Konjac Glucomannan: An Emerging Specialty Medical Food to Aid in the Treatment of Type 2 Diabetes Mellitus
"> Figure 1
<p>Glucomannan from different sources.</p> "> Figure 2
<p>Flow chart of dry preparation of KGM in industry. After washing, peeling, and slicing, the konjac chips will be mixed with SO<sub>2</sub> and hot air in a special device, and the color will be determined by fumigation, then it will be put into the drying equipment immediately, and the konjac chips will be crushed to the powder by hammer grinder and fine grinder. Finally, under the action of grinding and sorting machine and bag dust collector, the finer flying powder such as starch and cellulose will be removed, and only KGM will be retained.</p> "> Figure 3
<p>Schematic diagram of KGM structure.</p> "> Figure 4
<p>Alkali treatment causes the molecules of KGM to gather and form gels, which are then heated and dehydrated to obtain thin films.</p> "> Figure 5
<p>The benefits of the intake of KGM to the human body.</p> "> Figure 6
<p>The related mechanism of maintaining sugar homeostasis by KGM. (<b>a</b>) KGM reduces insulin resistance through the BCAA pathway. (<b>b</b>) KGM increases hexokinase activity and glycolysis. (<b>c</b>) KGM regulates the activity of fructose-1 and glucose-6-bisphosphatase and reduces gluconeogenesis. (<b>d</b>) KGM inhibits the signal pathway of related inflammatory factors and reduces the immune inflammatory response associated with diabetes. (<b>e</b>) KGM up-regulates the expression of IRS1 and PI3K to improve the insulin signaling pathway.</p> "> Figure 7
<p>Some solutions to KGM’s problems. (<b>a</b>) The establishment of a unified regulatory system can better regulate the average daily intake of KGM and reduce the side effects. (<b>b</b>) KGM that has undergone physical modification can lessen the asphyxia risk. (<b>c</b>) Chemically altered KGM derivatives can improve the body’s immunological indicators.</p> ">
Abstract
:1. Introduction
2. Extraction and Purification of KGM
3. Chemical Structure and Physicochemical Properties of KGM
3.1. Chemical Structure of KGM
3.2. Physical and Chemical Properties and Function of KGM in Food and Diabetes
4. Biomedical Function of KGM to T2DM
4.1. Regulate Blood Lipid
4.2. Maintenance of Glucose Homeostasis
4.3. Regulation of Oxidative Stress and Inflammation
4.4. Effects on Gut Microbes
KGM Activity | Model | Study Design and Period (DUS) | Dosage Form (DSF) | Results | Reference |
---|---|---|---|---|---|
Regulation of blood lipids | Eight in adults and four in children | 3 g/day; three weeks | Unlimited | Reduced LDL cholesterol and non-HDL cholesterol of 10% and 7%. | [51] |
Twenty-two diabetic subjects | 3.6 g/day; 28 days | Gelatin capsules | Alleviated the elevated cholesterol, LDL-cholesterol, apo B, and ratios of total/HDL-cholesterol. | [52] | |
Seven hundred and twenty healthy fish | With 0, 0.5, 1 and 2% KGM twice a day; 60 days | Fodder | Improved growth performance, antioxidant activity, immune response, and lipid metabolism in juvenile pompano. | [54] | |
Regulation of blood sugar | Six rats in each group | I-control rats fed standard pellet diet alone II-KGM control (120 mg/kg body weight (b.w.)) III-T2DM (HFD + STZ-40 mg/kg b.w.) IV-T2DM + KGM (80 mg/kg b.w.) V-T2DM + RSG (4 mg/kg b.w.); 28 days | Fodder | Improved cell glucose-tolerance; regulated glycolytic, gluconeogenesis enzymes; reduced the stored glycogen in the liver, and restored liver enzymes. | [61] |
Three-month-old male | 0.06 g/mg/kg b.w. and 0.12 g/mg/kg b.w.; one month | Fodder | Significantly increased IRS-1 level expression, proliferated properly and consistently increased the PI3-K expression level. | [63] | |
