Development of a Colloidal Gold Immunochromatographic Assay Strip Using a Monoclonal Antibody for the Rapid Detection of Ofloxacin
<p>Chemical structure of OFL.</p> "> Figure 2
<p>Modification of the hapten of OFL.</p> "> Figure 3
<p>Preparation of immunogen and coating antigen ((<b>a</b>) OFL immunogen; (<b>b</b>) OFL coating antigen).</p> "> Figure 4
<p>The basic principle of the colloidal gold immunochromatographic assay: (<b>A</b>) structure and (<b>B</b>) principle.</p> "> Figure 5
<p>Mass spectrometry of the modified OFL.</p> "> Figure 6
<p>The <sup>1</sup>H NMR spectrum for the modified OFL.</p> "> Figure 7
<p>UV–vis spectrum of OFL immunogen (<b>a</b>) and coating antigen (<b>b</b>).</p> "> Figure 8
<p>Protein standard curve.</p> "> Figure 9
<p>The screening results of hybridoma cells of OFL.</p> "> Figure 10
<p>Subtype determination of mAb.</p> "> Figure 11
<p>Affinity constant result of OFL antibody.</p> "> Figure 12
<p>The optimization results of ELISA working conditions: blocking conditions (<b>a</b>), competition time (<b>b</b>), NaCl content (<b>c</b>), and pH (<b>d</b>).</p> "> Figure 13
<p>The standard inhibition curves of OFL.</p> "> Figure 14
<p>The characteristic images of colloidal gold particles: (<b>a</b>) UV–visible spectra, and (<b>b</b>) transmission electron microscopy images.</p> "> Figure 15
<p>The images of colloidal gold immunochromatographic strip tests for OFL in (<b>a</b>) pork, (<b>b</b>) fish, and (<b>c</b>) chicken samples. (Note: the additional amounts of OFL standard in these samples are 1: 0 ng/g, 2: 1 ng/g, 3: 2 ng/g, 4: 4 ng/g).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Equipment
2.2. Modification of Ofloxacin Semi-Antigen
2.3. Synthesis of Complete Antigens
2.4. Preparation of Monoclonal Antibodies
2.5. Determination of Antibody Affinity, Sensitivity, and Specificity
2.6. Selection of the ic-ELISA Working Conditions
2.7. Preparation of Colloidal Gold-Labeled Antibody
2.8. Preparation of Colloidal Gold Immunochromatographic Assay Strips
2.9. Principle of the Colloidal Gold Immunochromatographic Assay Strips
2.10. Optimization of Working Conditions of Immunochromatographic Strip
2.10.1. Optimization of the Gold-Labeled Antibody pH
2.10.2. Optimization of Gold-Labeled Antibody Concentration
2.10.3. Optimization of the Concentration of Coating Antigen in T Line
2.11. The Actual Sample Detection Experiment
3. Results and Discussion
3.1. Identification of Ofloxacin Semi-Antigen
3.2. Identification of Complete Antigen
3.2.1. UV Characterization of OFL Complete Antigen
3.2.2. Determination of Complete Antigen Concentration
3.3. Selection of Hybridoma Cells
3.4. Identification of mAb
3.5. Optimization Results of ic-ELISA Working Conditions
3.6. Establishment of Standard Curve
3.7. Determination of Antibody Sensitivity and Specificity
3.8. Identification of Colloidal Gold-Labeled mAb
3.9. Optimization of Parameters Related to Test Strips
3.10. The Actual Samples Detected by the ic-ELISA Method and Colloidal Gold Immunochromatographic Test Strip
