An Analysis of Longan Honey from Taiwan and Thailand Using Flow Cytometry and Physicochemical Analysis
<p>Scatter plots of pollen from Taiwanese longan honey samples. The fluorescent stain 4′,6-diamidino-2-phenylindole (DAPI) and chlorophyll protein (Chlorophyll a BL690-A) were used to create subpopulations. P1, P2, P3, and P4 indicated four randomly selected subpopulations of pollen. Chla BL690-A = Chlorophyll a BL690-A. DAPI NUV450-A = DAPI NUV450-A Nucleic Acid Stain.</p> "> Figure 2
<p>Pollen subpopulations of Thai longan honey samples analyzed by scatter plots. The fluorescent stain 4′,6-diamidino-2-phenylindole (DAPI) and chlorophyll protein (Chlorophyll a BL690-A) were used to create subpopulations. P1, P2, P3, and P4 indicated four randomly selected subpopulations of pollen. Chla BL690-A = Chlorophyll a BL690-A. DAPI NUV450-A = DAPI NUV450-A Nucleic Acid Stain.</p> "> Figure 3
<p>Dot plot for showing pollen distribution of Taiwan, Thai longan honeys, and artificial honey. The pollen is as measured in the forward (FSC) and side scatter (SSC); the area marked 10 μm excludes particles or debris.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment and Reagents
2.2. Honey Samples
2.3. Physiochemical Properties
2.3.1. Moisture Content
2.3.2. pH
2.3.3. Ash Content
2.3.4. Honey Viscosity
2.3.5. Color Intensity
2.3.6. Fiehe’s Test
2.4. Flow Cytometric Analysis
2.4.1. Pollen Extraction
2.4.2. Flow Cytometry
2.5. Statistical Analysis
3. Results
3.1. Physiochemical Properties
3.1.1. Moisture Content
3.1.2. pH
3.1.3. Ash Content
3.1.4. Honey Viscosity
3.1.5. Color Intensity
3.1.6. Fiehe’s Test
3.2. Flow Cytometric Analysis
3.2.1. Pollen Count
3.2.2. Y610/20 Fluorescence Emission
3.2.3. NUV450 Fluorescence Emission
3.2.4. Forward Scatter
3.2.5. Side Scatter
3.2.6. Pollen Distribution of Taiwanese and Thai Longan Honey
3.2.7. Pollen Count, FSC, and SSC of Artificial and Commercial Longan Honeys
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaikham, P.; Prangthip, P. Alteration of Antioxidative Properties of Longan Flower-Honey After High Pressure Ultra-sonic and Thermal Processing. Food Biosci. 2015, 10, 1–7. [Google Scholar] [CrossRef]
- Chanchao, C.; Sintara, K.; Wongsiri, S. Comparison of Antibiotic and Organoleptic Properties of Honey from Various Plant Sources in Thailand. J. Apic. Sci. 2006, 50, 59–64. [Google Scholar]
- Chen, C.; Chen, B.; Nai, Y.; Chang, Y.; Chen, K.; Chen, Y. Novel Inspection of Sugar Residue and Origin in Honey based on the 13C/12C Isotopic Ratio and Protein Content. J. Food Drug Anal. 2019, 27, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Kafle, L.; Chinkangsadarn, S. Beekeeping and bee product quality control in Taiwan. J. Entomol. Res. 2022, 46, 1069–1077. [Google Scholar] [CrossRef]
- Lu, M.C. Beekeeping on Taiwan Island. In Asian Beekeeping in the 21st Century; Chantawannakul, P., Williams, G., Neumann, P., Eds.; Springer: Singapore, 2018; pp. 159–173. [Google Scholar]
- Wang, J.; Li, Q.X. Chemical Composition, Characterization, and Differentiation of Honey Botanical and Geographical Origins. Adv. Food Nutr. Res. 2011, 62, 89–137. [Google Scholar]