Twelve-week-old male Wistar rats (n = 8) | 102 mg/kg b.w.; at0,30,60, and 120 min | Konjac solution | Konjac has hypoglycemic and antioxidant activities in vitro and in vivo. | [66] | |
Seven-week-old male Wistar rats (180–220 g) | 160 mg/kg b.w. of glucomannans; treatment for once every day; gavage for 4 weeks | Fodder | Lower levels of fasting blood glucose, serum insulin, and glycated serum protein; improve urea cycle, metabolism of lipid, glucose, and amino acids. | [69] | |
Rats (weight 22~28 g) | 50,100,200 mg/kg b.w.; once a day; six days | Konjac solution | The levels of ALT and AST decreased, the ratio of serum albumin to globulin increased, and hepatocytes were protected. | [71] | |
Regulation of oxidative stress and inflammation | Male C57BL/6J mice (body weight 20 ± 2 g) | 500 mg/kg b.w.; once a day; 4 weeks | Konjac solution | Lactobacillus, Ruminococcus_1 and Bifidobacterium and AAA metabolites such as kynurenic acid, desaminotyrosine, 3hydroxy-3-(3hydroxyphenyl) propanoic acid-O-sulphate, and hippuric acid were added. | [79] |
Effects on gut microbes | Wistar rats (180–220 g) | 2 mL/200 g of BW; once daily for 4 weeks | fodder | Decreased the abundance of microbial BCAA biosynthesis-related genes and ameliorated the host BCAA metabolism. | [86] |
5. Conclusions and Future Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
T2DM | type 2 diabetes mellitus |
KGM | Konjac glucomannan |
FSMP | food for special medical purpose |
GI | glycemic index |
IRS1 | insulin receptor substrate 1 |
PI3K | phosphatidylinositol 3-kinase |
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
ALP | serum alkaline phosphatase |
SOD | superoxide dismutase |
OKGM | oxidized konjac glucomannan sulfates |
A-OKGM | acidolysis-oxidized konjac glucomannan |
BCAA | Branched Chain Amino Acid |
References
- Fletcher, B.; Gulanick, M.; Lamendola, C. Risk Factors for Type 2 Diabetes Mellitus. J. Cardiovasc. Nurs. 2002, 16, 17–23. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2013, 36, S67–S74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, S. Diabetes precision medicine: Plenty of potential, pitfalls and perils but not yet ready for prime time. Diabetologia 2022, 65, 1913–1921. [Google Scholar] [CrossRef]
- Maskarinec, G.; Raquinio, P.; Kristal, B.; Wilkens, L.; Franke, A.; Lim, U.; Marchand, L.L.; Lampe, J.; Hullar, M. The Gut Microbiome and Diabetes Status in the Multiethnic Cohort. Curr. Dev. Nutr. 2020, 4, 1450. [Google Scholar] [CrossRef]
- Jiang, H.; Cai, M.; Shen, B.; Wang, Q.; Zhang, T.; Zhou, X. Synbiotics and Gut Microbiota: New Perspectives in the Treatment of Type 2 Diabetes Mellitus. Foods 2022, 11, 2438. [Google Scholar] [CrossRef]
- Sun, J.; Ren, J.; Hu, X.; Hou, Y.; Yang, Y. Therapeutic effects of Chinese herbal medicines and their extracts on diabetes. Biomed. Pharmacother. 2021, 142, 111977. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2012, 8, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Pedersen, H.K.; Dawed, A.Y.; Pearson, E.R. Pharmacogenomics in diabetes mellitus: Insights into drug action and drug discovery. Nat. Rev. Endocrinol. 2016, 12, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Yoon, K.-H. A Century of Progress in Diabetes Care with Insulin: A History of Innovations and Foundation for the Future. Diabetes Metab. J. 2021, 45, 629–640. [Google Scholar] [CrossRef]
- Ojo, O. Dietary Intake and Type 2 Diabetes. Nutrients 2019, 11, 2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, T.; Huang, F.; Zhu, X.; Wei, D.; Chen, L. Effects of dietary fiber on glycemic control and insulin sensitivity in patients with type 2 diabetes: A systematic review and meta-analysis. J. Funct. Foods 2021, 82, 104500. [Google Scholar] [CrossRef]
