UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products
<p>Reactor chamber of UV-C processing for fluid food and the main factors that influence the process.</p> "> Figure 2
<p>Desirable Outcomes of UV-C from direct application on fruits and vegetables.</p> "> Figure 3
<p>Flow through a UV-C reactor with one lamp inside a pipe. (<b>A</b>) 3D view and (<b>B</b>) cross section view of the velocity profile for both the laminar and turbulent regimes.</p> "> Figure 4
<p>Diagram of a turbulent UV-C reactor.</p> "> Figure 5
<p>Diagram of a thin film annular UV-C reactor. Flow type can be laminar or turbulent.</p> "> Figure 6
<p>Taylor–Couette UV-C reactor.</p> "> Figure 7
<p>Dean–Vortex UV-C reactor.</p> ">
Abstract
:1. Introduction
2. UV-C Light: Principles and Mechanisms of Germicidal Action
2.1. Dose–Response Relationship
2.2. Microbial Susceptibility
2.3. Optical Properties of Surfaces
3. Current Applications of UV-C Light in the Food Industry
3.1. Air Purification and Surface Disinfection
3.2. Water Treatment and Food Preservation
3.3. Retention of Bioactive Compounds
4. Ultraviolet Light for the Preservation of Fruit- and Vegetable-Based Nonsolid Foods
4.1. Microbial Inactivating Effect
4.2. Preservation of the Biological Activities of Foods
4.3. Endogenous Enzyme Inactivation
4.4. Modeling the Kinetics of Preservation of Bioactive Compounds and Nutrients
4.5. The Combined Use of UV-C with Other Preservation Technologies
5. Ultraviolet Reactors for Nonsolid Food Pasteurization
5.1. Laminar and Turbulent Flow Reactors
5.2. Taylor–Couette Reactors
5.3. Dean–Vortex-Based Reactors
6. Cost Implications, Market Potential, and Consumer Perception
7. International Standards and Regulations for the UV-C Pasteurization of Beverages Foods
8. Current Limitations and Future Trends of UV-C Food Processing
9. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ingram, J. Nutrition Security Is More than Food Security. Nat. Food 2020, 1, 2. [Google Scholar] [CrossRef]
- Talens, C.; Garcia-Fontanals, L.; Fabregat, P.; Ibargüen, M. Rational Food Design Targeting Micronutrient Deficiencies in Adolescents: Nutritional, Acoustic-Mechanical and Sensory Properties of Chickpea-Rice Biscuits. Foods 2023, 12, 952. [Google Scholar] [CrossRef] [PubMed]
- Orlowska, M.; Koutchma, T.; Grapperhaus, M.; Gallagher, J.; Schaefer, R.; Defelice, C. Continuous and Pulsed Ultraviolet Light for Nonthermal Treatment of Liquid Foods. Part 1: Effects on Quality of Fructose Solution, Apple Juice, and Milk. Food Bioprocess Technol. 2013, 6, 1580–1592. [Google Scholar] [CrossRef]
- Koren, M.; Livne, D. Novel Industrial UV-C System for Preservation of Fruit and Vegetable Juices. IUVA News 2018, 20, 8–12. [Google Scholar]
- Huang, Y.; Xiao, D.; Burton-Freeman, B.M.; Edirisinghe, I. Chemical Changes of Bioactive Phytochemicals during Thermal Processing. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Soni, A.; Bremer, P.; Brightwell, G. A Comprehensive Review of Variability in the Thermal Resistance (D-Values) of Food-Borne Pathogens—A Challenge for Thermal Validation Trials. Foods 2022, 11, 4117. [Google Scholar] [CrossRef] [PubMed]
- Tadini, C.C.; Gut, J.A.W. The Importance of Heating Unit Operations in the Food Industry to Obtain Safe and High-Quality Products. Front. Nutr. 2022, 9, 853638. [Google Scholar] [CrossRef] [PubMed]
- Fellows, P.J. 1—Properties of Food and Principles of Processing. In Food Processing Technology (Fourth Edition); Fellows, P.J., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2017; pp. 3–200. ISBN 978-0-08-101907-8. [Google Scholar]
- Lešková, E.; Kubíková, J.; Kováčiková, E.; Košická, M.; Porubská, J.; Holčíková, K. Vitamin Losses: Retention during Heat Treatment and Continual Changes Expressed by Mathematical Models. J. Food Compost. Anal. 2006, 19, 252–276. [Google Scholar] [CrossRef]
- Cruz, R.M.S.; Vieira, M.C.; Silva, C.L.M. Effect of Heat and Thermosonication Treatments on Watercress (Nasturtium officinale) Vitamin C Degradation Kinetics. Innov. Food Sci. Emerg. Technol. 2008, 9, 483–488. [Google Scholar] [CrossRef]
- Fundo, J.F.; Miller, F.A.; Mandro, G.F.; Tremarin, A.; Brandão, T.R.S.; Silva, C.L.M. UV-C Light Processing of Cantaloupe Melon Juice: Evaluation of the Impact on Microbiological, and Some Quality Characteristics, during Refrigerated Storage. LWT 2019, 103, 247–252. [Google Scholar] [CrossRef]
- Neves, F.I.G.; Silva, C.L.M.; Vieira, M.C. Combined Pre-Treatments Effects on Zucchini (Cucurbita pepo L.) Squash Microbial Load Reduction. Int. J. Food Microbiol. 2019, 305, 108257. [Google Scholar] [CrossRef]
- Gupta, A.; Avci, P.; Dai, T.; Huang, Y.-Y.; Hamblin, M.R. Ultraviolet Radiation in Wound Care: Sterilization and Stimulation. Adv. Wound Care 2013, 2, 422. [Google Scholar] [CrossRef]
- Green, A.; Popović, V.; Warriner, K.; Koutchma, T. The Efficacy of UVC LEDs and Low Pressure Mercury Lamps for the Reduction of Escherichia coli O157:H7 and Listeria Monocytogenes on Produce. Innov. Food Sci. Emerg. Technol. 2020, 64, 102410. [Google Scholar] [CrossRef]
- Abdul Karim Shah, N.; Shamsudin, R.; Abdul Rahman, R.; Adzahan, N. Fruit Juice Production Using Ultraviolet Pasteurization: A Review. Beverages 2016, 2, 22. [Google Scholar] [CrossRef]
- Taze, B.H.; Akgun, M.P.; Yildiz, S.; Kaya, Z.; Unluturk, S. 2.18—UV Processing and Storage of Liquid and Solid Foods: Quality, Microbial, Enzymatic, Nutritional, Organoleptic, Composition and Properties Effects. In Innovative Food Processing Technologies; Knoerzer, K., Muthukumarappan, K., Eds.; Elsevier: Oxford, UK, 2021; pp. 277–305. ISBN 978-0-12-815782-4. [Google Scholar]
- Banaś, A.K.; Zgłobicki, P.; Kowalska, E.; Bażant, A.; Dziga, D.; Strzałka, W. All You Need Is Light. Photorepair of UV-Induced Pyrimidine Dimers. Genes 2020, 11, 1304. [Google Scholar] [CrossRef] [PubMed]
- Delorme, M.M.; Guimarães, J.T.; Coutinho, N.M.; Balthazar, C.F.; Rocha, R.S.; Silva, R.; Margalho, L.P.; Pimentel, T.C.; Silva, M.C.; Freitas, M.Q.; et al. Ultraviolet Radiation: An Interesting Technology to Preserve Quality and Safety of Milk and Dairy Foods. Trends Food Sci. Technol. 2020, 102, 146–154. [Google Scholar] [CrossRef]
