A Survey on Potentially Beneficial and Hazardous Bioactive Compounds in Cocoa Powder Samples Sourced from the European Market
"> Figure 1
<p>Heat map diagram displaying the loadings of variables for principal components PC1, PC2, PC3, and PC4. Different intensities are shown on the far right-hand side: deep blue and red coloration represents extremes of low and high intensity, respectively. SPM (spermine), SPD (spermidine), HIS (histamine), SER (serotonin), DOP (dopamine), ETH (ethanolamine), C (Chroma), a_b (ratio of colorimetric coordinates a* and b*), b (b* blueness/yellowness), a (a* redness/greenness), H (hue angle), L (lightness), nSensor (electrochemical nanostructured sensor), AuNPs (gold nanoparticle-based sensor).</p> "> Figure 2
<p>Loading plot of variables for the first two components. Different contributions are shown on the far right-hand side: deep green and orange coloration represents extremes of low and high contributions, respectively. SPM (spermine), SPD (spermidine), HIS (histamine), SER (serotonin), DOP (dopamine), ETH (ethanolamine), C (Chroma), a_b (ratio of colorimetric coordinates a* and b*), b (b*blueness/yellowness), a (a* redness/greenness), H (hue angle), L (lightness), nSensor (electrochemical nanostructured sensor), AuNPs (gold nanoparticle-based sensor).</p> "> Figure 3
<p>Score plot obtained by principal component analysis of pH, colorimetric parameters, biogenic amine content, and polyphenol content in cocoa powder samples under different technological treatments. Legend: circle, alkalized cocoa powder; triangle, non-alkalized samples; blue circle, non-organic cocoa powder; red circle, organic samples; light blue symbol, cocoa powder from roasted beans; light red symbol, cocoa samples from raw beans.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of the Samples
2.2. Color Analysis
2.3. Moisture and pH Determination
2.4. Fat Content Determination
2.5. Extraction of the Phenolic Fraction
2.5.1. Polyphenol Conventional Liquid–Liquid Extraction
2.5.2. Dimethylsulfoxide-Based Polyphenol Fast Extraction
2.6. Phenolic Compound Evaluation
2.6.1. The Folin–Ciocalteu Assay
2.6.2. The AuNP-Based Assay
2.6.3. Electrochemical Measurement of Catechins
2.7. Biogenic Amine Determination
2.8. Statistical Analyses
3. Results and Discussion
3.1. Color Indices and pH
3.2. Fat and Moisture
3.3. Polyphenol Evaluation
3.4. Biogenic Amines
3.5. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sioriki, E.; Tuenter, E.; Van de Walle, D.; Lemarcq, V.; Cazin, C.S.J.; Nolan, S.P.; Pieters, L.; Dewettinck, K. The effect of cocoa alkalization on the non-volatile and volatile mood-enhancing compounds. Food Chem. 2022, 381, 132082. [Google Scholar] [CrossRef] [PubMed]
- Tuenter, E.; Foubert, K.; Pieters, L. Mood components in cocoa and chocolate: The mood pyramid. Planta Med. 2018, 84, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.A.; Donovan, J.L.; Waterhouse, A.L.; Williamson, G. Cocoa and health: A decade of research. Br. J. Nutr. 2008, 99, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Ospina, J.; Esposito, L.; Molina-Hernandez, J.B.; Pérez-Álvarez, J.A.; Martuscelli, M.; Chaves-Lopez, C. Cocoa Shell Infusion: A Promising Application for Added-Value Beverages Based on Cocoa’s Production Coproducts. Foods 2023, 12, 2442. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Ospina, J.; Acquaticci, L.; Molina-Hernández, J.B.; Rantsiou, K.; Martuscelli, M.; Kamgang-Nzekoue, A.F.; Vittori, S.; Paparella, A.; Chaves-López, C. Exploring the capability of yeast isolated from Colombian fermented cocoa beans to form and degrade biogenic amines in a lab-scale model system for cocoa fermentation. Microrganisms 2020, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Oracz, J.; Nebesny, E. Influence of roasting conditions on the biogenic amine content in cocoa beans of different Theobroma cacao cultivars. Food Res. Int. 2014, 55, 1–10. [Google Scholar] [CrossRef]
- Comas-Basté, O.; Sánchez-Pérez, S.; Veciana-Nogués, M.T.; Latorre-Moratalla, M.; Vidal-Carou, M.D.C. Histamine intolerance: The current state of the art. Biomolecules 2020, 10, 1181. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Scientific opinion on risk-based control of biogenic amines formation in fermented foods. EFSA J. 2011, 9, 2392. [Google Scholar] [CrossRef]