- Jamil Noor, M.; Ahmad, M.; Ashraf, M.A.; Zafar, M.; Sultana, S. A Review of the Pollen Analysis of South Asian Honey to Identify the Bee Floras of the Region. Palynology 2016, 40, 54–65. [Google Scholar] [CrossRef]
- Heidmann, I.; Schade-Kampmann, G.; Lambalk, J.; Ottiger, M.; Di Berardino, M. Impedance flow cytometry: A novel technique in pollen analysis. PLoS ONE 2016, 11, e0165531. [Google Scholar] [CrossRef]
- Gierlicka, I.; Kasprzyk, I.; Wnuk, M. Imaging Flow Cytometry as a Quick and Effective Identification Technique of Pollen Grains from Betulaceae, Oleaceae, Urticaceae and Asteraceae. Cells 2022, 11, 598. [Google Scholar] [CrossRef]
- Cossarizza, A.; Chang, H.; Radbruch, A.; Akdis, M.; Andrä, L.; Annunziato, F.; Baumgart, S. Guidelines for the Use of Flow Cytometry and Cell Sorting in Immunological Studies. Eur. J. Immunol. 2017, 47, 1584–1797. [Google Scholar] [CrossRef]
- Pospichalova, V.; Svoboda, J.; Dave, Z.; Kotrbova, A.; Kaiser, K.; Klemova, D.; Minar, L. Simplified Protocol for Flow Cytometry Analysis of Fluorescently Labeled Exosomes and Microvesicles Using Dedicated Flow Cytometer. J. Extracell. Vesicles 2015, 4, 25530. [Google Scholar] [CrossRef]
- Kron, P.; Loureiro, J.; Castro, S.; Čertner, M. Flow cytometric analysis of pollen and spores: An overview of applications and methodology. Cytom. Part A 2021, 99, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Dunker, S.; Motivans, E.; Rakosy, D.; Boho, D.; Maeder, P.; Hornick, T.; Knight, T.M. Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytol. 2021, 229, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Kadluczka, D.; Sliwinska, E.; Grzebelus, E. Combining genome size and pollen morphology data to study species relationships in the genus Daucus (Apiaceae). BMC Plant Biol. 2022, 22, 382. [Google Scholar] [CrossRef] [PubMed]
- Koutecký, P.; Smith, T.; Loureiro, J.; Kron, P. Best practices for instrument settings and raw data analysis in plant flow cytometry. Cytom. Part A 2023, 103, 953–966. [Google Scholar] [CrossRef]
- Kanwal, M.; Gogoi, N.; Jones, B.; Bariana, H.; Bansal, U.; Ahmad, N. Pollen: A potential explant for genetic transformation in wheat (Triticum aestivum L.). Agronomy 2022, 12, 2009. [Google Scholar] [CrossRef]
- Steinhoff, C.; Pickarski, N.; Litt, T.; Hajdas, I.; Welte, C.; Wurst, P.; Kühne, D.; Dolf, A.; Germer, M.; Kallmeyer, J. New Approach to Separate and Date Small Spores and Pollen from Lake Sediments in Semi-Arid Climates. Radiocarbon 2022, 64, 1191–1207. [Google Scholar] [CrossRef]
- Barnes, C.M.; Power, A.L.; Barber, D.G.; Tennant, R.K.; Jones, R.T.; Lee, G.R.; Hatton, J.; Elliott, A.; Zaragoza-Castells, J.; Haley, S.M. Deductive automated pollen classification in environmental samples via exploratory deep learning and imaging flow cytometry. New Phytol. 2023, 240, 1305–1326. [Google Scholar] [CrossRef]
- Kron, P.; Kwok, A.; Husband, B.C. Flow cytometric analysis of pollen grains collected from individual bees provides information about pollen load composition and foraging behaviour. Ann. Bot. 2014, 113, 191–197. [Google Scholar] [CrossRef]
- Baksay, S.; Pornon, A.; Burrus, M.; Mariette, J.; Andalo, C.; Escaravage, N. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci. Rep. 2020, 10, 4202. [Google Scholar] [CrossRef]