- Yemmireddy, V.; Adhikari, A.; Moreira, J. Effect of Ultraviolet Light Treatment on Microbiological Safety and Quality of Fresh Produce: An Overview. Front. Nutr. 2022, 9, 871243. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Hernández, K.; Ramírez-Rojas, N.Z.; Meza-Plaza, E.F.; García-Mosqueda, C.; Jauregui-Vázquez, D.; Rojas-Laguna, R.; Sosa-Morales, M.E. UV-C Treatments against Salmonella Typhimurium ATCC 14028 in Inoculated Peanuts and Almonds. Food Eng. Rev. 2021, 13, 706–712. [Google Scholar] [CrossRef]
- Koutchma, T. Advances in Ultraviolet Light Technology for Non-Thermal Processing of Liquid Foods. Food Bioprocess Technol. 2009, 2, 138–155. [Google Scholar] [CrossRef]
- Gunter-Ward, D.M.; Patras, A.S.; Bhullar, M.; Kilonzo-Nthenge, A.; Pokharel, B.; Sasges, M. Efficacy of Ultraviolet (UV-C) Light in Reducing Foodborne Pathogens and Model Viruses in Skim Milk. J. Food Process. Preserv. 2018, 42, e13485. [Google Scholar] [CrossRef]
- Atilgan, M.R.; Yildiz, S.; Kaya, Z.; Unluturk, S. Kinetic and Process Modeling of UV-C Irradiation of Foods. In Innovative Food Processing Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 227–255. ISBN 978-0-12-815782-4. [Google Scholar]
- Allai, F.M.; Azad, Z.R.A.A.; Mir, N.A.; Gul, K. Recent Advances in Non-Thermal Processing Technologies for Enhancing Shelf Life and Improving Food Safety. Appl. Food Res. 2023, 3, 100258. [Google Scholar] [CrossRef]
- Singh, H.; Bhardwaj, S.K.; Khatri, M.; Kim, K.-H.; Bhardwaj, N. UVC Radiation for Food Safety: An Emerging Technology for the Microbial Disinfection of Food Products. Chem. Eng. J. 2021, 417, 128084. [Google Scholar] [CrossRef]
- Gouma, M.; Gayán, E.; Raso, J.; Condón, S.; Álvarez, I. UV-Heat Treatments for the Control of Foodborne Microbial Pathogens in Chicken Broth. BioMed Res. Int. 2015, 2015, e436030. [Google Scholar] [CrossRef]
- Ben Said, M.; Khefacha, S.; Maalej, L.; Daly, I.; Hassen, A. Effect of Ultraviolet, Electromagnetic Radiation Subtype C (UV-C) Dose on Biofilm Formation by Pseudomonas Aeruginosa. Afr. J. Microbiol. Res. 2011, 5, 4353–4358. [Google Scholar] [CrossRef]
- Liltved, H.; Landfald, B. Effects of High Intensity Light on Ultraviolet-Irradiated and Non-Irradiated Fish Pathogenic Bacteria. Water Res. 2000, 34, 481–486. [Google Scholar] [CrossRef]
- Gopisetty, V.V.S.; Patras, A.; Kilonzo-Nthenge, A.; Yannam, S.; Bansode, R.R.; Sasges, M.; Burns, S.M.; Vergne, M.J.; Pan, C.; Xiao, H. Impact of UV-C Irradiation on the Quality, Safety, and Cytotoxicity of Cranberry-Flavored Water Using a Novel Continuous Flow UV System. LWT 2018, 95, 230–239. [Google Scholar] [CrossRef]
- Koutchma, T. Advances in UV-C Light Technology Improve Safety and Quality Attributes of Juices, Beverages, and Milk Products. Food Saf. Mag. 2019. Available online: https://www.food-safety.com/articles/6125-advances-in-uv-c-light-technology-improve-safety-and-quality-attributes-of-juices-beverages-and-milk-products#References (accessed on 15 May 2023).
- Duarte, I.; Rotter, A.; Malvestiti, A.; Silva, M. The Role of Glass as a Barrier against the Transmission of Ultraviolet Radiation: An Experimental Study. Photodermatol. Photoimmunol. Photomed. 2009, 25, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Woodling, S.E.; Moraru, C. Influence of Surface Topography on the Effectiveness of Pulsed Light Treatment for the Reduction of Listeria Innocua on Stainless Steel Surfaces. J. Food Sci. 2005, 70, 245–351. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Petruzzi, L.; Perricone, M.; Speranza, B.; Campaniello, D.; Sinigaglia, M.; Corbo, M.R. Nonthermal Technologies for Fruit and Vegetable Juices and Beverages: Overview and Advances. Compr. Rev. Food Sci. Food Saf. 2018, 17, 2–62. [Google Scholar] [CrossRef]
- Biasin, M.; Strizzi, S.; Bianco, A.; Macchi, A.; Utyro, O.; Pareschi, G.; Loffreda, A.; Cavalleri, A.; Lualdi, M.; Trabattoni, D.; et al. UV and Violet Light Can Neutralize SARS-CoV-2 Infectivity. J. Photochem. Photobiol. 2022, 10, 100107. [Google Scholar] [CrossRef]
- Chawla, A.; Lobacz, A.; Tarapata, J.; Zulewska, J. UV Light Application as a Mean for Disinfection Applied in the Dairy Industry. Appl. Sci. 2021, 11, 7285. [Google Scholar] [CrossRef]
- Lah, E.F.C.; Musa, R.N.A.R.; Ming, H.T. Effect of Germicidal UV-C Light(254 nm) on Eggs and Adult of House Dustmites, Dermatophagoides pteronyssinus and Dermatophagoides farinae (Astigmata: Pyroglyhidae). Asian Pac. J. Trop. Biomed. 2012, 2, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Raeiszadeh, M.; Adeli, B. A Critical Review on Ultraviolet Disinfection Systems against COVID-19 Outbreak: Applicability, Validation, and Safety Considerations. ACS Photonics 2020, 7, 2941–2951. [Google Scholar] [CrossRef] [PubMed]
- Woo, H.; Beck, S.; Boczek, L.; Carlson, K.; Brinkman, N.; Linden, K.; Lawal, O.; Hayes, S.; Ryu, H. Efficacy of Inactivation of Human Enteroviruses by Dual-Wavelength Germicidal Ultraviolet (UV-C) Light Emitting Diodes (LEDs). Water 2019, 11, 1131. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, W. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-642-01998-2. [Google Scholar]
- Templeton, M.R.; Antonakaki, M.; Rogers, M. UV Dose–Response of Acinetobacter Baumannii in Water. Environ. Eng. Sci. 2009, 26, 697–701. [Google Scholar] [CrossRef]
- Chen, P.-F.; Zhang, R.-J.; Huang, S.-B.; Shao, J.-H.; Cui, B.; Du, Z.-L.; Xue, L.; Zhou, N.; Hou, B.; Lin, C. UV Dose Effects on the Revival Characteristics of Microorganisms in Darkness after UV Disinfection: Evidence from a Pilot Study. Sci. Total Environ. 2020, 713, 136582. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.P.; Häder, D.-P. UV-Induced DNA Damage and Repair: A Review. Photochem. Photobiol. Sci. 2002, 1, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Hessling, M.; Haag, R.; Sieber, N.; Vatter, P. The Impact of Far-UVC Radiation (200–230 nm) on Pathogens, Cells, Skin, and Eyes—A Collection and Analysis of a Hundred Years of Data. GMS Hyg. Infect. Control 2021, 16, Doc07. [Google Scholar] [CrossRef] [PubMed]