- Connolly, M.L.; Lovegrove, J.A.; Tuohy, K.M. Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. J. Funct. Foods 2010, 2, 219–224. [Google Scholar] [CrossRef]
- Tester, R.F.; Al-Ghazzewi, F.H. Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan: Health characteristics of native and hydrolysed konjac glucomannan. J. Sci. Food Agric. 2016, 96, 3283–3291. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Song, M.; Qiu, P.; Li, F.; Wang, M.; Zheng, J.; Wang, Q.; Xu, F.; Xiao, H. A metabolite of nobiletin, 4′-demethylnobiletin and atorvastatin synergistically inhibits human colon cancer cell growth by inducing G0/G1 cell cycle arrest and apoptosis. Food Funct. 2018, 9, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Qin, J.; Wang, Y.; Wang, Y.; Cheng, Y. Gastrointestinal and metabolic effects of noodles-based konjac glucomannan in rats. Food Nutr. Res. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Nagasawa, T.; Kimura, T.; Yoshida, A.; Tsunekawa, K.; Araki, O.; Ushiki, K.; Ishigaki, H.; Shoho, Y.; Suda, I.; Hiramoto, S.; et al. Konjac Glucomannan Attenuated Triglyceride Metabolism during Rice Gruel Tolerance Test. Nutrients 2021, 13, 2191. [Google Scholar] [CrossRef]
- Yoshida, A.; Kimura, T.; Tsunekawa, K.; Araki, O.; Ushiki, K.; Ishigaki, H.; Shoho, Y.; Suda, I.; Hiramoto, S.; Murakami, M. Glucomannan Inhibits Rice Gruel-Induced Increases in Plasma Glucose and Insulin Levels. Ann. Nutr. Metab. 2020, 76, 259–267. [Google Scholar] [CrossRef]
- Adams, J.; Hofman, K.; Moubarac, J.-C.; Thow, A.M. Public health response to ultra-processed food and drinks. BMJ 2020, 369, m2391. [Google Scholar] [CrossRef]
- Gibney, M.J.; Forde, C.G.; Mullally, D.; Gibney, E.R. Ultra-processed foods in human health: A critical appraisal. Am. J. Clin. Nutr. 2017, 106, 717–724. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, R.D.; Reddy, C.K.; Xu, B. Health-promoting effects of konjac glucomannan and its practical applications: A critical review. Int. J. Biol. Macromol. 2019, 126, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Parry, J.-M. Konjac Glucomannan. In Food Stabilisers, Thickeners and Gelling Agents; Imeson, A., Ed.; Wiley-Blackwell: Oxford, UK, 2009; pp. 198–217. ISBN 978-1-4443-1472-4. [Google Scholar]
- Khan, H. Marya Konjac (Amorphophallus konjac). In Nonvitamin and Nonmineral Nutritional Supplements; Elsevier: Amsterdam, The Netherlands, 2019; pp. 307–312. ISBN 978-0-12-812491-8. [Google Scholar]
- Ye, S.; Zongo, A.W.-S.; Shah, B.R.; Li, J.; Li, B. Konjac Glucomannan (KGM), Deacetylated KGM (Da-KGM), and Degraded KGM Derivatives: A Special Focus on Colloidal Nutrition. J. Agric. Food Chem. 2021, 69, 12921–12932. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Tao, Y.; Lu, Y.; Fei, X. Morphology of starch and manna granules in corms of Amorphophallus COn/ac. Guihaia 1998, 18, 75–78. [Google Scholar]
- NIE, C.; GAO, Q. Research Progress on Deep Processing and Application of Konjak. Food Sci. Technol. 2022, 47. [Google Scholar] [CrossRef]
- Xu, W.; Wang, S.; Ye, T.; Jin, W.; Liu, J.; Lei, J.; Li, B.; Wang, C. A simple and feasible approach to purify konjac glucomannan from konjac flour—Temperature effect. Food Chem. 2014, 158, 171–176. [Google Scholar] [CrossRef]
- Ye, T.; Wang, L.; Xu, W.; Liu, J.; Wang, Y.; Zhu, K.; Wang, S.; Li, B.; Wang, C. An approach for prominent enhancement of the quality of konjac flour: Dimethyl sulfoxide as medium. Carbohydr. Polym. 2014, 99, 173–179. [Google Scholar] [CrossRef]
- Yuan, Z.; Wu, D.; Wu, H.; Li, X. China journal of Chinese Materia. Medica 2003, 28, 324–327. [Google Scholar]
- Tester, R.; Al-Ghazzewi, F. Glucomannans and nutrition. Food Hydrocoll. 2017, 68, 246–254. [Google Scholar] [CrossRef]