- Esposito, L.; Martuscelli, M.; Mastrocola, D. Approaching to biogenic amines as quality markers in packaged chicken meat. Front. Nutr. 2022, 9, 966790. [Google Scholar] [CrossRef]
- Delgado-Ospina, J.; Di Mattia, C.D.; Paparella, A.; Mastrocola, D.; Martuscelli, M.; Chaves-Lopez, C. Effect of Fermentation; Drying and Roasting on Biogenic Amines and Other Biocompounds in Colombian Criollo Cocoa Beans and Shells. Foods 2020, 9, 520. [Google Scholar] [CrossRef]
- Tan, X.; Cui, F.; Wang, D.; Lv, X.; Li, X.; Li, J. Fermented Vegetables: Health Benefits, Defects, and Current Technological Solutions. Foods 2024, 13, 38. [Google Scholar] [CrossRef]
- Kurnik-Łucka, M.; Latacz, G.; Martyniak, A.; Bugajski, A.; Kieć-Kononowicz, K.; Gil, K. Salsolinol neurotoxic or Neuroprotective? Neurotox. Res. 2020, 37, 286–297. [Google Scholar] [CrossRef]
- Jung, Y.J.; Youn, J.Y.; Ryu, J.C.; Surh, Y.J. Salsolinol, a naturally occurring tetrahydroisoquinoline alkaloid; induces DNA damage and chromosomal aberrations in cultured Chinese hamster lung fibroblast cells. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2001, 474, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhao, Y.; Yang, J.; Jiang, Y.; Lu, F.; Jia, Y.; Yang, B. Metabolomic analyses of banana during postharvest senescence by 1H-high resolution-NMR. Food Chem. 2017, 218, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Melzig, M.F.; Putscher, I.; Henklein, P.; Haber, H. In vitro pharmacological activity of the tetrahydroisoquinoline salsolinol present in products from Theobroma cacao L. like cocoa and chocolate. J. Ethnopharmacol. 2000, 73, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Porter, L.J.; Ma, Z.; Chan, B.G. Cacao procyanidins: Major flavanoids and identification of some minor metabolites. Phytochemistry 1991, 30, 1657–1663. [Google Scholar] [CrossRef]
- Oracz, J.; Nebesny, E.; Zyzelewicz, D.; Budryn, G.; Luzak, B. Bioavailability and metabolism of selected cocoa bioactive compounds: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1847–1985. [Google Scholar] [CrossRef] [PubMed]
- Alasti, F.M.; Asefi, N.; Maleki, R.; Sadegh, S.; Heris, S. The influence of three different types and dosage of alkaline on the inherent properties in cocoa powder. J. Food Sci. Technol. 2020, 57, 2561–2571. [Google Scholar] [CrossRef] [PubMed]
- Afoakwa, E.O. Chocolate Science and Technology, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; Chapter 5. [Google Scholar]
- Aprotosoaie, A.C.; Luca, S.V.; Miron, A. Flavor chemistry of cocoa and cocoa products-An overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef]
- Moser, A. Alkalizing Cocoa and Chocolate. Manuf. Confect. 2015, 95, 31–38. [Google Scholar]
- Wollgast, J.; Anklam, E. Review on polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res. Int. 2000, 33, 423–447. [Google Scholar] [CrossRef]
- Deeth, H.C.; Lewis, M.J. High Temperature Processing of Milk and Milk Products (Illustrate); John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; Methods 2009.01; and 2011.25, 19th ed.; AOAC International: Rockville, MD, USA, 2012. [Google Scholar]
- Della Pelle, F.; Blandón-Naranjo, L.; Alzate, M.; Del Carlo, M.; Compagnone, D. Cocoa powder and catechins as natural mediators to modify carbon-black based screen-printed electrodes. Application to free and total glutathione detection in blood. Talanta 2020, 207, 120349. [Google Scholar] [CrossRef] [PubMed]
- Di Mattia, C.; Martuscelli, M.; Sacchetti, G.; Scheirlinck, I.; Beheydt, B.; Mastrocola, D.; Pittia, P. Effect of fermentation and drying on procyanidins; antiradical activity and reducing properties of cocoa beans. Food Bioprocess Technol. 2013, 6, 3420. [Google Scholar] [CrossRef]
- Della Pelle, F.; González, M.C.; Sergi, M.; Del Carlo, M.; Compagnone, D.; Escarpa, A. Gold nanoparticles-based extraction-free colorimetric assay in organic media: An optical index for determination of total polyphenols in fat-rich samples. Anal. Chem. 2015, 87, 6905–6911. [Google Scholar] [CrossRef] [PubMed]
- Della Pelle, F.; Rojasa, D.; Scroccarello, A.; Del Carlo, M.; Ferraro, G.; Di Mattia, C.; Martuscelli, M.; Escarpa, A.; Compagnone, D. High-performance carbon black/molybdenum disulfide nanohybrid sensor for cocoa catechins determination using an extraction-free approach. Sens. Actuators B Chem. 2019, 296, 126651. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 12 December 2023).