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Byzova, N.A.; Smirnova, N.I.; Zherdev, A.V.; Eremin, S.A.; Shanin, I.A.; Lei, H.-T.; Sun, Y.; Dzantiev, B.B. Rapid immunochromatographic assay for ofloxacin in animal original foodstuffs using native antisera labeled by colloidal gold. Talanta 2014, 119, 125–132. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.; Guo, J.; Li, D.; Gao, H.; Wang, Y.; Xu, C. Simultaneous screening for marbofloxacin and ofloxacin residues in animal-derived foods using an indirect competitive immunoassay. Food Agric. Immunol. 2017, 28, 489–499. [Google Scholar] [CrossRef]
- Zheng, R.Q.; Yang, J.; Zhou, L.; Liao, S.D.; Wang, J.; Lyu, S.M.; Tan, A.J. Ecological toxicity of antibiotics on the germination of Medicago sativa. J. South. Agric. 2021, 52, 2457–2464. [Google Scholar]
- Jiang, C.; Wu, T.; He, X.; Wang, Y.; Lian, H.Z. Preparation of Thermo-Sensitive Molecular Imprinted SERS Substrate with Robust Recyclability for Detection of Ofloxacin. Chemosensors 2022, 10, 437. [Google Scholar] [CrossRef]
- Tong, C.; Zhuo, X.; Guo, Y. Occurrence and risk assessment of four typical fluoroquinolone antibiotics in raw and treated sewage and in receiving waters in Hangzhou, China. J. Agric. Food Chem. 2011, 59, 7303–7309. [Google Scholar] [CrossRef]
- Vakh, C.; Pochivalov, A.; Andruch, V.; Moskvin, L.; Bulatov, A. A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction procedure: Liquid chromatographic determination of ofloxacin in human urine samples. Anal. Chim. Acta 2016, 907, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, I.; Timofeev, S.; Moskvin, L.; Bulatov, A. A dispersive liquid-liquid microextraction using a switchable polarity dispersive solvent. Automated HPLC-FLD determination of ofloxacin in chicken meat. Anal. Chim. Acta 2017, 949, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, C.; Yang, L.; Zhang, W.; Li, C. Determination of eight quinolones in milk using immunoaffinity microextraction in a packed syringe and liquid chromatography with fluorescence detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1064, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Van Hoi, B.; Vu, C.-T.; Phung-Thi, L.-A.; Nguyen, P.T.; Mai, H.; Le, P.-T.; Duong, D.T.; Thi, H.N.; Le-Van, D.; Chu, D.B. Determination of pharmaceutical residues by UPLC-MS/MS method: Validation and application on surface water and hospital wastewater. J. Anal. Methods Chem. 2021, 2021, 6628285. [Google Scholar] [CrossRef]
- Chang, L.; Du, S.; Wu, X.; Zhang, J.; Gan, Z. Analysis, occurrence and exposure evaluation of antibiotic and anthelmintic residues in whole cow milk from China. Antibiotics 2023, 12, 1125. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ye, K.; Tian, Y.; Liu, K.; Liang, L.; Li, Q.; Huang, N.; Wang, X. Simultaneous determination of 22 antibiotics in environmental water samples by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry. Chin. J. Chromatogr. 2023, 41, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Jiang, H.; Wang, J.; Jing, Z.; Zhang, F.; Tan, T.; He, F.; Jiang, L.; Li, H.; Chang, S.; et al. Simultaneous determination of 40 plant growth regulators, fungicides, insecticides, and antibiotics in bean sprouts by QuEChERS-high performance liquid chromatography-tandem mass spectrometry. Chin. J. Chromatogr. 2022, 40, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Huang, L.; Zhang, Z.; Li, G. Simultaneous and accurate quantification of multiple antibiotics in aquatic samples by surface-enhanced Raman scattering using a Ti3C2Tx/DNA/Ag membrane substrate. Anal. Chem. 2021, 93, 13072–13079. [Google Scholar] [CrossRef] [PubMed]