- Gómez-López, V.M.; Jubinville, E.; Rodríguez-López, M.I.; Trudel-Ferland, M.; Bouchard, S.; Jean, J. Inactivation of Foodborne Viruses by UV Light: A Review. Foods 2021, 10, 3141. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, J. Effect of Inactivating RNA Viruses by Coupled UVC and UVA LEDs Evaluated by a Viral Surrogate Commonly Used as a Genetic Vector. Biomed. Opt. Express 2022, 13, 4429. [Google Scholar] [CrossRef]
- Koutchma, T. Chapter 2 - Basic Principles of UV Light Generation. In Food Plant Safety; Academic Press: Toronto, ON, Canada, 2014; pp. 3–13. ISBN 9780124166202. [Google Scholar] [CrossRef]
- Cadnum, J.L.; Li, D.; Redmond, S.N.; John, A.R.; Pearlmutter, B.; Donskey, C. Effectiveness of Ultraviolet-C Light and a High-Level Disinfection Cabinet for Decontamination of N95 Respirators. PAI 2020, 5, 52. [Google Scholar] [CrossRef]
- Bhat, R.; Stamminger, R. Impact of Ultraviolet Radiation Treatments on the Physicochemical Properties, Antioxidants, Enzyme Activity and Microbial Load in Freshly Prepared Hand Pressed Strawberry Juice. Food Sci. Technol. Int. 2014, 21, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Sánchez, C.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Alternatives to Conventional Thermal Treatments in Fruit-Juice Processing. Part 1: Techniques and Applications. Crit. Rev. Food Sci. Nutr. 2017, 57, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Koutchma, T.; Popović, V.; Ros-Polski, V.; Popielarz, A. Effects of Ultraviolet Light and High-Pressure Processing on Quality and Health-Related Constituents of Fresh Juice Products. Compr. Rev. Food Sci. Food Saf. 2016, 15, 844–867. [Google Scholar] [CrossRef] [PubMed]
- Darré, M.; Vicente, A.R.; Cisneros-Zevallos, L.; Artés-Hernández, F. Postharvest Ultraviolet Radiation in Fruit and Vegetables: Applications and Factors Modulating Its Efficacy on Bioactive Compounds and Microbial Growth. Foods 2022, 11, 653. [Google Scholar] [CrossRef] [PubMed]
- Antonio-Gutiérrez, O.T.; López-Díaz, A.S.; López-Malo, A.; Palou, E.; Ramírez-Corona, N. 7—UV-C Light for Processing Beverages: Principles, Applications, and Future Trends. In Processing and Sustainability of Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 205–234. ISBN 978-0-12-815259-1. [Google Scholar]
- Bintsis, T.; Litopoulou-Tzanetaki, E.; Robinson, R.K. Existing and Potential Applications of Ultraviolet Light in the Food Industry—A Critical Review. J. Sci. Food Agric. 2000, 80, 637–645. [Google Scholar] [CrossRef]
- Jildeh, Z.B.; Wagner, P.H.; Schöning, M.J. Sterilization of Objects, Products, and Packaging Surfaces and Their Characterization in Different Fields of Industry: The Status in 2020. Phys. Status Solidi (A) 2021, 218, 2000732. [Google Scholar] [CrossRef]
- Adhikari, A.; Parraga Estrada, K.J.; Chhetri, V.S.; Janes, M.; Fontenot, K.; Beaulieu, J.C. Evaluation of Ultraviolet (UV-C) Light Treatment for Microbial Inactivation in Agricultural Waters with Different Levels of Turbidity. Food Sci. Nutr. 2020, 8, 1237–1243. [Google Scholar] [CrossRef]
- Guneser, O.; Karagul Yuceer, Y. Effect of Ultraviolet Light on Water- and Fat-Soluble Vitamins in Cow and Goat Milk. JDS 2012, 95, 6230–6241. [Google Scholar] [CrossRef]
- Hinojosa, A.; Gatica, I.; Bustamante, A.; Cárdenas, D.; Escalona, V. Effect of the Combined Treatment of UV-C Light and Modified Atmosphere Packaging on the Inactivation of Escherichia coli Inoculated Watercress. J. Food Process. Preserv. 2015, 39, 1525–1533. [Google Scholar] [CrossRef]
- Ortiz-Solà, J.; Valero, A.; Abadias, M.; Nicolau-Lapeña, I.; Viñas, I. Evaluation of Water-Assisted UV-C Light and Its Additive Effect with Peracetic Acid for the Inactivation of Listeria Monocytogenes, Salmonella Enterica and Murine Norovirus on Whole and Fresh-Cut Strawberries during Shelf-Life. J. Sci. Food Agric. 2022, 102, 5660–5669. [Google Scholar] [CrossRef]
- Cruz, R.M.S.; Godinho, A.I.A.; Aslan, D.; Koçak, N.F.; Vieira, M.C. Modeling the Kinetics of Peroxidase Inactivation, Colour and Texture Changes of Portuguese Cabbage (Brassica oleracea L. Var. Costata DC) during UV-C Light and Heat Blanching. Int. J. Food Stud. 2016, 5, 180–192. [Google Scholar] [CrossRef]
- Lima, A.R.; Cristofoli, N.L.; Veneral, J.G.; Fritz, A.R.M.; Vieira, M.C. Optimization Conditions of UV-C Radiation Combined with Ultrasound-Assisted Extraction of Cherry Tomato (Lycopersicon esculentum) Lycopene Extract. Int. J. Food Stud. 2019, 8, 65–80. [Google Scholar] [CrossRef]
- González-Aguilar, G.A.; Villegas-Ochoa, M.A.; Martínez-Téllez, M.A.; Gardea, A.A.; Ayala-Zavala, J.F. Improving Antioxidant Capacity of Fresh-Cut Mangoes Treated with UV-C. J. Food Sci. 2007, 72, S197–S202. [Google Scholar] [CrossRef] [PubMed]
- Modesto Junior, E.N.; Martins, M.G.; Pereira, G.A.; Chisté, R.C.; Pena, R.D.S. Stability Kinetics of Anthocyanins of Grumixama Berries (Eugenia brasiliensis Lam.) during Thermal and Light Treatments. Foods 2023, 12, 565. [Google Scholar] [CrossRef] [PubMed]
- Sheng, K.; Shui, S.S.; Yan, L.; Liu, C.; Zheng, L. Effect of Postharvest UV-B or UV-C Irradiation on Phenolic Compounds and Their Transcription of Phenolic Biosynthetic Genes of Table Grapes. J. Food Sci. Technol. 2018, 55, 3292–3302. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.; Moldão-martins, M.; Costa, H.S.; Tânia, G.; Sanches-silva, A. Effect of UV-C Radiation on Bioactive Compounds of Pineapple (Ananas comosus L. Merr.) by-Products. J. Sci. Food Agric. 2014, 95, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ambrocio, A.; Guerrero-Beltrán, J.A.; Aparicio-Fernández, X.; Ávila-Sosa, R.; Hernández-Carranza, P.; Cid-Pérez, S.; Ochoa-Velasco, C.E. Effect of Blue and Ultraviolet-C Light Irradiation on Bioactive Compounds and Antioxidant Capacity of Habanero Pepper (Capsicum chinense) during Refrigeration Storage. Postharvest Biol. Technol. 2018, 135, 19–26. [Google Scholar] [CrossRef]
- Yıkmış, S.; Barut Gök, S.; Levent, O.; Kombak, E. Moderate Temperature and UV-C Light Processing of Uruset Apple Juice: Optimization of Bioactive Components and Evaluation of the Impact on Volatile Profile, HMF and Color. J. Food Process Eng. 2021, 44, e13893. [Google Scholar] [CrossRef]