- Miller, K.B.; Hurst, W.J.; Payne, M.J.; Stuart, D.A.; Apgar, J.; Sweigart, D.S.; Ou, B. Impact of alkalization on the antioxidant and flavanol content of commercial cocoa powders. J. Agric. Food Chem. 2008, 56, 8527–8533. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.I.F.S.; Jongen, W.M.F.; van Boekel, M.A.J.S. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 2001, 11, 364–373. [Google Scholar] [CrossRef]
- Germann, D.; Stark, T.D.; Hofmann, T. Formation and Characterization of Polyphenol-Derived Red Chromophores. Enhancing the Color of Processed Cocoa Powders: Part 1. J. Agric. Food Chem. 2019, 67, 4632–4642. [Google Scholar] [CrossRef]
- Germann, D.; Stark, T.D.; Hofmann, T. Formation and Characterization of Polyphenol-Derived Red Chromophores. Enhancing the Color of Processed Cocoa Powders: Part 2. J. Agric. Food Chem. 2019, 67, 4643–4651. [Google Scholar] [CrossRef]
- Sharma, G. Digital Color Imaging Handbook; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Scroccarello, A.; Della Pelle, F.; Rojas, D.; Ferraro, G.; Fratini, E.; Gaggiotti, S.; Cichelli, A.; Compagnone, D. Metal nanoparticles based lab-on-paper for phenolic compounds evaluation with no sample pretreatment. Application to extra virgin olive oil samples. Anal. Chim. Acta 2021, 1183, 338971. [Google Scholar] [CrossRef] [PubMed]
- Razola-Díaz, M.D.C.; Aznar-Ramos, M.J.; Verardo, V.; Melgar-Locatelli, S.; Castilla-Ortega, E.; Rodríguez-Pérez, C. Exploring the Nutritional Composition and Bioactive Compounds in Different Cocoa Powders. Antioxidants 2023, 12, 716. [Google Scholar] [CrossRef] [PubMed]
- Ioannone, F.; Di Mattia, C.D.; De Gregorio, M.; Sergi, M.; Serafini, M.; Sacchetti, G. Flavanols; proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chem. 2015, 174, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Han, Z.; Zhu, M.; Wan, X.; Zhang, L. Effects of thermal processing on transformation of polyphenols and flavor quality. Curr. Opin. Food Sci. 2023, 51, 101014. [Google Scholar] [CrossRef]
- Todorovic, V.; Milenkovic, M.; Vidovic, B.; Todorovic, Z.; Sobajic, S. Correlation between antimicrobial, antioxidant activity, and polyphenols of alkalized/nonalkalized cocoa powders. J. Food Sci. 2017, 82, 1020–1027. [Google Scholar] [CrossRef]
- Spizzirri, U.G.; Ieri, F.; Campo, M.; Paolino, D.; Restuccia, D.; Romani, A. Biogenic Amines, Phenolic, and Aroma-Related Compounds of Unroasted and Roasted Cocoa Beans with Different Origin. Foods 2019, 8, 306. [Google Scholar] [CrossRef]
- Do Carmo Brito, B.N.; Chisté, R.C.; Pena, R.S.; Gloria, M.B.A.; Lopes, A.S. Bioactive amines and phenolic compounds in cocoa beans are affected by fermentation. Food Chem. 2017, 228, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Sentellas, S.; Saurina, J. Authentication of Cocoa Products Based on Profiling and Fingerprinting Approaches: Assessment of Geographical; Varietal; Agricultural and Processing Features. Foods 2023, 12, 3120. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific Opinion on the modification of the authorisation of a health claim related to cocoa flavanols and maintenance of normal endothelium-dependent vasodilation pursuant to Article 13(5) of Regulation (EC) No 1924/2006 following a request in accordance with Article 19 of Regulation (EC) No 1924/2006. EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA). EFSA J. 2012, 10, 2809. [Google Scholar] [CrossRef]