- Huet, A.-C.; Charlier, C.; Tittlemier, S.A.; Singh, G.; Benrejeb, S.; Delahaut, P. Simultaneous determination of (fluoro)quinolone antibiotics in kidney, marine products, eggs, and muscle by enzyme-linked immunosorbent assay (ELISA). J. Agric. Food Chem. 2006, 54, 2822–2827. [Google Scholar] [CrossRef]
- Zhang, B.; Lang, Y.; Guo, B.; Cao, Z.; Cheng, J.; Cai, D.; Shentu, X.; Yu, X. Indirect competitive enzyme-linked immunosorbent assay based on broad-spectrum antibody for simultaneous determination of thirteen fluoroquinolone antibiotics in Rana catesbeianus. Foods 2023, 12, 2530. [Google Scholar] [CrossRef] [PubMed]
- Biao, Z.; Danfeng, C.; Tianze, Y.; Yihan, L.; Yanyong, F.; Xuping, S.; Xiaoping, Y. Construction and application of chloramphenicol enzyme-linked immunosorbent assay in aquatic products. Chin. J. Food Sci. 2023, 23, 352–360. [Google Scholar]
- Wang, Y. Application of Multi-Target Fluorescence Immunochromatographic Assay for the Detection of Three Types of Antibiotics. Ph.D. Theis, China Jiliang University, Hangzhou, China, 2022. [Google Scholar]
- Li, R. Synthesis of pyrrole-2,5-diacetamide by N-hydroxysuccinimide activated ester method at room temperature. J. Jiangxi Norm. Univ. (Nat. Sci. Ed.) 2005, 6, 509–511. [Google Scholar]
- Li, L.; Wan, Z.; Wen, X. Synthesis and identification of artificial antigens of eight fluoroquinolones. Agric. Technol. 2016, 36, 17–18+48. [Google Scholar]
- Guo, J.; Liu, L.; Xue, F.; Xing, C.; Song, S.; Kuang, H.; Xu, C. Development of a monoclonal antibody-based immunochromatographic strip for cephalexin. Food Agric. Immunol. 2015, 26, 282–292. [Google Scholar] [CrossRef]
- Li, J.; Zhi, A.; Jia, G.; Nie, H.; Ai, L. Development of an ic-ELISA and immunochromatographic strip for detection of sparfloxacin in honey. Food Agric. Immunol. 2018, 29, 147–158. [Google Scholar] [CrossRef]
- Liu, B.-H.; Hung, C.-T.; Lu, C.-C.; Chou, H.-N.; Yu, F.-Y. Production of Monoclonal Antibody for Okadaic Acid and Its Utilization in an Ultrasensitive Enzyme-Linked Immunosorbent Assay and One-Step Immunochromatographic Strip. Agric. Food Chem. 2014, 62, 1254–1260. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xiao, K.; Meng, L.; Shou, C. Generation and characterization of THBS2-specific monoclonal antibodies. Chin. Immunol. 2020, 36, 588–593. [Google Scholar]
- Zhou, X.; Li, N.; Sun, C.; Zhang, X.; Zhang, C.; Zhou, J.; Guan, S.; Xiao, X.; Wang, Y. Development of a colloidal gold immunochromatographic strip for the rapid detection of pefloxacin in grass carp with a novel pretreatment method. J. Environ. Sci. Health 2022, 57, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Gao, X.; Duan, Z.; Wang, S. Determination of Chloramphenicol Residues in Milk by Enzyme-Linked Immunosorbent Assay: Improvement by Biotin-Streptavidin-Amplified System. J. Agric. Food Chem. 2010, 58, 3265–3270. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.X.; Shi, H.Y.; Wu, N.; Wang, M.H. Development of an enzyme-linked immunosorbent assay for diniconazole in agricultural samples. Food Chem. 2011, 125, 1385–1389. [Google Scholar] [CrossRef]