- Cui, T.; Liu, R.; Wu, T.; Sui, W.; Zhang, M. Influence of Konjac Glucomannan and Frozen Storage on Rheological and Tensile Properties of Frozen Dough. Polymers 2019, 11, 794. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Li, H.; Shi, J.; Xu, Z. Depolymerized konjac glucomannan: Preparation and application in health care. J. Zhejiang Univ. Sci. B 2018, 19, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Liu, D.; LI, Y. Research progress of the structures, properties and modifications of Konjacglucomannan. Sci. Technol. Food Ind. 2016, 37, 394–400. [Google Scholar] [CrossRef]
- Katsuraya, K.; Okuyama, K.; Hatanaka, K.; Oshima, R.; Sato, T.; Matsuzaki, K. Constitution of konjac glucomannan: Chemical analysis and 13C NMR spectroscopy. Carbohydr. Polym. 2003, 53, 183–189. [Google Scholar] [CrossRef]
- Yang, D.; Yuan, Y.; Wang, L.; Wang, X.; Mu, R.; Pang, J.; Xiao, J.; Zheng, Y. A Review on Konjac Glucomannan Gels: Microstructure and Application. Int. J. Mol. Sci. 2017, 18, 2250. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Nie, J. Shaoping Study and application on the deacetylated gelation of konjac glucomannan. J. Shaanxi Norm. Univ. 2022, 50, 1–14. [Google Scholar] [CrossRef]
- Du, X.; Li, J.; Chen, J.; Li, B. Effect of degree of deacetylation on physicochemical and gelation properties of konjac glucomannan. Food Res. Int. 2012, 46, 270–278. [Google Scholar] [CrossRef]
- Chua, M.; Baldwin, T.C.; Hocking, T.J.; Chan, K. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br. J. Ethnopharmacol. 2010, 128, 268–278. [Google Scholar] [CrossRef]
- InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: The EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia 2015, 58, 1394–1408. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, M.; Nishinari, K. Dynamic viscoelastic study on the gelation of konjac glucomannan with different molecular weights. Food Hydrocoll. 1999, 13, 227–233. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, J.; Li, X.; Liu, Q.; Kong, B. Composite Gel Fabricated with Konjac Glucomannan and Carrageenan Could Be Used as a Cube Fat Substitute to Partially Replace Pork Fat in Harbin Dry Sausages. Foods 2021, 10, 1460. [Google Scholar] [CrossRef]
- Vlachos, D.; Malisova, S.; Lindberg, F.A.; Karaniki, G. Glycemic Index (GI) or Glycemic Load (GL) and Dietary Interventions for Optimizing Postprandial Hyperglycemia in Patients with T2 Diabetes: A Review. Nutrients 2020, 12, 1561. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.I.; Mills, K.E.; Zheng, J.; Regmi, A.; Hu, S.Q.; Gou, L.; Chen, L.-L. Low-glycemic index diets as an intervention for diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2019, 110, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International tables of glycemic index and glycemic load values 2021: A systematic review. Am. J. Clin. Nutr. 2021, 5, 1625–1632. [Google Scholar] [CrossRef]
- Li, X.; Xiao, N.; Xiao, G.; Bai, W.; Zhang, X.; Zhao, W. Lemon essential oil/vermiculite encapsulated in electrospun konjac glucomannan-grafted-poly (acrylic acid)/polyvinyl alcohol bacteriostatic pad: Sustained control release and its application in food preservation. Food Chem. 2021, 348, 129021. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Jafarpour, D. The efficacy of edible film from Konjac glucomannan and saffron petal extract to improve shelf life of fresh-cut cucumber. Food Sci. Nutr. 2020, 8, 3128–3137. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Jayachandran, M.; Xu, B. In vivo antioxidant and anti-inflammatory effects of soluble dietary fiber Konjac glucomannan in type-2 diabetic rats. Int. J. Biol. Macromol. 2020, 159, 1186–1196. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, J.; Yang, F. Konjac Glucomannan, a Promising Polysaccharide for OCDDS. Carbohydr. Polym. 2014, 104, 175–181. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, J.; Zhang, Z.; Liang, X.; Liu, T.; Yi, H.; Gong, P.; Wang, L.; Yang, W.; Zhang, X.; et al. Konjac Glucomannan with Probiotics Acts as a Combination Laxative to Relieve Constipation in Mice by Increasing Short-Chain Fatty Acid Metabolism and 5-Hydroxytryptamine Hormone Release. Nutrition 2021, 84, 111112. [Google Scholar] [CrossRef]