- Baydar, H.; Tuğlu, Ü. Comparing nuclear DNA content, pollen viability, pollen production and seed retention of lavender and lavandin. Mediterr. Agric. Sci. 2024, 37, 85–90. [Google Scholar] [CrossRef]
- Kron, P.; Husband, B.C. Using flow cytometry to estimate pollen DNA content: Improved methodology and applications. Ann. Bot. 2012, 110, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Luria, G.; Rutley, N.; Lazar, I.; Harper, J.F.; Miller, G. Direct analysis of pollen fitness by flow cytometry: Implications for pollen response to stress. Plant J. 2019, 98, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.-W. Influence of warming climate and the green revolution on the optimum range of weather parameters of longan yield in Taiwan since 1909. Theor. Appl. Climatol. 2022, 150, 1761–1773. [Google Scholar] [CrossRef]
- Sopadang, A.; Tippayawong, K.Y.; Chaowarut, W. Application of value chain management to longan industry. Am. J. Agric. Biol. Sci. 2012, 7, 301–311. [Google Scholar] [CrossRef]
- Bicudo de Almeida-Muradian, L.; Barth, O.M.; Dietemann, V.; Eyer, M.; Freitas, A.D.; Martel, A.C.; Sattler, J.A.G.; Marcazzan, G.L.; Marchese, C.M.; Mucignat-Caretta, C.; et al. Standard Methods for Apis mellifera Honey Research. J. Apic. Res. 2020, 59, 1–62. [Google Scholar] [CrossRef]
- AWssociation of Official Analytical Chemists. Official Methods of Analysis; AOAC International: Washington, DC, USA, 2000; pp. 5–15. [Google Scholar]
- Miwa, N.; Yokoyama, K.; Wakabayashi, H.; Nio, N. Effect of Deamidation by Protein-Glutaminase on Physicochemical and Functional Properties of Skim Milk. Int. Dairy J. 2010, 20, 393–399. [Google Scholar] [CrossRef]
- Aljohar, H.I.; Maher, H.M.; Albaqami, J.; Al-Mehaizie, M.; Orfali, R.; Orfali, R.; Alrubia, S. Physical and chemical screening of honey samples available in the saudi market: An important aspect in the authentication process and quality assessment. Saudi Pharm. J. 2018, 26, 932–942. [Google Scholar] [CrossRef]
- Durmishi, B.; Knights, V.; Mehmeti, I.; Stamatovska, V.; Nuha, D.; Rizani, S.; Bytyçi, P.; Haziri, V.; Sadiku, V. Determining the quality of honey in the region of Kosova with physiochemical analysis. Uludağ Arıcılık Derg. 2023, 23, 202–214. [Google Scholar] [CrossRef]
- Cavdar, S.; Yıldız, O.; Şahin, H.; Karahalil, F.; Kolaylı, S. Comparison of physical and biochemical characteristics of different quality of Turkish honey. Uludağ Bee J. 2013, 13, 2. [Google Scholar]
- Narjes, M.E.; Lippert, C. Regional differences in farmers’ preferences for a native bee conservation policy: The case of farming communities in Northern and Eastern Thailand. PLoS ONE 2021, 16, e0251206. [Google Scholar] [CrossRef]
- Royo, V.D.A.; Oliveira, D.A.d.; Veloso, P.H.F.; Sacramento, V.D.M.; Olimpio, E.L.; Souza, L.F.d.; Pires, N.D.C.; Martins, C.H.G.; Santiago, M.B.; Alves, T.M.D.A. Physicochemical profile, antioxidant and antimicrobial activities of honeys produced in Minas Gerais (Brazil). Antibiotics 2022, 11, 1429. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ana, L.D.; Ferreira, A.B.B.; Lorenzon, M.C.; Berbara, R.L.; Castro, R.N. Correlation of Total Phenolic and Flavonoid Contents of Brazilian Honeys with Colour and Antioxidant Capacity. Int. J. Food Prop. 2014, 17, 65–76. [Google Scholar] [CrossRef]