- Alothman, M.; Bhat, R.; Karim, A.A. Effects of Radiation Processing on Phytochemicals and Antioxidants in Plant Produce. Trends Food Sci. Technol. 2009, 20, 201–212. [Google Scholar] [CrossRef]
- Győrfi, J.; Kovács, A.; Szabó, A. Increasing the Vitamin D Level of Oyster Mushrooms by UV Light. Int. J. Hortic. 2011, 17, 119–123. [Google Scholar] [CrossRef]
- Balbinot Filho, C.A.; Borges, C.D. Efeitos Da Radiação UV-C Em Alface e Maçã Minimamente Processadas: Uma Revisão. Braz. J. Food Technol. 2020, 23, e2018321. [Google Scholar] [CrossRef]
- Grapiglia, J. Utilização de Tratamento Ultravioleta No Processamento Industrial de Água de Coco Associado a Diferentes Tratamentos Térmic. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 2021. [Google Scholar]
- Guerrero-Beltrán, J.A.; Barbosa-Cánovas, G.V. Inactivation of Saccharomyces Cerevisiae and Polyphenoloxidase in Mango Nectar Treated with UV Light. J. Food Prot. 2006, 69, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Pierscianowski, J.; Popović, V.; Biancaniello, M.; Bissonnette, S.; Zhu, Y.; Koutchma, T. Continuous-Flow UV-C Processing of Kale Juice for the Inactivation of E. Coli and Assessment of Quality Parameters. Food Res. Int. 2021, 140, 110085. [Google Scholar] [CrossRef] [PubMed]
- Caminiti, I.M.; Palgan, I.; Muñoz, A.; Noci, F.; Whyte, P.; Morgan, D.J.; Cronin, D.A.; Lyng, J.G. The Effect of Ultraviolet Light on Microbial Inactivation and Quality Attributes of Apple Juice. Food Bioprocess Technol. 2010, 5, 680–686. [Google Scholar] [CrossRef]
- García Carrillo, M.; Ferrario, M.; Guerrero, S. Effectiveness of UV-C Light Assisted by Mild Heat on Saccharomyces Cerevisiae KE 162 Inactivation in Carrot-Orange Juice Blend Studied by Flow Cytometry and Transmission Electron Microscopy. Food Microbiol. 2018, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kaya, Z.; Unluturk, S. Processing of Clear and Turbid Grape Juice by a Continuous Flow UV System. Innov. Food Sci. Emerg. Technol. 2016, 33, 282–288. [Google Scholar] [CrossRef]
- Beristaín-Bauza, S.; Martínez-Niño, A.; Ramírez-González, A.P.; Ávila-Sosa, R.; Ruíz-Espinosa, H.; Ruiz-López, I.I.; Ochoa-Velasco, C.E. Inhibition of Salmonella Typhimurium Growth in Coconut (Cocos nucifera L.) Water by Hurdle Technology. Food Control 2018, 92, 312–318. [Google Scholar] [CrossRef]
- Kim, S.S.; Park, S.H.; Kim, S.H.; Kang, D.H. Synergistic Effect of Ohmic Heating and UV-C Irradiation for Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria Monocytogenes in Buffered Peptone Water and Tomato Juice. Food Control 2019, 102, 69–75. [Google Scholar] [CrossRef]
- Bandla, S.; Choudhary, R.; Watson, D.G.; Haddock, J. UV-C Treatment of Soymilk in Coiled Tube UV Reactors for Inactivation of Escherichia coli W1485 and Bacillus Cereus Endospores. LWT 2012, 46, 71–76. [Google Scholar] [CrossRef]
- Akgün, M.P.; Ünlütürk, S. Effects of Ultraviolet Light Emitting Diodes (LEDs) on Microbial and Enzyme Inactivation of Apple Juice. Int. J. Food Microbiol. 2017, 260, 65–74. [Google Scholar] [CrossRef]
- Eyarkai Nambi, V.; Gupta, R.K.; Kumar, S.; Sharma, P.C. Degradation Kinetics of Bioactive Components, Antioxidant Activity, Colour and Textural Properties of Selected Vegetables during Blanching. J. Food Sci. Technol. 2016, 53, 3073–3082. [Google Scholar] [CrossRef]
- Hamzalıoğlu, A.; Gökmen, V. Chapter 18—Interaction between Bioactive Carbonyl Compounds and Asparagine and Impact on Acrylamide. In Acrylamide in Food; Gökmen, V., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 355–376. ISBN 978-0-12-802832-2. [Google Scholar]
- Wood, J.D. Chapter 19—Meat Composition and Nutritional Value. In Lawrie’s Meat Science (Ninth Edition); Toldrá, F., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2023; pp. 665–685. ISBN 978-0-323-85408-5. [Google Scholar]
- Leyane, T.S.; Jere, S.W.; Houreld, N.N. Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int. J. Mol. Sci. 2022, 23, 7273. [Google Scholar] [CrossRef]
- Corrales, M.; de Souza, P.M.; Stahl, M.R.; Fernández, A. Effects of the Decontamination of a Fresh Tiger Nuts’ Milk Beverage (Horchata) with Short Wave Ultraviolet Treatments (UV-C) on Quality Attributes. Innov. Food Sci. Emerg. Technol. 2012, 13, 163–168. [Google Scholar] [CrossRef]
- Urban, L.; Charles, F.; de Miranda, M.R.A.; Aarrouf, J. Understanding the Physiological Effects of UV-C Light and Exploiting Its Agronomic Potential before and after Harvest. Plant Physiol. Biochem. 2016, 105, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer. Biomolecules 2020, 10, 221. [Google Scholar] [CrossRef]
- Pala, Ç.U.; Toklucu, A.K. Effect of UV-C Light on Anthocyanin Content and Other Quality Parameters of Pomegranate Juice. J. Food Compos. Anal. 2011, 24, 790–795. [Google Scholar] [CrossRef]
- Haro-Maza, J.; Guerrero-Beltran, J. Ultraviolet-C Light Effect on the Physicochemical and Antioxidant Properties of Blackberry, Blueberry, and Raspberry Nectars. J. Food Res. 2016, 5, 11–22. [Google Scholar] [CrossRef]
- Teja, C.K.; Sanganamoni, S.; Prabhakar, B.; Rao, P.S. Effect of UV– C Light Treatment on Physicochemical and Bioactive Compounds in Apple and Pineapple Juices. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2321–2333. [Google Scholar] [CrossRef]
- Santhirasegaram, V.; Razali, Z.; George, D.S.; Somasundram, C. Comparison of UV-C Treatment and Thermal Pasteurization on Quality of Chokanan Mango (Mangifera indica L.) Juice. Food Bioprod. Process. 2015, 94, 313–321. [Google Scholar] [CrossRef]
- Pinto, E.P.; Perin, E.C.; Schott, I.B.; Düsman, E.; da Silva Rodrigues, R.; Lucchetta, L.; Manfroi, V.; Rombaldi, C.V. Phenolic Compounds Are Dependent on Cultivation Conditions in Face of UV-C Radiation in ‘Concord’ Grape Juices (Vitis labrusca). LWT 2022, 154, 112681. [Google Scholar] [CrossRef]
- González-Barrio, R.; Vidal-Guevara, M.L.; Tomás-Barberán, F.A.; Espín, J.C. Preparation of a Resveratrol-Enriched Grape Juice Based on Ultraviolet C-Treated Berries. Innov. Food Sci. Emerg. Technol. 2009, 10, 374–382. [Google Scholar] [CrossRef]