- Chen, X.; Xu, L.; Ma, W.; Liu, L.; Kuang, H.; Peng, C.; Wang, L.; Xu, C. Development of an Enzyme-Linked Immunosorbent Assay for Cyhalothrin. Immunol. Investig. 2013, 42, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Nemzek, J.A.; Siddiqui, J.; Remick, D.G. Development and optimization of cytokine ELISAs using commercial antibody pairs. J. Immunol. Methods 2001, 255, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Székács, A.; Le, H.T.; Szurdoki, F.; Hammock, B.D. Optimization and validation of an enzyme immunoassay for the insect growth regulator fenoxycarb. Anal. Chim. Acta 2003, 487, 15–29. [Google Scholar] [CrossRef]
- Rezapkin, G.; Dragunsky, E.; Chumakov, K. Improved ELISA test for determination of potency of Inactivated Poliovirus Vaccine (IPV). Biologicals 2005, 33, 17–27. [Google Scholar] [CrossRef]
- Yao, J.; Sun, Y.; Li, Q.; Wang, F.; Teng, M.; Yang, Y.; Deng, R.; Hu, X. Colloidal gold-McAb probe-based rapid immunoassay strip for simultaneous detection of fumonisins in maize. J. Sci. Food Agric. 2017, 97, 2223–2229. [Google Scholar] [CrossRef]
- Wu, W.-D.; Li, M.; Chen, M.; Li, L.-P.; Wang, R.; Chen, H.-L.; Chen, F.-Y.; Mi, Q.; Liang, W.-W.; Chen, H.-Z. Development of a colloidal gold immunochromatographic strip for rapid detection of Streptococcus agalactiae in tilapia. Biosens. Bioelectron. 2017, 91, 66–69. [Google Scholar]
Immunogen Mouse Number | OFL-BSA | ||
---|---|---|---|
1 | 2 | 3 | |
OFL concentration (ppb) | 50 | 50 | 50 |
Titer1 (OD450 nm) | 2.113 ± 0.014 | 2.102 ± 0.11 | 1.479 ± 0.037 |
Titer2 (OD450 nm) | 2.201 ± 0.020 | 1.985 ± 0.087 | 1.525 ± 0.033 |
Inhibition ratio1 (%) | 24 ± 0.94 | 19 ± 2.16 | 15 ± 1.21 |
Inhibition ratio2 (%) | 58 ± 3.77 | 50 ± 1.06 | 42 ± 1.95 |
Blocking Condition | Competition Time/h | ||||||||
---|---|---|---|---|---|---|---|---|---|
37 °C 1 h | 37 °C 2 h | 4 °C Overnight | 4 °C 1 h | 4 °C 2 h | 0.125 | 0.25 | 0.5 | 1 | |
Amax | 1.635 | 1.49 | 1.521 | 1.771 | 1.678 | 1.36 | 1.42 | 1.53 | 1.56 |
IC50 | 0.34 | 0.22 | 0.34 | 0.38 | 0.36 | 0.39 | 0.56 | 0.25 | 0.27 |
Amax/IC50 | 4.81 | 6.77 | 4.27 | 4.66 | 4.66 | 3.49 | 2.54 | 6.12 | 5.78 |
NaCl Content | pH | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0% | 0.5% | 1% | 1.5% | 2% | 5 | 6 | 7.4 | 8.6 | 9.6 | |
Amax | 1.69 | 1.63 | 1.56 | 1.56 | 1.51 | 1.62 | 1.63 | 1.52 | 1.5 | 1.51 |
IC50 | 0.23 | 0.41 | 0.21 | 0.14 | 0.27 | 0.42 | 0.25 | 0.13 | 0.46 | 0.52 |
Amax/IC50 | 7.35 | 3.98 | 7.43 | 11.14 | 5.59 | 3.86 | 6.52 | 11.69 | 3.26 | 2.9 |
Chemical Compound | IC50 (ng/mL) | CR (%) |
---|---|---|
OFL | 0.13 | 100 |
MBF | 0.15 | 86.67 |
LOM | >500 | <0.1 |
PEF | >500 | <0.1 |
CIP | >500 | <0.1 |
NOR | >500 | <0.1 |
Volume of 0.1 M K2CO3 Used for 1 mL of Colloidal Gold (μL) | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 4 | 6 | 8 | 12 | 14 | 16 | 20 | |