- Guede, S.S.; Yeo, D.M.; Soro, Y.R.; Toure, A. Physicochemical characterization of local honeys marketed in Korhogo tow. GSC Biol. Pharm. Sci. 2022, 21, 135–145. [Google Scholar] [CrossRef]
- Manickavasagam, G.; Saaid, M.; Lim, V. Impact of prolonged storage on quality assessment properties and constituents of honey: A systematic review. J. Food Sci. 2024, 89, 811–833. [Google Scholar] [CrossRef] [PubMed]
- Dar, S.A.; Farook, U.B.; Rasool, K.; Ahad, S. Honey: Classification, composition, safety, quality issues and health benefits. In Advanced Techniques of Honey Analysis; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–37. [Google Scholar]
- Bogdanov, S.; Martin, P.; Lullmann, C. Harmonized Methods of the International Honey Commission. Apidologie (extra issue) 1997, 1–59. [Google Scholar]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of Melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Reardon, A.J.; Elliott, J.A.; McGann, L.E. Fluorescence as an alternative to light-scatter gating strategies to identify frozen–thawed cells with flow cytometry. Cryobiology 2014, 69, 91–99. [Google Scholar] [CrossRef]
- Mouhoubi-Tafinine, Z.; Ouchemoukh, S.; Louaileche, H.; Tamendjari, A. Effect of storage on hydroxymethylfurfural (HMF) and color of some Algerian honey. Int. Food Res. J. 2018, 25, 1044–1050. [Google Scholar]
- Rao, Z.; Hua, D.; He, T.; Wang, Q.; Le, J. Ultraviolet laser-induced fluorescence lidar for pollen detection. Optik 2017, 136, 497–502. [Google Scholar] [CrossRef]
- Fukuda, N. Apparent diameter and cell density of yeast strains with different ploidy. Sci. Rep. 2023, 13, 1513. [Google Scholar] [CrossRef]
- Jo, J.; Hugonnet, H.; Lee, M.J.; Park, Y. Digital cytometry: Extraction of forward and side scattering signals from holotomography. arXiv 2024, arXiv:2408.15522. [Google Scholar]
- Ortolani, C. Signals: Scattering. In Flow Cytometry Today: Everything You Need to Know about Flow Cytometry; Springer: Cham, Switzerland, 2022; pp. 11–21. [Google Scholar]
- Sandmann, M.; Rading, M. Starch granules in algal cells play an inherent role to shape the popular SSC signal in flow cytometry. BMC Res. Notes 2024, 17, 327. [Google Scholar] [CrossRef] [PubMed]
- Pauliuc, D.; Ciursă, P.; Ropciuc, S.; Dranca, F.; Oroian, M. Physicochemical parameters prediction and authentication of different monofloral honeys based on FTIR spectra. J. Food Compos. Anal. 2021, 102, 104021. [Google Scholar] [CrossRef]
- Yildiz, O.; Gurkan, H.; Sahingil, D.; Degirmenci, A.; Er Kemal, M.; Kolayli, S.; Hayaloglu, A.A. Floral authentication of some monofloral honeys based on volatile composition and physicochemical parameters. Eur. Food Res. Technol. 2022, 248, 2145–2155. [Google Scholar] [CrossRef]
- CNS 1305:2016 N5024; Chinese National Standards for Honey. Bureau of Standards, Metrology and Inspection: Taipei City, Taiwan, 2016. Available online: https://www.mdares.gov.tw/files/mdais/web_structure/1278/A01_1.pdf (accessed on 20 August 2024).
