Jia, Y.; Lu, Y.; Wang, Y.; Zhang, M.; He, C.; Chen, H. Spheroidization of ultrasonic degraded corn silk polysaccharide to enhance bioactivity by the anti-solvent precipitation method. J. Sci. Food Agric. 2022, 102, 53–61. [Google Scholar] [CrossRef]
- Mao, F.; Shi, P.; Chen, H.; Song, L.; Wang, Z.; Wu, C.; Du, M. Beneficial effects of polysaccharides on the solubility of Mytilus edulis enzymatic hydrolysates. Food Chem. 2018, 254, 103–108. [Google Scholar] [CrossRef]
- Jia, Y.; Xue, Z.; Wang, Y.; Lu, Y.; Li, R.; Li, N.; Wang, Q.; Zhang, M.; Chen, H. Chemical structure and inhibition on α-glucosidase of polysaccharides from corn silk by fractional precipitation. Carbohydr. Polym. 2021, 252, 117185. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, C.; Huang, Q.; Li, C.; Fu, X. Preparation and characterization of Sargassum pallidum polysaccharide nanoparticles with enhanced antioxidant activity and adsorption capacity. Int. J. Biol. Macromol. 2022, 208, 196–207. [Google Scholar] [CrossRef]
- Tian, L.; Roos, Y.H.; Miao, S. Interaction and complex formation of sonicated soluble lentil protein and Tremella fuciformis polysaccharide. Food Hydrocoll. 2024, 153, 109966. [Google Scholar] [CrossRef]
- Geng, M.; Wu, X.; Tan, X.; Li, L.; Teng, F.; Li, Y. Co-encapsulation of vitamins C and E in SPI-polysaccharide stabilized double emulsion prepared by ultrasound: Fabrication, stability, and in vitro digestion. Food Biosci. 2024, 59, 104113. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Wang, Z.; Xie, C.; Ye, D.; Guo, A.; Xie, W.; Xing, J.; Zheng, M. Preparation, characterization and antioxidant activity of cobalt polysaccharides from Qingzhuan Dark Tea. Heliyon 2023, 9, e15503. [Google Scholar] [CrossRef]
- Wei, X.; Cai, L.; Liu, H.; Tu, H.; Xu, X.; Zhou, F.; Zhang, L. Chain conformation and biological activities of hyperbranched fucoidan derived from brown algae and its desulfated derivative. Carbohydr. Polym. 2019, 208, 86–96. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, S.; Song, S.; Zhang, B.; Ai, C.; Chen, X.; Liu, N. Impact of acidic, water and alkaline extraction on structural features, antioxidant activities of Laminaria japonica polysaccharides. Int. J. Biol. Macromol. 2018, 112, 985–995. [Google Scholar] [CrossRef]
- Fu, X.; Yang, H.; Ma, C.; Li, X.; Li, D.; Yang, Y.; Xu, Y.; Wang, L. Characterization and inhibitory activities on α-amylase and α-glucosidase of the polysaccharide from blue honeysuckle berries. Int. J. Biol. Macromol. 2020, 163, 414–422. [Google Scholar] [CrossRef]
- Zhu, Q.; Lin, L.; Zhao, M. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: New prospects for sea cucumber polysaccharide based-hypoglycemic functional food. Int. J. Biol. Macromol. 2020, 159, 34–45. [Google Scholar] [CrossRef]
- Feng, Y.; Juliet, I.C.; Wen, C.; Duan, Y.; Zhou, J.; He, Y.; Zhang, H.; Ma, H. Effects of multi-mode divergent ultrasound pretreatment on the physicochemical and functional properties of polysaccharides from Sagittaria sagittifolia L. Food Biosci. 2021, 42, 101145. [Google Scholar] [CrossRef]