- Dala-Paula, B.M.; Deus, V.L.; Tavano, O.L.; Gloria, B.M.A. In vitro bioaccessibility of amino acids and bioactive amines in 70% cocoa dark chocolate: What you eat and what you get. Food Chem. 2021, 343, 128397. [Google Scholar] [CrossRef]
- Borah, A.; Paul, R.; Mazumder, M.K.; Bhattacharjee, N. Contribution of β-phenethylamine, a component of chocolate and wine, to dopaminergic neurodegeneration: Implications for the pathogenesis of Parkinson’s disease. Neurosci. Bull. 2013, 29, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Bruinsma, K.; Taren, D.L. Chocolate: Food or drug? J. Am. Diet. Assoc. 1999, 99, 1249–1256. [Google Scholar] [CrossRef]
- Navailles, S.; Lagière, M.; Contini, A.; De Deurwaerdère, P. Multisite Intracerebral Microdialysis to Study the Mechanism of L-DOPA Induced Dopamine and Serotonin Release in the Parkinsonian Brain. ACS Chem. Neurosci. 2013, 4, 680–692. [Google Scholar] [CrossRef]
- Weng, J.; Paslaski, S.; Daly, J.; VanDam, C.; Brown, J. Modulation for emergent networks: Serotonin and dopamine. Neural Netw. 2013, 41, 225–239. [Google Scholar] [CrossRef]
- McCutcheon, J.E. The role of dopamine in the pursuit of nutritional value. Physiol. Behav. 2015, 152 Pt B, 408–415. [Google Scholar] [CrossRef]
- Sharmistha, S.; Tanmay, S.; Runu, C.; Maksim, R.; Mohammad, A.S.; Muthu, T.; Kannan, R.R.R. Dark chocolate: An overview of its biological activity; processing; and fortification approaches. Curr. Res. Food Sci. 2022, 5, 1916–1943. [Google Scholar] [CrossRef]
- Xie, G.; Hipólito, L.; Zuo, W.; Polache, A.; Granero, L.; Krnjević, K.; Ye, J.H. Salsolinol Stimulates Dopamine Neurons in Slices of Posterior Ventral Tegmental Area Indirectly by Activating μ-Opioid Receptors. J. Pharmacol. Exp. Ther. 2012, 341, 43–50. [Google Scholar] [CrossRef]
- Wen, J.; Zhang, L.; Liu, H.; Wang, J.; Li, J.; Yang, Y.; Wang, Y.; Cai, H.; Li, R.; Zhao, Y. Salsolinol attenuates doxorubicin-induced chronic heart failure in rats and improves mitochondrial function in H9c2 cardiomyocytes. Front. Pharmacol. 2019, 10, 1135. [Google Scholar] [CrossRef]
- Kalac, P.; Krausová, P. A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem. 2005, 90, 219–230. [Google Scholar] [CrossRef]
- Muñoz-Esparza, N.C.; Latorre-Moratalla, M.L.; Comas-Basté, O.; Toro-Funes, N.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Polyamines in food. Front. Nutr. 2019, 6, 108. [Google Scholar] [CrossRef]