- Gün, R.; Karaoğlu, M.M. Detection of honey adulteration by characterization of the physico-chemical properties of honey adulterated with the addition of glucose–fructose and maltose corn syrups. Eur. Food Res. Technol. 2024, 250, 2255–2272. [Google Scholar] [CrossRef]
- Çobanoğlu, D.N.; Akyıldız, İ.E.; Kızılpınar Temizer, İ.; Damarlı, E.; Çelik, Ş. Phenolic compound, organic acid, mineral, and carbohydrate profiles of pine and blossom honeys. Eur. Food Res. Technol. 2023, 249, 1503–1515. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Silva, B.; Bergamo, G.; Brugnerotto, P.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. An overview of physicochemical characteristics and health-promoting properties of honeydew honey. Food Res. Int. 2019, 119, 44–66. [Google Scholar] [CrossRef]
- Cheung, Y.; Meenu, M.; Yu, X.; Xu, B. Phenolic acids and flavonoids profiles of commercial honey from different floral sources and geographic sources. Int. J. Food Prop. 2019, 22, 290–308. [Google Scholar] [CrossRef]
- Mongi, R.J. Influence of botanical origin and geographical zones on physicochemical properties, mineral contents and consumer acceptance of honey in Tanzania. Food Chem. Adv. 2024, 4, 100731. [Google Scholar] [CrossRef]
- Bogdanov, S.; Ruoff, K.; Oddo, L.P. Physico-Chemical Methods for the Characterisation of Unifloral Honeys: A Review. Apidologie 2004, 35, 4–17. [Google Scholar] [CrossRef]
- Srisayam, M.; Chantawannakul, P. Antimicrobial and Antioxidant Properties of Honeys Produced by Apis mellifera in Thailand. J. ApiProd. ApiMed. Sci. 2010, 2, 77–83. [Google Scholar] [CrossRef]
- Sakdatorn, V. The Effects of Magnetic Fields on Viscosity, Color and pH of Longan Honey. Naresuan Univ. Eng. J. 2017, 12, 15–20. [Google Scholar]
- González-Miret, M.L.; Terrab, A.; Hernanz, D.; Fernández-Recamales, M.A.; Heredia, F.J. Multivariate Correlation between Color and Mineral Composition of Honeys and by Their Botanical Origin. J. Agric. Food Chem. 2005, 53, 2574–2580. [Google Scholar] [CrossRef] [PubMed]
- Bodor, Z.; Benedek, C.; Urbin, Á.; Szabó, D.; Sipos, L. Colour of honey: Can we trust the Pfund scale?—An alternative graphical tool covering the whole visible spectra. LWT 2021, 149, 111859. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Sulaiman, S.A.; Khalil, M.I.; Gan, S.H. Evaluation of Physicochemical and Antioxidant Properties of Sourwood and Other Malaysian Honeys: A Comparison with Manuka Honey. Chem. Cent. J. 2013, 7, 138. [Google Scholar] [CrossRef]
- Mossel, B.; Bhandari, B.; D’Arcy, B.; Caffin, N. Determination of Viscosity of Some Australian Honeys Based on Composition. Int. J. Food Prop. 2003, 6, 87–97. [Google Scholar] [CrossRef]
- Gómez-Díaz, D.; Navaza, J.M.; Quintáns-Riveiro, L.C. Effect of Temperature on the Viscosity of Honey. Int. J. Food Prop. 2009, 12, 396–404. [Google Scholar] [CrossRef]
- Conforti, P.A.; Lupano, C.E.; Malacalza, N.H.; Arias, V.; Castells, C.B. Crystallization of Honey at −20 °C. Int. J. Food Prop. 2006, 9, 99–107. [Google Scholar] [CrossRef]