- Du, B.; Jeepipalli, S.P.K.; Xu, B. Critical review on alterations in physiochemical properties and molecular structure of natural polysaccharides upon ultrasonication. Ultrason. Sonochem. 2022, 90, 106170. [Google Scholar] [CrossRef]
- Kaur, H.; Gill, B.S. Effect of high-intensity ultrasound treatment on nutritional, rheological and structural properties of starches obtained from different cereals. Int. J. Biol. Macromol. 2019, 126, 367–375. [Google Scholar] [CrossRef]
- He, C.-a.; Qi, J.-r.; Liao, J.-s.; Song, Y.-t.; Wu, C.-l. Excellent hydration properties and oil holding capacity of citrus fiber: Effects of component variation and microstructure. Food Hydrocoll. 2023, 144, 108988. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, W.Y.; Chen, T.T.; Yan, J.K. Effects of structural and conformational characteristics of citrus pectin on its functional properties. Food Chem. 2021, 339, 128064. [Google Scholar] [CrossRef]
- Tian, L.; Roos, Y.H.; Gómez-Mascaraque, L.G.; Lu, X.; Miao, S. Tremella fuciform Polysaccharides: Extraction, Physicochemical, and Emulsion Properties at Different pHs. Polymers 2023, 15, 1771. [Google Scholar] [CrossRef]
- Wu, D.T.; Zhao, Y.X.; Guo, H.; Gan, R.Y.; Peng, L.X.; Zhao, G.; Zou, L. Physicochemical and Biological Properties of Polysaccharides from Dictyophora indusiata Prepared by Different Extraction Techniques. Polymers 2021, 13, 2357. [Google Scholar] [CrossRef]
- Mo, M.M.; Chen, W.M.; Jiang, F.Y.; Ding, Z.D.; Bi, Y.G.; Kong, F.S. Effect of Ultrasonic Treatment on Structure, Antibacterial Activity of Sugarcane Leaf Polysaccharides. Chem. Biodivers. 2023, 20, e202300006. [Google Scholar] [CrossRef]
- Fu, Y.; Feng, K.L.; Wei, S.Y.; Xiang, X.R.; Ding, Y.; Li, H.Y.; Zhao, L.; Qin, W.; Gan, R.Y.; Wu, D.T. Comparison of structural characteristics and bioactivities of polysaccharides from loquat leaves prepared by different drying techniques. Int. J. Biol. Macromol. 2020, 145, 611–619. [Google Scholar] [CrossRef]
- Guo, D.; Yin, X.; Wu, D.; Chen, J.; Ye, X. Natural polysaccharides from Glycyrrhiza uralensis residues with typical glucan structure showing inhibition on α-glucosidase activities. Int. J. Biol. Macromol. 2023, 224, 776–785. [Google Scholar] [CrossRef]
- Xiong, G.; Ma, L.; Zhang, H.; Li, Y.; Zou, W.; Wang, X.; Xu, Q.; Xiong, J.; Hu, Y.; Wang, X. Physicochemical properties, antioxidant activities and α-glucosidase inhibitory effects of polysaccharides from Evodiae fructus extracted by different solvents. Int. J. Biol. Macromol. 2022, 194, 484–498. [Google Scholar] [CrossRef]
- Yan, J.K.; Wang, Y.Y.; Ma, H.L.; Wang, Z.B. Ultrasonic effects on the degradation kinetics, preliminary characterization and antioxidant activities of polysaccharides from Phellinus linteus mycelia. Ultrason. Sonochem. 2016, 29, 251–257. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.; Xiao, D.; Zheng, X.; Ai, B.; Zheng, L.; Sheng, Z. Polysaccharides from banana (Musa spp.) blossoms: Isolation, identification and anti-glycation effects. Int. J. Biol. Macromol. 2023, 236, 123957. [Google Scholar] [CrossRef]