- Muñoz-Esparza, N.C.; Costa-Catala, J.; Comas-Basté, O.; Toro-Funes, N.; Latorre-Moratalla, M.L.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Occurrence of Polyamines in Foods and the Influence of Cooking Processes. Foods 2021, 10, 1752. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.; Zhao, Z.; Li, L.; Min, Y.; Zhang, D.; Ji, A.; Jiang, C.; Wei, X.; Wu, X. A comprehensive review of spermidine: Safety, health effects, absorption and metabolism, food materials evaluation, physical and chemical processing, and bioprocessing. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2820–2842. [Google Scholar] [CrossRef] [PubMed]
- Handa, A.K.; Fatima, T.; Mattoo, A.K. Polyamines: Bio-molecules with diverse functions in plant and human health and disease. Front. Chem. 2018, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Restuccia, D.; Spizzirri, U.G.; De Luca, M.; Parisi, O.I.; Picci, N. Biogenic amines as quality marker in organic and fair-trade cocoa-based products. Sustainability 2016, 8, 856. [Google Scholar] [CrossRef]
- Restuccia, D.; Spizzirri, U.G.; Puoci, F.; Picci, N. Determination of biogenic amine profiles in conventional and organic cocoa-based products. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Deus, V.L.; Bispo, E.S.; Franca, A.S.; Gloria, M.B.A. Influence of cocoa clones on the quality and functional properties of chocolate–Nitrogenous compounds. LWT 2020, 134, 110202. [Google Scholar] [CrossRef]
- Valverde García, D.; Pérez Esteve, É.; Barat Baviera, J.M. Changes in cocoa properties induced by the alkalization process: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2200–2221. [Google Scholar] [CrossRef]
- Tuenter, E.; Sakavitsi, M.E.; Rivera-Mondragón, A.; Hermans, N.; Foubert, K.; Halabalaki, M.; Pieters, L. Ruby chocolate: A study of its phytochemical composition and quantitative comparison with dark, milk and white chocolate. Food Chem. 2021, 343, 128446. [Google Scholar] [CrossRef]
- Montoya, C.C.; Valencia, W.G.; Sierra, J.A.; Penagos, L. Enhanced pink-red hues in processed powders from unfermented cacao beans. LWT 2021, 138, 110671. [Google Scholar] [CrossRef]
Provider Code (N of Samples Collected) | Number Code | Geographic Origin | Alkalinization | Raw Samples | Organic Samples |
---|---|---|---|---|---|
BC (N = 15) | 1; 5; 8; 12–14; 38–46 | Ecuador; Sao Tomè; Dominican Republic; Peru | 4, 10, 13, 14, 17–24, 30, 31, 34, 36, 37, 40–44, 46–48, 50–53 | 1–3, 5, 26, 27, 53, 58, 59 | 2, 3, 6, 13, 14, 17, 19, 26, 27, 35, 36, 37, 48, 50, 51, 53 |
CA (N = 1) | 6 | Colombia | |||
CE (N = 2) | 4; 10 | Ivory Coast | |||
CG (N = 8) | 7; 16; 19; 21–25 | Ivory Coast | |||
CM (N = 1) | 15 | Ivory Coast | |||
DN (N = 5) | 11; 28–31 | Ghana | |||
IM (N = 13) | 17; 18; 20; 32–35; 36;37; 47–48; 50–51 | Ecuador; Peru | |||
JR (N = 3) | 26–27; 53 | Ecuador | |||
ME (N = 2) | 58–59 | Bali | |||
PD (N = 6) | 9; 49; 54–57 | Vietnam | |||
UO (N = 1) | 3 | Colombia | |||
VV (N = 1) | 2 | Bali | |||
ZI (N = 1) | 52 | Ivory Coast |
L* | a* | b* | C | h° | pH | |
---|---|---|---|---|---|---|
not organic (N. 41) | 41.49 ± 7.50 | 12.97 ± 1.63 | 19.59 ± 3.19 | 23.58 ± 3.02 | 56.17 ± 4.99 | 6.02 ± 0.78 |
(24.77–55.61) | (9.05–16.35) | (10.95–25.64) | (14.20–28.67) | (41.29–63.63) | (4.75–7.32) | |