- Papoutsis, K.; Vuong, Q.V.; Pristijono, P.; Golding, J.B.; Bowyer, M.C.; Scarlett, C.J.; Stathopoulos, C.E. Enhancing the Total Phenolic Content and Antioxidants of Lemon Pomace Aqueous Extracts by Applying UV-C Irradiation to the Dried Powder. Foods 2016, 5, 55. [Google Scholar] [CrossRef]
- Pala, Ç.U.; Toklucu, A.K. Microbial, Physicochemical and Sensory Properties of UV-C Processed Orange Juice and Its Microbial Stability during Refrigerated Storage. LWT—Food Sci. Technol. 2013, 50, 426–431. [Google Scholar] [CrossRef]
- Tahmaz, H.; Söylemezoğlu, G. Effects of Vinification Techniques Combined with UV-C Irradiation on Phenolic Contents of Red Wines. J. Food Sci. 2017, 82, 1351–1356. [Google Scholar] [CrossRef]
- Bhat, R.; Ameran, S.B.; Voon, H.C.; Karim, A.A.; Tze, L.M. Quality Attributes of Starfruit (Averrhoa carambola L.) Juice Treated with Ultraviolet Radiation. Food Chem. 2011, 127, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Csapó, J.; Prokisch, J.; Albert, C.; Sipos, P. Effect of UV Light on Food Quality and Safety. Acta Univ. Sapientiae Aliment. 2019, 12, 21–41. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Trif, M.; Ozogul, F.; Kumar, M.; Chaudhary, V.; Vukic, M.; Tomar, M.; Changan, S. Recent Developments in Cold Plasma-Based Enzyme Activity (Browning, Cell Wall Degradation, and Antioxidant) in Fruits and Vegetables. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1958–1978. [Google Scholar] [CrossRef]
- Roobab, U.; Abida, A.; Chacha, J.S.; Athar, A.; Madni, G.M.; Ranjha, M.M.A.N.; Rusu, A.V.; Zeng, X.-A.; Aadil, R.M.; Trif, M. Applications of Innovative Non-Thermal Pulsed Electric Field Technology in Developing Safer and Healthier Fruit Juices. Molecules 2022, 27, 4031. [Google Scholar] [CrossRef]
- Salazar, F.; Pizarro-Oteíza, S.; Kasahara, I.; Labbé, M. Effect of Ultraviolet Light-Emitting Diode Processing on Fruit and Vegetable-Based Liquid Foods: A Review. Front. Nutr. 2022, 9, 1020886. [Google Scholar] [CrossRef]
- Falguera, V.; Pagán, J.; Ibarz, A. Effect of UV Irradiation on Enzymatic Activities and Physicochemical Properties of Apple Juices from Different Varieties. LWT 2011, 44, 115–119. [Google Scholar] [CrossRef]
- Caminiti, I.M.; Noci, F.; Morgan, D.J.; Cronin, D.A.; Lyng, J.G. The Effect of Pulsed Electric Fields, Ultraviolet Light or High Intensity Light Pulses in Combination with Manothermosonication on Selected Physico-Chemical and Sensory Attributes of an Orange and Carrot Juice Blend. FBP 2012, 90, 442–448. [Google Scholar] [CrossRef]
- Falguera, V.; Garvín, A.; Garza, S.; Pagán, J.; Ibarz, A. Effect of UV–Vis Photochemical Processing on Pear Juices from Six Different Varieties. Food Bioprocess Technol. 2014, 7, 84–92. [Google Scholar] [CrossRef]
- Zhang, C.; Trierweiler, B.; Li, W.; Butz, P.; Xu, Y.; Rüfer, C.E.; Ma, Y.; Zhao, X. Comparison of Thermal, Ultraviolet-c, and High Pressure Treatments on Quality Parameters of Watermelon Juice. Food Chem. 2011, 126, 254–260. [Google Scholar] [CrossRef]
- Pizarro-Oteíza, S.; Salazar, F. Effect of UV-LED Irradiation Processing on Pectolytic Activity and Quality in Tomato (Solanum lycopersicum) Juice. Innov. Food Sci. Emerg. Technol. 2022, 80, 103097. [Google Scholar] [CrossRef]
- Takikawa, A.Y. Cinética de Degradação Térmica de Antocianinas e Seu Impacto na Cor e Na Capacidade Antioxidante In Vitro em Frutas Vermelhas. Bachelor’s Thesis, Universidade Tecnológica Federal do Paraná, Curitiba, Brazil, 2020. [Google Scholar]
- Esua, O.J.; Chin, N.L.; Yusof, Y.A.; Sukor, R. Combination of Ultrasound and Ultraviolet-C Irradiation on Kinetics of Color, Firmness, Weight Loss, and Total Phenolic Content Changes in Tomatoes during Storage. J. Food Process. Preserv. 2019, 43, e14161. [Google Scholar] [CrossRef]
- Gayán, E.; Condón, S.; Álvarez, I. Biological Aspects in Food Preservation by Ultraviolet Light: A Review. Food Bioprocess Technol. 2014, 7, 1–20. [Google Scholar] [CrossRef]
- Esua, O.J.; Chin, N.L.; Yusof, Y.A.; Sukor, R. A Review on Individual and Combination Technologies of UV-C Radiation and Ultrasound in Postharvest Handling of Fruits and Vegetables. Processes 2020, 8, 1433. [Google Scholar] [CrossRef]
- Gayán, E.; Condón, S.; Álvarez, I. Continuous-Flow UV Liquid Food Pasteurization: Engineering Aspects. Food Bioprocess Technol. 2014, 7, 2813–2827. [Google Scholar] [CrossRef]
- Antonio-Gutiérrez, O.; López-Malo, A.; Ramírez-Corona, N.; Palou, E. Enhancement of UVC-Light Treatment of Tangerine and Grapefruit Juices through Ultrasonic Atomization. Innov. Food Sci. Emerg. Technol. 2017, 39, 7–12. [Google Scholar] [CrossRef]
- Gouma, M.; Álvarez, I.; Condón, S.; Gayán, E. Pasteurization of Carrot Juice by Combining UV-C and Mild Heat: Impact on Shelf-Life and Quality Compared to Conventional Thermal Treatment. Innov. Food Sci. Emerg. Technol. 2020, 64, 102362. [Google Scholar] [CrossRef]
- Pagal, G.A.; Gabriel, A.A. Individual and Combined Mild Heat and UV-C Processes for Orange Juice against Escherichia coli O157:H7. LWT 2020, 126, 109295. [Google Scholar] [CrossRef]
- Gouma, M.; Condon, S.; Mañas, P.; Álvarez, I.; Gayán, E. The Use of UV Light for Food Preservation: An Overview. In High Intensity Pulsed Light in Processing and Preservation of Foods; KU Leuven: Leuven, Belgium, 2016; pp. 1–40. ISBN 978-1-63484-832-9. [Google Scholar]
- Ochoa-Velasco, C.E.; Beristain-Bauza, S.C.; Hernández-Carranza, P.; Ruiz-López, I.I. A Reactor Engineering Approach to Describe Bacterial Inactivation during Continuous UV-C Light Processing. Innov. Food Sci. Emerg. Technol. 2021, 74, 102853. [Google Scholar] [CrossRef]
- Koca, N.; Urgu, M.; Saatli, T.E.; Koca, N.; Urgu, M.; Saatli, T.E. Ultraviolet Light Applications in Dairy Processing; IntechOpen: London, UK, 2018; ISBN 978-1-78923-313-1. [Google Scholar]
- Gómez-López, V.M.; Koutchma, T.; Linden, K. Chapter 8—Ultraviolet and Pulsed Light Processing of Fluid Foods. In Novel Thermal and Non-Thermal Technologies for Fluid Foods; Cullen, P.J., Tiwari, B.K., Valdramidis, V.P., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 185–223. ISBN 978-0-12-381470-8. [Google Scholar]