- Bogdanov, S.; Martin, P. Honey authenticity: A review. Mitt. Lebensm. Hyg. 2002, 93, 232–254. [Google Scholar]
- Neupane, B.P.; Gautam, A.; Malla, K.P. Non-acetolysed pollen analysis of mad honey from the Himalayas, Nepal. Bee World 2020, 98, 63–67. [Google Scholar] [CrossRef]
- Silici, S.; Gökceoglu, M. Pollen analysis of honeys from Mediterranean region of Anatolia. Grana 2007, 46, 57–64. [Google Scholar] [CrossRef]
- Chaimanee, V.; Chantawannakul, P.; Khongphinitbunjong, K.; Kamyo, T.; Pettis, J.S. Comparative Pesticide Exposure to Apis mellifera via Honey Bee-collected Collen in Agricultural and Non-Agricultural Areas of Northern Thailand. J. Apic. Res. 2019, 58, 720–729. [Google Scholar] [CrossRef]
- Chantawannakul, P. Bee Diversity and Current Status of Beekeeping in Thailand. In Asian Beekeeping in the 21st Century; Chantawannakul, P., Williams, G., Neumann, P., Eds.; Springer: Singapore, 2018; pp. 269–285. [Google Scholar]
- Wilczyńska, A. Effect of filtration on colour, antioxidant activity and total phenolics of honey. LWT Food Sci. Technol. 2014, 57, 767–774. [Google Scholar] [CrossRef]
- Wagley, S.; Morcrette, H.; Kovacs-Simon, A.; Yang, Z.R.; Power, A.; Tennant, R.K.; Love, J.; Murray, N.; Titball, R.W.; Butler, C.S. Bacterial dormancy: A subpopulation of viable but non-culturable cells demonstrates better fitness for revival. PLoS Pathog. 2021, 17, e1009194. [Google Scholar] [CrossRef] [PubMed]
- Pöhlker, C.; Huffman, J.A.; Förster, J.-D.; Pöschl, U. Autofluorescence of atmospheric bioaerosols: Spectral fingerprints and taxonomic trends of pollen. Atmos. Meas. Tech. 2013, 6, 3369–3392. [Google Scholar] [CrossRef]
- Bryant, V. Filtering honey almost every filter removes some pollen. Bee Cult. Mag. Am. Beekeep 2017, 145, 75–76. [Google Scholar]
- Moon, H.S.; Eda, S.; Saxton, A.M.; Ow, D.W.; Stewart, C.N., Jr. An efficient and rapid transgenic pollen screening and detection method using flow cytometry. Biotechnol. J. 2011, 6, 118–123. [Google Scholar] [CrossRef]
Name | Model | Manufacturer |
---|---|---|
Flow cytometry analyser | CytoFLEX SN2-V4-BY-Y4 | Beckman’s Coullter, Indianapolis, IN, USA |
CytExpert software | CytExpert software, V 2.4 | Beckman’s Coullter, Indianapolis, IN, USA |
Spectrophotometer | DU 730 UV/Vis | Beckman’s Coullter, Indianapolis, IN, USA |
PH3 Basic pH Benchtop meter | Hach sensION | Hach Company, Loveland, CO, USA |
Honey refractometer | Tiaoyeer B07GTDY9V2 | Mettler Toledo, Columbus, OH, USA |
Hot pan | P/N 6795-420D | American Laboratory Trading, New London, CT, USA |
Ashing furnace | 5.8 L C1 | Thermo Fisher Scientific, Dreieich, Germany |
Centrifuge | Megafuge 16R | Thermo Fisher Scientific, Dreieich, Germany |
Analytical balance | AB 204-S | Mettler Toledo, Giessen, Germany |
Hipoint precision oven | OV-60 | Jih Her Tyan Scientific Company Ltd., Kaohsiung, Taiwan |