organic (N. 18) | 40.71 ± 6.08 | 13.45 ± 1.46 | 20.16 ± 2.20 | 24.30 ± 2.00 | 56.19 ± 4.09 | 6.38 ± 0.84 |
(30.08–52.09) | (10.93–15.69) | (14.86–24.05) | (20.02–27.27) | (47.96–64.79) | (5.08–7.32) | |
p-value | 0.675 | 0.320 | 0.499 | 0.363 | 0.985 | 0.121 |
not raw (N. 50) | 40.32 ± 7.29 | 19.34 ± 1.54 | 19.87 ± 2.61 | 24.00 ± 2.42 | 55.93 ± 4.62 | 6.24 ± 0.81 |
(24.77–55.61) | (9.71–16.35) | (11.17–24.12) | (16.93–27.61) | (41.29–64.79) | (4.75–7.32) | |
raw (N. 9) | 46.46 ± 5.39 | 11.92 ± 1.30 | 19.22 ± 4.43 | 22.69 ± 4.18 | 57.50 ± 5.19 | 5.55 ± 0.58 |
(33.17–51.25) | (9.05–13.41) | (10.95–25.64) | (14.20–28.67) | (47.96–63.41) | (5.08–6.87) | |
p-value | 0.019 | 0.012 | 0.716 | 0.238 | 0.246 | 0.009 |
not alkalized (N. 30) | 46.52 ± 5.52 | 12.18 ± 1.42 | 20.51 ± 2.92 | 23.89 ± 2.95 | 59.11 ± 3.39 | 5.39 ± 0.28 |
(32.86–55.61) | (9.05–14.82) | (10.95–25.64) | (14.20–28.67) | (50.46–64.79) | (4.75–5.95) | |
alkalized (N. 29) | 35.80 ± 4.44 | 14.10 ± 1.06 | 19.00 ± 2.76 | 23.70 ± 2.58 | 53.14 ± 3.87 | 6.90 ± 0.28 |
(24.77–42.23) | (11.86–16.35) | (11.17–22.35) | (16.93–27.53) | (41.29–57.93) | (6.01–7.32) | |
p-value | <0.001 | <0.001 | 0.055 | 0.806 | <0.001 | <0.001 |
Total Phenolic Content (mgGAeq g−1) | ||||
---|---|---|---|---|
Sample | Fat (%) | Folin | AuNPs | nSensor |
1 | 5.6 ± 0.9 | 141.0 ± 3.7 | 136.9 ± 7.1 | 57.1 ± 0.4 |
2 | 15.1 ± 1.3 | 72.0 ± 1.4 | 79.1 ± 0.5 | 33.0 ± 0.9 |
3 | 8.5 ± 0.7 | 60.8 ± 1.6 | 51.7 ± 0.2 | 21.6 ± 0.4 |
4 | 24.6 ± 2.1 | 36.2 ± 2.3 | 43.8 ± 0.1 | 18.3 ± 0.8 |
5 | 7.0 ± 0.6 | 51.8 ± 1.1 | 71.0 ± 0.8 | 29.6 ± 0.8 |
6 | 8.5 ± 0.7 | 67.8 ± 1.0 | 52.0 ± 6.1 | 21.7 ± 2.0 |
7 | 9.3 ± 1.2 | 48.1 ± 0.2 | 70.1 ± 7.2 | 29.3 ± 0.6 |
8 | 9.1 ± 1.8 | 73.7 ± 1.2 | 39.5 ± 6.0 | 16.5 ± 2.2 |
9 | 9.1 ± 0.8 | 53.5 ± 0.7 | 72.9 ± 2.3 | 30.5 ± 1.8 |
10 | 20.7 ± 1.8 | 35.7 ± 1.6 | 39.0 ± 2.1 | 16.3 ± 1.7 |
11 | 7.9 ± 0.7 | 31.1 ± 2.4 | 39.4 ± 1.5 | 16.5 ± 0.8 |
12 | 8.8 ± 0.7 | 24.9 ± 3.0 | 31.9 ± 0.6 | 13.4 ± 1.5 |
13 | 10.4 ± 0.9 | 15.8 ± 0.2 | 13.9 ± 0.1 | 5.9 ± 0.7 |
14 | 16.5 ± 1.4 | 14.2 ± 0.1 | 11.9 ± 0.2 | 5.1 ± 0.8 |
15 | 14.3 ± 1.2 | 20.3 ± 0.2 | 31.2 ± 0.9 | 13.1 ± 0.9 |
16 | 8.7 ± 0.7 | 25.3 ± 1.7 | 40.1 ± 1.1 | 16.8 ± 0.6 |
17 | 17.5 ± 1.5 | 20.1 ± 1.7 | 20.4 ± 1.0 | 8.6 ± 1.5 |
18 | 10.2 ± 0.9 | 25.9 ± 1.0 | 18.7 ± 0.9 | 7.9 ± 1.0 |
19 | 8.1 ± 0.7 | 9.2 ± 0.2 | 8.9 ± 0.3 | 3.8 ± 0.4 |
20 | 12.4 ± 1.1 | 22.3 ± 0.2 | 21.1 ± 0.4 | 8.9 ± 0.9 |
21 | 8.7 ± 0.9 | 16.0 ± 0.1 | 10.5 ± 0.2 | 4.5 ± 0.9 |
22 | 19.9 ± 1.8 | 14.0 ± 0.0 | 6.6 ± 0.1 | 2.8 ± 0.8 |
23 | 20.5 ± 1.7 | 9.5 ± 0.0 | 8.6 ± 0.5 | 3.7 ± 0.4 |
24 | 11.5 ± 1.0 | 8.8 ± 0.1 | 4.5 ± 0.2 | 2.0 ± 0.7 |
25 | 22.1 ± 1.9 | 33.3 ± 0.0 | 38.2 ± 5.2 | 16.0 ± 1.3 |
26 | 9.7 ± 0.8 | 43.3 ± 0.3 | 63.9 ± 1.7 | 26.7 ± 1.7 |
27 | 20.9 ± 1.8 | 32.8 ± 0.6 | 38.1 ± 0.9 | 15.9 ± 1.1 |
28 | 9.0 ± 0.8 | 37.6 ± 2.7 | 48.9 ± 2.2 | 20.5 ± 2.3 |
29 | 20.7 ± 1.8 | 27.3 ± 0.4 | 32.2 ± 0.3 | 13.5 ± 1.3 |
30 | 7.9 ± 0.7 | 3.6 ± 0.4 | 13.5 ± 0.1 | 5.7± 0.8 |
31 | 7.5 ± 0.6 | 16.9 ± 0.0 | 9.9± 0.4 | 4.2 ± 0.6 |
32 | 9.3 ± 0.8 | 43.4 ± 1.2 | 49.2 ± 0.1 | 20.6 ± 0.8 |