Solution color | --+ | --+ | -++ | -++ | +++ | +++ | +++ | +++ |
The Amount of Antibody Used in 1 mL Colloidal Gold (μg) | ||||||||
---|---|---|---|---|---|---|---|---|
4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | |
Solution color | --+ | -++ | +++ | +++ | +++ | +++ | +++ | +++ |
Antigen Concentration (mg/mL) | 0.2 | 0.5 | 1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Gold-labeled antibody (μL) | 4 | 8 | 12 | 4 | 8 | 12 | 4 | 8 | 12 |
Negative T line gray value | 243 | 478 | 668 | 507 | 899 | 1004 | 789 | 1328 | 1811 |
vLOD (ng/mL) | - | - | 0.5 | 0.5 | 1 | 1 | 1 | 3 | 4 |
Samples | Added Standard Concentration (ng/g) | Recovery (%) | CV (%) |
---|---|---|---|
pork | 0.00 | - | - |
0.25 | 91.00 ± 1.00 | 2.56 | |
0.50 | 103.20 ± 6.40 | 6.12 | |
fish | 0.00 | - | - |
0.25 | 82.00 ± 5.00 | 4.11 | |
0.50 | 99.60 ± 2.40 | 3.12 | |
chicken | 0.00 | - | - |
0.25 | 86.00 ± 3.00 | 2.37 | |
0.50 | 104.40 ± 5.60 | 3.34 |
Reference | Method | LOD (ng/mL) | Analysis Time (h) | Detection Object |
---|---|---|---|---|
This work | Colloidal gold immunochromatographic assay | 1 (ng/g) | 0.25 | pork, fish, and chicken |
ELISA | 0.033 | 5 | ||
[5] | HPLC | 20 | 1–2 | influent, effluent, and surface waters |
[6] | HPLC | 3.6 | 1–2 | human urine |
[7] | HPLC-FLD | 0.7 | 1–2 | chicken meat |
[8] | HPLC-MEPS-FLD | 0.05 (ng/g) | 1–2 | milk |
[9] | HPLC-MS/MS | 0.005–0.123 | 1–2 | surface water and hospital wastewater |
[10] | HPLC-MS/MS | 4.30 (ng/g) | 1–2 | milk |
[11] | SPE- HPLC-MS/MS | 0.0023–0.0107 | 1–2 | environmental water |
[12] | HPLC-MS/MS | 0.1–3 (ng/g) | 1–2 | bean sprouts |
[13] | SERS | 42.6–49.1 | 1–2 | aquatic samples |
[14] | ELISA | 25 (ng/g) | 5 | kidney, marine products, eggs, and muscle |
[15] | ELISA | 1.15 | 5 | rana catesbeianus |
[17] | immunochromatographic assay | 3.5–8.9 | 0.25 | milk |
[1] | immunochromatographic assay | 30 | 0.25 | aquatic samples |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Huang, J.; Li, N.; Salah, M.; Guan, S.; Pan, W.; Wang, Z.; Zhou, X.; Wang, Y. Development of a Colloidal Gold Immunochromatographic Assay Strip Using a Monoclonal Antibody for the Rapid Detection of Ofloxacin. Foods 2024, 13, 4137. https://doi.org/10.3390/foods13244137
Li X, Huang J, Li N, Salah M, Guan S, Pan W, Wang Z, Zhou X, Wang Y. Development of a Colloidal Gold Immunochromatographic Assay Strip Using a Monoclonal Antibody for the Rapid Detection of Ofloxacin. Foods. 2024; 13(24):4137. https://doi.org/10.3390/foods13244137
Chicago/Turabian StyleLi, Xiaolan, Jin Huang, Na Li, Mahmoud Salah, Shuoning Guan, Wenwen Pan, Ziyi Wang, Xinghua Zhou, and Yun Wang. 2024. "Development of a Colloidal Gold Immunochromatographic Assay Strip Using a Monoclonal Antibody for the Rapid Detection of Ofloxacin" Foods 13, no. 24: 4137. https://doi.org/10.3390/foods13244137
APA StyleLi, X., Huang, J., Li, N., Salah, M., Guan, S., Pan, W., Wang, Z., Zhou, X., & Wang, Y. (2024). Development of a Colloidal Gold Immunochromatographic Assay Strip Using a Monoclonal Antibody for the Rapid Detection of Ofloxacin. Foods, 13(24), 4137. https://doi.org/10.3390/foods13244137