Digisystem vortex mixer | VM—2000 | Digisystem Laboratory Instruments Inc., New Taipei City, Taiwan |
Water bath | 10 L DSB—500 | Digisystem Laboratory Instruments Inc., New Taipei City, Taiwan |
Balance | VIBRA HJ-220E | Shinko Denshi Company, Tokyo, Japan |
Vibro viscometer | SV-10 | A & D Company Limited, Tokyo, Japan |
Hydrochloric acid (38%) | - | Avantor Performance Materials, LLC., Radnor, PA, USA |
Resorcinol powder (C5H6O2) | - | Xilong Scientific Company Ltd., Guangzhou, China |
Ethyl Ether (74.12%) | - | Juxing Chemical Instrument Company Limited, Kaohsiung, Taiwan |
Sample Origin | Parameters (M ± SE) * | |||
---|---|---|---|---|
Moisture Content (%) | pH | Ash Content (%) | Viscosity (Pa·s) | |
Taiwan | ||||
Chiayi | 20.90 ± 0.03 e | 4.07 ± 0.02 ab | 0.15 ± 0.02 bcd | 6.97 ± 0.01 b |
Nantou | 22.00 ± 0.03 c | 4.14 ± 0.04 ab | 0.08 ± 0.02 cde | 4.51 ± 0.02 f |
Taichung | 23.40 ± 0.00 a | 4.16 ± 0.01 a | 0.23 ± 0.01 b | 3.41 ± 0.01 h |
Tainan | 22.50 ± 0.03 b | 4.00 ± 0.02 b | 0.19 ± 0.01 bc | 4.31 ± 0.01 g |
Yunlin | 21.50 ± 0.03 d | 4.03 ± 0.04 b | 0.05 ± 0.02 de | 6.96 ± 0.07 b |
Thailand | ||||
Chiang Mai | 20.90 ± 0.10 e | 4.07± 0.06 ab | 0.03 ± 0.00 de | 6.42 ± 0.01 d |
Chiang Rai | 20.50 ± 0.00 f | 4.09 ± 0.01 ab | 0.90 ± 0.08 a | 6.82 ± 0.02 c |
Lampang | 21.00 ± 0.00 e | 4.12 ± 0.05 ab | 0.06 ± 0.00 de | 5.49 ± 0.01 e |
Lamphun | 23.50 ± 0.00 a | 4.09 ± 0.03 ab | 0.08 ± 0.01 cde | 2.72 ± 0.01 i |
Nan | 19.50 ± 0.03 g | 4.01 ± 0.01 b | 0.01 ± 0.00 e | 9.46 ± 0.01 a |
Sample Origin | Absorbance (a.u) | Pfund Scale (mm) (M ± SE) * | Color of Honey Based upon Pfund Scale | HMF Detection |
---|---|---|---|---|
Taiwan | ||||
Chiayi | 0.25 ± 0.01 | 81.426 ± 1.46 f | Light amber | Negative |
Nantou | 0.35 ± 0.01 | 117.107 ± 0.76 d | Dark amber | Negative |
Taichung | 0.47 ± 0.01 | 154.867 ± 2.00 b | Dark amber | Negative |
Tainan | 0.29 ± 0.01 | 97.146 ± 1.34 e | Amber | Negative |
Yunlin | 0.45 ± 0.03 | 149.627 ± 4.42 b | Dark amber | Negative |
Thailand | ||||
Chiang Mai | 0.55 ± 0.02 | 183.146 ± 3.21 a | Dark amber | Negative |
Chiang Rai | 0.25 ± 0.00 | 82.258 ± 0.67 f | Light amber | Negative |
Lampang | 0.39 ± 0.01 | 128.335 ± 0.76 c | Amber | Negative |
Lamphun | 0.26 ± 0.01 | 86.749 ± 1.81 f | Amber | Negative |
Nan | 0.15 ± 0.01 | 50.818 ± 0.85 g | Light amber | Negative |
Sample Origin | Pollen Count (M ± SE) * | Y610/20 (a.u) (M ± SE) α | NUV450 (a.u) (M ± SE) β |
---|---|---|---|
Taiwan | |||
Chiayi | 181.00 ± 28.10 f | 4.81 × 105 ± 6.66 × 103 e | 9.25 × 105 ± 8.50 × 103 cd |
Nantou | 9853.25 ± 434.22 b | 5.47 × 105 ± 4.12 × 103 de | 7.93 × 105 ± 1.51 × 104 d |
Taichung | 12,276.50 ± 368.88 a | 6.01 × 105 ± 7.12 × 103 cd | 9.32 × 105 ± 5.34 × 104 cd |
Tainan | 1986.25 ± 148.72 de | 4.40 × 105 ± 1.07 × 104 e | 1.11 × 106 ± 5.34 × 104 bc |
Yunlin | 4038.75 ± 115.53 c | 7.11 × 105 ± 5.07 × 103 bc | 1.03 × 106 ± 3.84 × 104 bcd |
Thailand | |||
Chiang Mai | 2313.25 ± 166.72 d | 7.78 × 105 ± 4.87 × 103 b | 1.30 × 106 ± 3.97 × 104 cd |