33 | 10.3 ± 0.9 | 44.2 ± 1.6 | 48.0 ± 1.1 | 20.1 ± 0.2 |
34 | 6.4 ± 0.5 | 33.2 ± 0.0 | 12.4 ± 0.0 | 5.2 ± 0.1 |
35 | 17.9 ± 1.5 | 39.9 ± 0.9 | 38.3 ± 1.9 | 16.0 ± 0.5 |
36 | 9.6 ± 0.8 | 45.2 ± 2.1 | 59.4 ± 1.4 | 24.8± 1.6 |
37 | 15.9 ± 1.4 | 49.8 ± 2.0 | 45.7 ± 0.4 | 19.1 ± 1.2 |
38 | 9.5 ± 0.8 | 40.2 ± 1.9 | 50.2 ± 0.4 | 21.0 ± 1.8 |
39 | 20.7 ± 1.8 | 67.6 ± 0.5 | 49.7 ± 5.2 | 20.8 ± 0.7 |
40 | 8.0 ± 0.9 | 21.1 ± 0.2 | 7.2 ± 0.3 | 3.1 ± 0.6 |
41 | 19.3 ± 1.6 | 22.5 ± 0.2 | 16.4 ± 0.2 | 6.9 ± 0.1 |
42 | 8.9 ± 0.8 | 17.1 ± 0.1 | 9.6 ± 0.3 | 4.1 ± 0.3 |
43 | 8.2 ± 0.6 | 30.9 ± 2.0 | 14.8 ± 1.0 | 6.2 ± 0.9 |
44 | 7.6 ± 0.6 | 15.3 ± 0.2 | 10.9 ± 0.1 | 4.6 ± 0.6 |
45 | 9.3 ± 0.8 | 51.8 ± 1.5 | 55.5 ± 2.5 | 23.2 ± 0.2 |
46 | 7.3 ± 0.6 | 25.6 ± 1.9 | 35.5 ± 0.7 | 14.9 ± 0.5 |
47 | 21.0 ± 1.8 | 26.0 ± 0.5 | 21.8 ± 1.8 | 9.2 ± 1.1 |
48 | 16.6 ± 1.4 | 35.0 ± 1.2 | 30.7 ± 0.4 | 12.9 ± 0.3 |
49 | 27.3 ± 2.3 | 56.8 ± 2.0 | 63.8 ± 0.4 | 26.7 ± 2.1 |
50 | 17.5 ± 1.7 | 26.6 ± 2.6 | 14.6 ± 0.4 | 6.2 ± 1.2 |
51 | 17.4 ± 1.4 | 65.4 ± 1.8 | 58.2 ± 0.2 | 24.3 ± 1.6 |
52 | 18.8 ± 1.7 | 14.9 ± 0.2 | 8.8 ± 0.1 | 3.7 ± 0.3 |
53 | 17.1 ± 1.3 | 25.2 ± 1.5 | 13.3 ± 0.6 | 5.6 ± 0.8 |
54 | 22.1 ± 1.9 | 46.2 ± 0.5 | 45.9 ± 0.3 | 19.2 ± 1.5 |
55 | 26.1 ± 2.2 | 64.3 ± 0.7 | 59.7 ± 0.3 | 24.9 ± 0.7 |
56 | 23.5 ± 2.0 | 37.0 ± 0.4 | 42.5 ± 2.4 | 17.8 ± 0.8 |
57 | 18.9 ± 1.6 | 28.7 ± 1.1 | 63.6 ± 1.6 | 26.6 ± 2.1 |
58 | 16.2 ± 1.4 | 69.7 ± 0.1 | 71.5 ± 1.2 | 29.8 ± 2.1 |
59 | 11.2 ± 1.0 | 50.4 ± 0.5 | 68.8 ± 2.0 | 28.7 ± 0.8 |
Phenolic Compounds (mgGAEeq g−1DDW) | ||
---|---|---|
TPC | nSensor | |
conventional (N. 41) | 42.18 ± 27.45 | 18.13 ± 12.57 |
(3.94–149.2) | (2.21–60.47) | |
organic (N. 18) | 45.39 ± 22.27 | 19.21 ± 10.51 |
(9.97–84.71) | (4.11–38.86) | |
p-value | 0.467 | 0.477 |
not raw (N. 50) | 38.61 ± 21.19 | 16.20 ± 9.91 |
(3.94–86.99) | (2.21–36.69) | |
raw (N. 9) | 68.44 ± 35.19 | 31.03 ± 14.64 |
(30.40–149.2) | (6.77–60.47) | |
p-value | 0.003 | 0.003 |
not alkalized (N. 30) | 57.48 ± 25.38 | 26.57 ± 9.32 |
(23.67–149.2) | (14.65–60.47) | |
alkalized (N. 29) | 28.35 ± 16.38 | 10.07 ± 7.73 |
(3.94–79.23) | (2.21–29.44) | |
p-value | <0.001 | <0.001 |
ETH | DOP | SER | HIS | SPD | SAL | SPM | Total BAs | |
---|---|---|---|---|---|---|---|---|
N of positive (%) | 9 (15%) | 3 (5%) | 13 (22%) | 11 (19%) | 5 (8%) | 4 (7%) | 3 (5%) | 18 (31%) |
BAs (mg kg−1DDW) | ||||||||
median | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
median (of positive samples) | 22.89 | 88.32 | 82.13 | 69.70 | 23.88 | 0.22 | 25.35 | 154.08 |
mean | 6.11 | 5.80 | 18.53 | 11.40 | 3.53 | 0.06 | 1.46 | 46.89 |
dev st | 20.23 | 27.23 | 38.97 | 28.21 | 15.92 | 0.31 | 6.84 | 95.07 |
minimum | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
maximum | 91.54 | 176.95 | 181.81 | 139.28 | 105.96 | 1.86 | 43.66 | 480.87 |
ETH | DOP | SER | HIS | SPD | SAL | SPM | Total BAs | |
---|---|---|---|---|---|---|---|---|
conventional (N. 41) | 7.15 ± 22.05 | 8.34 ± 32.46 | 23.54 ± 43.42 | 15.75 ± 32.76 | 5.08 ± 18.96 | 0.09 ± 0.37 | 2.10 ± 8.15 | 62.04 ± 107.95 |