- Hayeeawaema, F.; Wichienchot, S.; Khuituan, P. Amelioration of Gut Dysbiosis and Gastrointestinal Motility by Konjac Oligo-Glucomannan on Loperamide-Induced Constipation in Mice. Nutrition 2020, 73, 110715. [Google Scholar] [CrossRef]
- Patel, J. Diabetes: Managing dyslipidaemia. BMJ Clin. Evid. 2008, 2008, 610. [Google Scholar]
- Szalat, A.; Durst, R.; Leitersdorf, E. Managing dyslipidaemia in type 2 diabetes mellitus. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 431–444. [Google Scholar] [CrossRef]
- Ho, H.V.T.; Jovanovski, E.; Zurbau, A.; Blanco Mejia, S.; Sievenpiper, J.L.; Au-Yeung, F.; Jenkins, A.L.; Duvnjak, L.; Leiter, L.; Vuksan, V. A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B. Am. J. Clin. Nutr. 2017, 105, 1239–1247. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-L.; Sheu, W.H.-H.; Tai, T.-S.; Liaw, Y.-P.; Chen, Y.-C. Konjac Supplement Alleviated Hypercholesterolemia and Hyperglycemia in Type 2 Diabetic Subjects—A Randomized Double-Blind Trial. J. Am. Coll. Nutr. 2003, 22, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Dziadek, K.; Kopeć, A.; Piątkowska, E.; Leszczyńska, T. High-Fructose Diet-Induced Metabolic Disorders Were Counteracted by the Intake of Fruit and Leaves of Sweet Cherry in Wistar Rats. Nutrients 2019, 11, 2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liang, S.; Shao, Y.; Li, Y.; Chen, C.; You, C.; Monroig, Ó.; Rahimnejad, S.; Tocher, D.R.; Wang, S. Impacts of dietary konjac glucomannan supplementation on growth, antioxidant capacity, hepatic lipid metabolism and inflammatory response in golden pompano (Trachinotus ovatus) fed a high fat diet. Aquaculture 2021, 545, 737113. [Google Scholar] [CrossRef]
- Keleszade, E.; Willner, T.; Patterson, M.; Trangmar, S.; Kolida, S.; Costabile, A. A pilot study to assess the effect of a fibre and mineral formulation on satiety and satiation when taken as part of a calorie restriction diet in overweight and obese women. J. Funct. Foods 2020, 74, 104157. [Google Scholar] [CrossRef]
- Guo, L.; Yokoyama, W.; Chen, M.; Zhong, F. Konjac glucomannan molecular and rheological properties that delay gastric emptying and improve the regulation of appetite. Food Hydrocoll. 2021, 120, 106894. [Google Scholar] [CrossRef]
- Al-Ghazzewi, F.H.; Tester, R.F. Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria. J. Sci. Food Agric. 2012, 92, 2394–2396. [Google Scholar] [CrossRef]
- Rogovik, A.L.; Goldman, R.D. Should weight-loss supplements be used for pediatric obesity? Can. Fam. Physician 2009, 55, 257–259. [Google Scholar]
- Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 2016, 48, e219. [Google Scholar] [CrossRef] [Green Version]
- Bettedi, L.; Yan, A.; Schuster, E.; Alic, N.; Foukas, L.C. Increased mitochondrial and lipid metabolism is a conserved effect of Insulin/PI3K pathway downregulation in adipose tissue. Sci. Rep. 2020, 10, 3418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Jayachandran, M.; Xu, B. Antidiabetic effect of konjac glucomannan via insulin signaling pathway regulation in high-fat diet and streptozotocin-induced diabetic rats. Food Res. Int. 2021, 149, 110664. [Google Scholar] [CrossRef] [PubMed]
- Fatchiyah, F.; Christian, N.; Soeatmadji, D. Reducing IRS-1 Activation Cause Mutation of Tyrosine Kinase Domain hINSR Gene on Type-2 Diabetes Mellitus Patients. Bioinformation 2013, 9, 853–857. [Google Scholar] [CrossRef] [Green Version]