Chiang Rai | 654.50 ± 43.99 ef | 4.72 × 105 ± 2.77 × 104 e | 8.25 × 105 ± 8.52 × 103 bcd |
Lampang | 2553.25 ± 752.72 cd | 6.34 × 105 ± 1.44 × 104 cd | 1.04 × 106 ± 1.20 × 104 b |
Lamphun | 2230.00 ± 169.39 d | 5.50 × 105 ± 1.20 × 104 de | 9.10 × 105 ± 1.07 × 104 cd |
Nan | 594.25 ± 21.23 ef | 1.06 × 106 ± 6.84 × 104 a | 2.90 × 106 ± 1.68 × 104 a |
Place of Origin | FSC (a.u) (M ± SE) * | SSC (a.u) (M ± SE) * |
---|---|---|
Taiwan | ||
Chiayi | 4.45 × 105 ± 4.82 × 103 ef | 1.12 × 106 ± 1.27 × 105 e |
Nantou | 4.20 × 105 ± 2.25 × 103 g | 1.01 × 106 ± 1.61 × 105 e |
Taichung | 4.65 × 105 ± 2.15 × 103 d | 1.01 × 106 ± 2.12 × 105 e |
Tainan | 4.43 × 105 ± 3.14 × 103 f | 1.25 × 106 ± 5.98 × 104 de |
Yunlin | 5.37 × 105 ± 3.18 × 103 b | 1.35 × 106 ± 2.04 × 105 bc |
Thailand | ||
Chiang Mai | 5.34 × 105 ± 6.16 × 103 b | 1.50 × 106 ± 1.25 × 104 cd |
Chiang Rai | 4.57 × 105 ± 6.40 × 103 def | 1.11 × 106 ± 2.66 × 104 e |
Lampang | 5.12 × 105 ± 3.10 × 103 c | 1.31 × 106 ± 2.04 × 104 b |
Lamphun | 4.64 × 105 ± 4.27 × 103 de | 1.24 × 106 ± 3.08 × 104 de |
Nan | 5.87 × 105 ± 3.63 × 103 a | 1.65 × 106 ± 1.77 × 104 a |
Country | Subgroup | Thailand | Taiwan | ||||||
---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P1 | P2 | P3 | P4 | ||
Thailand | P1 | 0.999 | 1.000 | 1.000 | 0.866 | 0.000 | 1.000 | 1.000 | |
P2 | 0.999 | 0.994 | 0.993 | 0.996 | 0.001 | 0.999 | 1.000 | ||
P3 | 1.000 | 0.994 | 1.000 | 0.787 | 0.000 | 1.000 | 1.000 | ||
P4 | 1.000 | 0.993 | 1.000 | 0.774 | 0.000 | 1.000 | 1.000 | ||
Taiwan | P1 | 0.866 | 0.996 | 0.787 | 0.774 | 0.027 | 0.866 | 0.953 | |
P2 | 0.000 | 0.001 | 0.000 | 0.000 | 0.027 | 0.000 | 0.000 | ||
P3 | 1.000 | 0.999 | 1.000 | 1.000 | 0.866 | 0.000 | 1.000 | ||
P4 | 1.000 | 1.000 | 1.000 | 1.000 | 0.953 | 0.000 | 1.000 |
Place of Origin | Pollen count (M ± SE) * | FSC (a.u) (M ± SE) * | SSC (a.u) (M ± SE) * |
---|---|---|---|
Artificial honey | 00 ± 00 a | 00 ± 00 a | 00 ± 00 a |
Taiwan | 3855.00 ± 204.24 b | 6.82 × 105 ± 3.39 × 103 b | 1.66 × 106 ± 1.57 × 104 b |
Thailand | 339.00 ± 88.22 c | 6.48 × 105 ± 1.87 × 104 c | 2.24 × 106 ± 4.53 × 104 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kafle, L.; Mabuza, T.Z. An Analysis of Longan Honey from Taiwan and Thailand Using Flow Cytometry and Physicochemical Analysis. Foods 2024, 13, 3772. https://doi.org/10.3390/foods13233772
Kafle L, Mabuza TZ. An Analysis of Longan Honey from Taiwan and Thailand Using Flow Cytometry and Physicochemical Analysis. Foods. 2024; 13(23):3772. https://doi.org/10.3390/foods13233772
Chicago/Turabian StyleKafle, Lekhnath, and Tandzisile Zine Mabuza. 2024. "An Analysis of Longan Honey from Taiwan and Thailand Using Flow Cytometry and Physicochemical Analysis" Foods 13, no. 23: 3772. https://doi.org/10.3390/foods13233772
APA StyleKafle, L., & Mabuza, T. Z. (2024). An Analysis of Longan Honey from Taiwan and Thailand Using Flow Cytometry and Physicochemical Analysis. Foods, 13(23), 3772. https://doi.org/10.3390/foods13233772