- Popović, V.; Koutchma, T. Characterizing the Performance of a Continuous-Flow UV-LED System for Treatment of Juices and Beverages Using Multiple Wavelengths. Food Eng. Rev. 2021, 13, 686–695. [Google Scholar] [CrossRef]
- Junqua, R.; Vinsonneau, E.; Ghidossi, R. Microbial Stabilization of Grape Musts and Wines Using Coiled UV-C Reactor. Oeno One 2020, 54, 109–121. [Google Scholar] [CrossRef]
- Hirt, B.; Fiege, J.; Cvetkova, S.; Gräf, V.; Scharfenberger-Schmeer, M.; Durner, D.; Stahl, M. Comparison and Prediction of UV-C Inactivation Kinetics of S. Cerevisiae in Model Wine Systems Dependent on Flow Type and Absorbance. LWT 2022, 169, 114062. [Google Scholar] [CrossRef]
- Cengel, Y.; Cimbala, J. Fluid Mechanics Fundamentals and Application; McGraw-Hill: New York, NY, USA, 2020; ISBN 978-0-07-338032-2. [Google Scholar]
- Hirt, B.; Hansjosten, E.; Hensel, A.; Gräf, V.; Stahl, M. Improvement of an Annular Thin Film UV-C Reactor by Fluid Guiding Elements. Innov. Food Sci. Emerg. Technol. 2022, 77, 102988. [Google Scholar] [CrossRef]
- Rossitto, P.V.; Cullor, J.S.; Crook, J.; Parko, J.; Sechi, P.; Cenci-Goga, B.T. Effects of UV Irradiation in a Continuous Turbulent Flow UV Reactor on Microbiological and Sensory Characteristics of Cow’s Milk. J. Food Prot. 2012, 75, 2197–2207. [Google Scholar] [CrossRef]
- Koutchma, T.; Parisi, B.; Unluturk, S.K. Evaluation of UV Dose in Flow-through Reactors for Fresh Apple Juice and Cider. Chem. Eng. Commun. 2006, 193, 715–728. [Google Scholar] [CrossRef]
- Koutchma, T.; Keller, S.; Chirtel, S.; Parisi, B. Ultraviolet Disinfection of Juice Products in Laminar and Turbulent Flow Reactors. Innov. Food Sci. Emerg. Technol. 2004, 5, 179–189. [Google Scholar] [CrossRef]
- Pendyala, B.; Patras, A.; Sudhir Gopisetty, V.V.; Sasges, M. UV-C Inactivation of Microorganisms in a Highly Opaque Model Fluid Using a Pilot Scale Ultra-Thin Film Annular Reactor: Validation of Delivered Dose. J. Food Eng. 2021, 294, 110403. [Google Scholar] [CrossRef]
- Abdul-Halim, N.; Davey, K.R. A Friday 13th Risk Assessment of Failure of Ultraviolet Irradiation for Potable Water in Turbulent Flow. Food Control 2015, 50, 770–777. [Google Scholar] [CrossRef]
- Anantharaman, A. Suspension Taylor-Couette Flow: Investigation of Particle Loading Effects on Transitions between Flow Regimes. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2019. [Google Scholar]
- Var, I.; Uzunlu, S. A Glance at Food Processing Applications; BoD—Books on Demand: Norderstedt, Germany, 2022; ISBN 978-1-83969-767-8. [Google Scholar]
- Elçiçek, H.; Güzel, B. TC-UV Reactor Evaluated as an Alternative Option for Treatment of Ballast Water. J. ETA Marit. Sci. 2020, 8, 10–21. [Google Scholar] [CrossRef]
- Ye, Z.; Forney, L.J.; Koutchma, T.; Giorges, A.T.; Pierson, J.A. Optimum UV Disinfection between Concentric Cylinders. Ind. Eng. Chem. Res. 2008, 47, 3444–3452. [Google Scholar] [CrossRef]
- Orlowska, M.; Koutchma, T.; Kostrzynska, M.; Tang, J.; Defelice, C. Evaluation of Mixing Flow Conditions to Inactivate Escherichia coli in Opaque Liquids Using Pilot-Scale Taylor–Couette UV Unit. J. Food Eng. 2014, 120, 100–109. [Google Scholar] [CrossRef]
- Mandal, R.; Pratap-Singh, A. Characterization of Continuous-Flow Pulsed UV Light Reactors for Processing of Liquid Foods in Annular Tube and Coiled Tube Configurations Using Actinometry and Computational Fluid Dynamics. J. Food Eng. 2021, 304, 110590. [Google Scholar] [CrossRef]
- Müller, A.; Stahl, M.R.; Graef, V.; Franz, C.M.A.P.; Huch, M. UV-C Treatment of Juices to Inactivate Microorganisms Using Dean Vortex Technology. J. Food Eng. 2011, 107, 268–275. [Google Scholar] [CrossRef]
- Müller, A.; Briviba, K.; Gräf, V.; Greiner, R.; Herrmann, C.; Kuballa, T.; Stahl, M.R. UV-C Treatment Using a Dean Vortex Technology—Impact on Apple Juice Enzymes and Toxicological Potential. Innov. Food Sci. Emerg. Technol. 2013, 20, 238–243. [Google Scholar] [CrossRef]
- Barut Gök, S. UV-C Treatment of Apple and Grape Juices by Modified UV-C Reactor Based on Dean Vortex Technology: Microbial, Physicochemical and Sensorial Parameters Evaluation. Food Bioprocess Technol. 2021, 14, 1055–1066. [Google Scholar] [CrossRef]
- Gök, S.B. Effect of UV-C Treatment on Microbial Population and Bioactive Compounds of Orange Juice Using Modified Reactor Based on Dean Vortex Flow. J. Food 2021, 46, 634–646. [Google Scholar] [CrossRef]
- Gopisetty, V.V.S.; Patras, A.; Pendyala, B.; Kilonzo-Nthenge, A.; Ravi, R.; Pokharel, B.; Zhang, L.; Si, H.; Sasges, M. UV-C Irradiation as an Alternative Treatment Technique: Study of Its Effect on Microbial Inactivation, Cytotoxicity, and Sensory Properties in Cranberry-Flavored Water. Innov. Food Sci. Emerg. Technol. 2019, 52, 66–74. [Google Scholar] [CrossRef]
- Finjan, R.A.R.A. Characterization of a Novel Taylor-Couette Ultraviolet Reactor for Non-Thermal Pasteurization of Milk. Ph.D. Thesis, University of Guelph, Guelph, Canada, 2011. [Google Scholar]
- Milly, P.J.; Toledo, R.T.; Chen, J.; Kazem, B. Hydrodynamic Cavitation to Improve Bulk Fluid to Surface Mass Transfer in a Nonimmersed Ultraviolet System for Minimal Processing of Opaque and Transparent Fluid Foods. J. Food Sci. 2007, 72, M407–M413. [Google Scholar] [CrossRef] [PubMed]
- Gálvez Sauceda, N.J. Analysis of the Effectiveness of Ultra-High Pressure Homogenisation, Short-Wave Ultraviolet Radiation and Their Combination on the Hygienization of Apple Juice and Their Effect on the Quality and Nutritional Aspects. Ph.D. Thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 2020. [Google Scholar]
- Choudhary, R.; Bandla, S. Ultraviolet Pasteurization for Food Industry. Int. J. Food Sci. Nutr. Eng. 2012, 2, 12–15. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalez, O.; Buckow, R.; Koutchma, T.; Balasubramaniam, V.M. Energy Requirements for Alternative Food Processing Technologies—Principles, Assumptions, and Evaluation of Efficiency. Compr. Rev. Food Sci. Food Saf. 2015, 14, 536–554. [Google Scholar] [CrossRef]
- Chaudhary, A.; Danekar, R.; Prasad, E. UV Disinfection Equipment Market Size, Share & Industry Analysis—2027. Available online: https://www.alliedmarketresearch.com/UV-disinfection-equipment-market (accessed on 8 April 2023).