- Gao, Q.; Ma, R.; Shi, L.; Wang, S.; Liang, Y.; Zhang, Z. Anti-glycation and anti-inflammatory activities of anthocyanins from purple vegetables. Food Funct. 2023, 14, 2034–2044. [Google Scholar] [CrossRef]
- Liping, S.; Xuejiao, S.; Yongliang, Z. Preparation, characterization and antiglycation activities of the novel polysaccharides from Boletus snicus. Int. J. Biol. Macromol. 2016, 92, 607–614. [Google Scholar] [CrossRef]
- Ma, C.; Bai, J.; Shao, C.; Liu, J.; Zhang, Y.; Li, X.; Yang, Y.; Xu, Y.; Wang, L. Degradation of blue honeysuckle polysaccharides, structural characteristics and antiglycation and hypoglycemic activities of degraded products. Food Res. Int. 2021, 143, 110281. [Google Scholar] [CrossRef] [PubMed]
Items | SPA | USPA | SPB | USPB | SPC | USPC |
---|---|---|---|---|---|---|
Carbohydrate (%) | 52.59 ± 5.16 a | 49.12 ± 3.52 b | 50.26 ± 1.52 b | 45.08 ± 3.08 c | 40.23 ± 3.59 d | 41.65 ± 1.31 d |
Total phenol (%) | 0.81 ± 0.7 c | 0.88 ± 0.6 b | 0.62 ± 0.3 d | 0.68 ± 0.2 d | 0.99 ± 0.5 a | 1.03 ± 0.6 a |
Protein (%) | 1.72 ± 0.14 b | 1.89 ± 0.03 a | 1.01 ± 0.01 d | 1.15 ± 0.20 c | 0.33 ± 0.10 f | 0.47 ± 0.12 e |
Sulfate (%) | 3.76 ± 0.63 c | 4.58 ± 0.52 b | 3.90 ± 0.33 c | 4.86 ± 0.41 a | 2.89 ± 0.34 e | 3.66 ± 0.45 d |
Monosacchride composition (%) | ||||||
Mannose | 7.62 | 7.31 | 9.55 | 8.99 | 8.67 | 8.99 |
Glucose | 1.13 | 0.98 | 1.80 | 1.75 | 2.00 | 1.99 |
Rhamnose | - | - | 1.61 | 1.40 | 1.10 | 1.13 |
Galactose | 12.97 | 12.28 | 17.42 | 16.64 | 16.70 | 16.91 |
Xylose | 5.51 | 5.48 | 7.92 | 7.69 | 6.50 | 6.67 |
Fucose | 23.27 | 24.15 | 36.77 | 36.46 | 26.86 | 27.01 |
Glucuronic Acid | 11.42 | 11.12 | 12.96 | 15.18 | 13.32 | 12.95 |
Mannuronic Acid | 34.22 | 35.01 | 11.97 | 14.90 | 24.85 | 24.36 |
Guluronic Acid | 3.85 | 3.66 | - | - | - | - |
Molecular weight (kDa) | ||||||
Mw | 434.590 | 375.354 | 786.198 | 718.293 | 1073.294 | 895.089 |
Mn | 161.231 | 121.688 | 82.651 | 69.941 | 287.163 | 211.544 |
Mw/Mn | 2.695 | 3.085 | 9.512 | 10.270 | 3.738 | 4.231 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; He, S.; Gao, S.; Huang, Z.; Wang, W.; Hong, P.; Jia, R.-B. Effects of Ultrasound-Assisted Treatment on Physicochemical Properties and Biological Activities of Polysaccharides from Sargassum. Foods 2024, 13, 3941. https://doi.org/10.3390/foods13233941
Zhou C, He S, Gao S, Huang Z, Wang W, Hong P, Jia R-B. Effects of Ultrasound-Assisted Treatment on Physicochemical Properties and Biological Activities of Polysaccharides from Sargassum. Foods. 2024; 13(23):3941. https://doi.org/10.3390/foods13233941
Chicago/Turabian StyleZhou, Chunxia, Shanshan He, Shang Gao, Zirui Huang, Wenduo Wang, Pengzhi Hong, and Rui-Bo Jia. 2024. "Effects of Ultrasound-Assisted Treatment on Physicochemical Properties and Biological Activities of Polysaccharides from Sargassum" Foods 13, no. 23: 3941. https://doi.org/10.3390/foods13233941
APA StyleZhou, C., He, S., Gao, S., Huang, Z., Wang, W., Hong, P., & Jia, R.-B. (2024). Effects of Ultrasound-Assisted Treatment on Physicochemical Properties and Biological Activities of Polysaccharides from Sargassum. Foods, 13(23), 3941. https://doi.org/10.3390/foods13233941