(0.00–91.54) | (0.00–176.95) | (0.00–181.81) | (0.00–139.28) | (0.00–105.96) | (0.00–1.86) | (0.00–43.66) | (0.00–480.87) | |
organic (N. 18) | 3.76 ± 15.61 | 0.00 ± 0.00 | 7.14 ± 23.40 | 1.49 ± 6.33 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 12.39 ± 39.99 |
(0.00–66.28) | (0.00–0.00) | (0.00–95.62) | (0.00–26.84) | (0.00–0.00) | (0.00–0.00) | (0.00–0.00) | (0.00–161.90) | |
p-value | 0.464 | 0.455 | 0.573 | 0.158 | 0.199 | 0.107 | 0.174 | 0.832 |
not raw (N. 50) | 7.21 ± 21.82 | 6.84 ± 29.51 | 21.87 ± 41.51 | 13.45 ± 30.23 | 4.16 ± 17.24 | 0.07 ± 0.34 | 1.72 ± 7.41 | 55.33 ± 101.10 |
(0.00–91.54) | (0.00–176.95) | (0.00–181.81) | (0.00–139.28) | (0.00–105.96) | (0.00–1.86) | (0.00–43.66) | (0.00–480.87) | |
raw (N. 9) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
(0.00–0.00) | (0.00–0.00) | (0.00–0.00) | (0.00–0.00) | (0.00–0.00) | (0.00–0.00) | (0.00–0.00) | (0.00–0.00) | |
p-value | 0.246 | 0.152 | 0.372 | 0.174 | 0.461 | 0.838 | 0.178 | 0.159 |
not alkalized (N. 30) | 3.82 ± 13.39 | 8.84 ± 35.61 | 19.93 ± 44.54 | 15.70 ± 29.40 | 4.42 ± 19.67 | 0.12 ± 0.43 | 2.87 ± 9.46 | 55.71 ± 108.08 |
(0.00–69.61) | (0.00–176.95) | (0.00–181.81) | (0.00–86.25) | (0.00–105.96) | (0.00–1.86) | (0.00–43.66) | (0.00–480.87) | |
alkalized (N. 29) | 8.48 ± 25.50 | 2.65 ± 14.25 | 17.08 ± 32.96 | 6.95 ± 26.71 | 2.61 ± 11.08 | 0.00 ± 0.02 | 0.00 ± 0.00 | 37.77 ± 80.33 |
(0.00–91.54) | (0.00–76.73) | (0.00–107.60) | (0.00–139.28) | (0.00–57.48) | (0.00–0.08) | (0.00–0.02) | (0.00–296.41) | |
p-value | 0.399 | 0.781 | 0.425 | 0.161 | 0.686 | 0.171 | 0.175 | 0.380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, L.; Perillo, M.; Di Mattia, C.D.; Scroccarello, A.; Della Pelle, F.; Compagnone, D.; Sacchetti, G.; Mastrocola, D.; Martuscelli, M. A Survey on Potentially Beneficial and Hazardous Bioactive Compounds in Cocoa Powder Samples Sourced from the European Market. Foods 2024, 13, 2457. https://doi.org/10.3390/foods13152457
Esposito L, Perillo M, Di Mattia CD, Scroccarello A, Della Pelle F, Compagnone D, Sacchetti G, Mastrocola D, Martuscelli M. A Survey on Potentially Beneficial and Hazardous Bioactive Compounds in Cocoa Powder Samples Sourced from the European Market. Foods. 2024; 13(15):2457. https://doi.org/10.3390/foods13152457
Chicago/Turabian StyleEsposito, Luigi, Matteo Perillo, Carla Daniela Di Mattia, Annalisa Scroccarello, Flavio Della Pelle, Dario Compagnone, Giampiero Sacchetti, Dino Mastrocola, and Maria Martuscelli. 2024. "A Survey on Potentially Beneficial and Hazardous Bioactive Compounds in Cocoa Powder Samples Sourced from the European Market" Foods 13, no. 15: 2457. https://doi.org/10.3390/foods13152457
APA StyleEsposito, L., Perillo, M., Di Mattia, C. D., Scroccarello, A., Della Pelle, F., Compagnone, D., Sacchetti, G., Mastrocola, D., & Martuscelli, M. (2024). A Survey on Potentially Beneficial and Hazardous Bioactive Compounds in Cocoa Powder Samples Sourced from the European Market. Foods, 13(15), 2457. https://doi.org/10.3390/foods13152457