- Koutchma, T. UV Light for Processing Foods. Ozone Sci. Eng. 2008, 30, 93–98. [Google Scholar] [CrossRef]
- Braga, T.R.; Silva, E.O.; Rodrigues, S.; Fernandes, F.A.N. Drying of Mangoes (Mangifera indica L.) Applying Pulsed UV Light as Pretreatment. FBP 2019, 114, 95–102. [Google Scholar] [CrossRef]
- Lavilla, M.; Gayán, E. Chapter 7—Consumer Acceptance and Marketing of Foods Processed through Emerging Technologies. In Innovative Technologies for Food Preservation; Barba, F.J., Sant’Ana, A.S., Orlien, V., Koubaa, M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 233–253. ISBN 978-0-12-811031-7. [Google Scholar]
- Neves, F.I.G.; Vieira, M.C.; Silva, C.L.M. Inactivation Kinetics of Peroxidase in Zucchini (Cucurbita pepo L.) by Heat and UV-C Radiation. Innov. Food Sci. Emerg. Technol. 2012, 13, 158–162. [Google Scholar] [CrossRef]
- Monteiro, M.L.G.; Deliza, R.; Mársico, E.T.; de Alcantara, M.; de Castro, I.P.L.; Conte-Junior, C.A. What Do Consumers Think About Foods Processed by Ultraviolet Radiation and Ultrasound? Foods 2022, 11, 434. [Google Scholar] [CrossRef]
- Delorme, M.M.; Pimentel, T.C.; Freitas, M.Q.; da Cunha, D.T.; Silva, R.; Guimarães, J.T.; Scudino, H.; Esmerino, E.A.; Duarte, M.C.K.H.; Cruz, A.G. Consumer Innovativeness and Perception about Innovative Processing Technologies: A Case Study with Sliced Prato Cheese Processed by Ultraviolet Radiation. Int. J. Dairy Technol. 2021, 74, 768–777. [Google Scholar] [CrossRef]
- FDA ECFR. 21 CFR Part 179—Irradiation in the Production, Processing and Handling of Food. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-179 (accessed on 9 May 2023).
- U.S. Food & Drug Administration Code of Federal Regulations. Title 21, Volume 3, 21CFR179.41. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=179.41 (accessed on 14 May 2023).
- Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 Establishing the Union List of Novel Foods in Accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on Novel Foods (Text with EEA Relevance)Text with EEA Relevance 2020. Available online: http://data.europa.eu/eli/reg_impl/2017/2470/oj (accessed on 15 May 2023).
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Safety of UV-Treated Milk as a Novel Food Pursuant to Regulation (EC) No 258/97. EFSA J. 2016, 14, 4370. [CrossRef]
- Scientific Committee of the Food Safety Authority of Ireland. Appraisal of New and Emerging Food Processing Technologies and Their Potential Risks to Food Safety; Food Safety Authority of Ireland: Dublin, Ireland, 2020; ISBN 978-1-910348-38-3. [Google Scholar]
- Novel Food Regulation in Israel—from Directive to Regulation—Novel Food Regulation—Gsap. Available online: https://www.gsap.co.il/novel-food-regulation-in-israel-from-directive-to-regulation/ (accessed on 15 May 2023).
- Health Canada Ultraviolet Light Treatment of Apple Juice/Cider Using the CiderSure 3500. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/novel-food-information-ultraviolet-light-treatment-apple-juice-cider-using-cidersure-3500.html (accessed on 15 May 2023).
- FSSAI Approves Use of SurePure’s Photopurification Technology. Available online: https://nuffoodsspectrum.in/2013/08/23/fssai-approves-use-of-surepures-photopurification-technology.html (accessed on 15 May 2023).
- Yan, R.; Yun, J.; Gurtler, J.; Fan, X. Radiochromic Film Dosimetry for UV-C Treatments of Apple Fruit. Postharvest Biol. Technol. 2017, 127, 14–20. [Google Scholar] [CrossRef]
- Friedler, E.; F. Chavez, D.; Alfiya, Y.; Gilboa, Y.; Gross, A. Impact of Suspended Solids and Organic Matter on Chlorine and UV Disinfection Efficiency of Greywater. Water 2021, 13, 214. [Google Scholar] [CrossRef]
- Sauceda-Gálvez, J.N.; Martinez-Garcia, M.; Hernández-Herrero, M.M.; Gervilla, R.; Roig-Sagués, A.X. Short Wave Ultraviolet Light (UV-C) Effectiveness in the Inactivation of Bacterial Spores Inoculated in Turbid Suspensions and in Cloudy Apple Juice. Beverages 2021, 7, 11. [Google Scholar] [CrossRef]
- Fan, X.; Huang, R.; Chen, H. Application of Ultraviolet C Technology for Surface Decontamination of Fresh Produce. Trends Food Sci. Technol. 2017, 70, 9–19. [Google Scholar] [CrossRef]
- Pihen, C.; Mani-López, E.; Franco-Vega, A.; Jiménez-Munguía, M.T.; López-Malo, A.; Ramírez-Corona, N. Performance of UV-LED and UV-C Treatments for the Inactivation of Escherichia coli ATCC 25922 in Food Model Solutions: Influence of Optical and Physical Sample Characteristics. Innov. Food Sci. Emerg. Technol. 2023, 85, 103314. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Poojary, M.M.; Barba, F.J.; Koubaa, M.; Lorenzo, J.M.; Mañes, J.; Moltó, J.C. Thermal and Non-Thermal Preservation Techniques of Tiger Nuts’ Beverage “Horchata de Chufa”. Implications for Food Safety, Nutritional and Quality Properties. Food Res. Int. 2018, 105, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.L.G.; Mutz, Y.d.S.; Francisco, K.d.A.; Rosário, D.K.A.d.; Conte-Junior, C.A. Combined UV-C Technologies to Improve Safety and Quality of Fish and Meat Products: A Systematic Review. Foods 2023, 12, 1961. [Google Scholar] [CrossRef] [PubMed]
- Cassar, J.R.; Mills, E.W.; Campbell, J.A.; Demirci, A. Pulsed Ultraviolet Light Treatment of Chicken Parts. Meat Muscle Biol. 2021, 5, 1–8. [Google Scholar] [CrossRef]
Food Product | Target Microorganism | UV-C Dose (mJ/cm2) | Microbial Log Reduction | References |
---|---|---|---|---|
Kale juice | Escherichia coli P36 | 108.3 | 5.8 | [72] |
Carrot-orange juice | Saccharomyces cerevisiae KE 162 | 0.016 | 2.6 | [74] |
Grape juice | Lactic acid bacteria | 78.46 | 1.6 | [75] |
Coconut water | Salmonella typhimurium | 5–30 | 1.4 | [76] |
Tomato Juice | E. coli O157:H7 | 191.5 | 3.83 | [77] |
Soymilk | E. coli W1485 Bacillus cereus | 11.187 | 5.6 3.29 | [78] |
Apple Juice | E. coli K12 (ATCC 25253) | 707.2 | 4.4 | [79] |
Food Product | Bioactive Components | Treatment Conditions | Outcome | References |
---|---|---|---|---|
Apple and pineapple juice | Antioxidant activity Phenolic compounds Vitamin C | UV-C dose: 100–700 mJ·cm−2 Exposure time: 5–15 min | Affected the quality of juices, decreasing the bioactive components levels | [89] |
Chokanan mango juice (Mangifera indica L.) | Antioxidant activity Carotenoids Flavonoids Polyphenols | UV-C dose: 3.525 J·m−2 Exposure time: 15 and 30 min | UV-C light improved the quality of the juice along with the antioxidant activity and extractability of the bioactive compounds | [90] |
Cranberry flavored water | Anthocyanins Ascorbic acid | UV-C dose: 15–240 mJ·cm−2 Exposure time: 0 to 403 s | Anthocyanins and ascorbic acid were well retained | [29] |
Grape juice (Vitis labrusca) | Phenolic compounds | UV-C dose: 65.6 J·m−2 Exposure time: 10 min. | Juice from grapes subjected to postharvest UV-C treatment showed an increase in the levels of phenolic compounds | [91] |
Grape juice (White “Superior” grape) | Resveratrol phenolic compounds | Irradiation power: 510 W Exposure time: 60 s | UVC treatment enabled the further selective stilbenes enrichment of the juice, especially resveratrol. | [92] |
Fresh apple juice | Anthocyanin content Ascorbic acid Antioxidant activity Phenolic compounds Flavonoids | UV-C doses: 84.6–169.1 mJ·cm−2 Temperatures: 40, 45, 50, 55, and 60 °C | UV-C irradiation combined with moderate heat treatment increased levels of bioactive compounds | [66] |
Lemon Pomace Aqueous Extracts | Antioxidant capacity Phenolic content Flavonoid content Proanthocyanidins | UV-C dose: 4, 19, 80, and 185 kJ·m−2 Exposure time: 60, 120, 240, and 360 s | UV-C treatment showed the potential to increase the extraction of bioactive compounds at relatively high dosages. | [93] |
Pomegranate juice | Anthocyanins Antioxidant activity Phenolic content | UV-C dose: 12.47 J·mL−2, 37.41 J·mL−2 and 62.35 J·mL−2 Passes: 1, 3 and 5 times | The major quality characteristics of pomegranate juice was better preserved by UV-C treatment than by heating. | [94] |
Red Wine (Boğazkere grape) | Anthocyanins Antioxidant activity Phenolic compounds | Thermovinification combined with UV-C | Increased phenolic compounds with health benefits | [95] |
Starfruit juice (Averrhoa carambola L.) | Flavonols, flavonoids, phenols, antioxidant capacity | UV-C dose: 2.158 J·m−2 Exposure time: 0, 30, and 60 min. | UV-C treatment enhanced selected antioxidant compounds | [96] |
Strawberry juice | Anthocyanins, ascorbic acid, phenolic compounds | Exposure time: 15–60 min Temperature: 25 ± 1 °C | Decreased the levels of the bioactive compounds | [48] |
Product | Processing Conditions | Results Obtained | Reference |
---|---|---|---|
Apple juice | Treatment duration: 2 h Temperature: 25 °C UV source: 400 W high-pressure mercury lamp, 250 to 740 nm | 100% inactivation of peroxidase (PO) after 15 min | [101] |
Apple juice | Treatment duration: 40 min UV source: UV-LED at 254 nm UV intensity: 0.3 mW/cm2 UV dose: 707.2 ± 143.5 mJ/cm2 | 70.43% residual polyphenol oxidase (PPO) activity | [79] |
Carrot and orange juice blend | Treatment duration: 1 min UV source: 30 W low-pressure mercury lamp in a tubular reactor Fluence: 10.6 J/cm2 | 18% reduction of pectin methyl-esterase (PME) activity | [102] |
Pear juice | Treatment duration: 120 min Temperature: 25 °C UV source: 400 W medium-pressure mercury lamp, 250 to 740 nm | 50% reduction in PPO activity after 20 min | [103] |
Watermelon juice | Treatment duration: 12 min Temperature: 23 °C UV Source: 9 W UV-C low-pressure mercury lamp at 254 nm Flow rate: 8.4 L/h | 35% residual PME activity | [104] |
Tomato juice | Treatment duration: 15 min UV source: UV-LED, 278 nm Fluence: 351 mJ/cm2 | 7.31 ± 0.89% residual PME activity | [105] |
Food Product | Target Microorganism | UV-C Fluence | Combination Technique | References |
---|---|---|---|---|
Tomato Juice | E. coli O157:H7 Salmonella typhimurium Listeria monocytogenes | 191.5 mJ cm2 | Ohmic heating | [77] |
Tangerine and grape juices | S. cerevisiae | 0, 1.64, and 3.13 J m−l | Ultrasonic atomization | [111] |
Mango juice | Coliform Aerobic bacteria S. yeasts Molds | 3.525 J m−1 | Heat (90 °C) | [90] |
Carrot juice | E. coli O157:H7 L. monocytogenes STCC 5672 | 3.92 J m−1 | Heat (60 °C) | [112] |
Orange juice | E. coli O157:H7 | 0.114 kJ m−2 | Heat (53 °C) | [113] |
Equipment Name | Manufacturer | Flow Type | References |
---|---|---|---|
Ultraviolet Shockwave Power Reactor (UV-SPR) | Hydrodynamics Inc., Rome, Georgia, USA | Taylor–Couette | [139,140] |
UVivatec® | Bayer Technology Services GmBH, Leverkusen, Germany | Dean–Vortex | [134] |
SurePure Turbulator™ | SurePure Inc., New York, USA | Turbulent | [136] |
CiderSure UV processor | FPE (Food Processing Equipment, Inc.), Ontario, New York, USA | Laminar | [110] |
Aquionics | Hanovia (Nuvonic), Slough, UK | Turbulent | [141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tchonkouang, R.D.; Lima, A.R.; Quintino, A.C.; Cristofoli, N.L.; Vieira, M.C. UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products. Foods 2023, 12, 3227. https://doi.org/10.3390/foods12173227
Tchonkouang RD, Lima AR, Quintino AC, Cristofoli NL, Vieira MC. UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products. Foods. 2023; 12(17):3227. https://doi.org/10.3390/foods12173227
Chicago/Turabian StyleTchonkouang, Rose Daphnee, Alexandre R. Lima, Andreia C. Quintino, Nathana L. Cristofoli, and Margarida C. Vieira. 2023. "UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products" Foods 12, no. 17: 3227. https://doi.org/10.3390/foods12173227
APA StyleTchonkouang, R. D., Lima, A. R., Quintino, A. C., Cristofoli, N. L., & Vieira, M. C. (2023). UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products. Foods, 12(17), 3227. https://doi.org/10.3390/foods12173227