- Fatchiyah, F.; Nurmasari, D.A.; Masruro, N.; Rohmah, N.R.; Triprisila, L.F.; Mulyati, M.; Yamada, T.; Ohta, T. Level of mRNA Insulin Gene and Blood Glucose STZ-Induced Diabetic Rat are Improved by Glucomannan of Amorphophallus muelleri Blume from East Java Forest Indonesia. J. Trop. Life Sci. 2019, 9, 163–169. [Google Scholar] [CrossRef]
- Rasouli, H.; Hosseini-Ghazvini, S.M.-B.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct. 2017, 8, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- Fabek, H.; Messerschmidt, S.; Brulport, V.; Goff, H.D. The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion. Food Hydrocoll. 2014, 35, 718–726. [Google Scholar] [CrossRef]
- Gamboa-Gómez, C.I.; Guerrero-Romero, F.; Sánchez-Meraz, M.A.; Simental-Mendía, L.E. Hypoglycemic and antioxidant properties of konjac (Amorphophallus konjac) in vitro and in vivo. J. Food Biochem. 2020, 44, e13503. [Google Scholar] [CrossRef] [PubMed]
- Spanakis, E.K.; Singh, L.G.; Siddiqui, T.; Sorkin, J.D.; Notas, G.; Magee, M.F.; Fink, J.C.; Zhan, M.; Umpierrez, G.E. Association of glucose variability at the last day of hospitalization with 30-day readmission in adults with diabetes. BMJ Open Diab. Res. Care 2020, 8, e000990. [Google Scholar] [CrossRef]
- Tong, L.; Chi, C.; Zhang, Z. Association of various glycemic variability indices and vascular outcomes in type-2 diabetes patients: A retrospective study. Medicine 2018, 97, e10860. [Google Scholar] [CrossRef]
- Chen, H.; Nie, Q.; Hu, J.; Huang, X.; Zhang, K.; Nie, S. Glucomannans Alleviated the Progression of Diabetic Kidney Disease by Improving Kidney Metabolic Disturbance. Mol. Nutr. Food Res. 2019, 63, 1801008. [Google Scholar] [CrossRef]
- Iluz-Freundlich, D.; Zhang, M.; Uhanova, J.; Minuk, G.Y. The relative expression of hepatocellular and cholestatic liver enzymes in adult patients with liver disease. Ann. Hepatol. 2020, 19, 204–208. [Google Scholar] [CrossRef]
- Lin, H.-M.; Pang, J.; Deng, S.-G. Protective Effect of Konjac Glucomannan on Carbon Tetrachloride Induced Liver Injury in Mice. J. Zhejiang Ocean. Univ. 2009, 28, 465–467. [Google Scholar]
- Tang, B.L. Glucose, glycolysis, and neurodegenerative diseases. J. Cell. Physiol. 2020, 235, 7653–7662. [Google Scholar] [CrossRef]
- Ahmed, D.; Khan, M.I.; Sharma, M.; Khan, M.F. Novel pentacyclic triterpene isolated from seeds of Euryale Ferox Salisb. ameliorates diabetes in streptozotocin induced diabetic rats. Interdiscip. Toxicol. 2018, 11, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Subash-Babu, P.; Ignacimuthu, S.; Alshatwi, A.A. Nymphayol increases glucose-stimulated insulin secretion by RIN-5F cells and GLUT4-mediated insulin sensitization in type 2 diabetic rat liver. Chem.-Biol. Interact. 2015, 226, 72–81. [Google Scholar] [CrossRef]
- Wellen, K.E. Inflammation, stress, and diabetes. J. Clin. Investig. 2005, 115, 1111–1119. [Google Scholar] [CrossRef] [Green Version]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Anto Michel, N.; Colberg, C.; Buscher, K.; Sommer, B.; Pramod, A.B.; Ehinger, E.; Dufner, B.; Hoppe, N.; Pfeiffer, K.; Marchini, T.; et al. Inflammatory Pathways Regulated by Tumor Necrosis Receptor–Associated Factor 1 Protect From Metabolic Consequences in Diet-Induced Obesity. Circ. Res. 2018, 122, 693–700. [Google Scholar] [CrossRef]
- Bourebaba, L.; Bedjou, F.; Röcken, M.; Marycz, K. Nortropane alkaloids as pharmacological chaperones in the rescue of equine adipose-derived mesenchymal stromal stem cells affected by metabolic syndrome through mitochondrial potentiation, endoplasmic reticulum stress mitigation and insulin resistance alleviation. Stem. Cell Res. Ther. 2019, 10, 178. [Google Scholar] [CrossRef]
- Jeon, J.; Jang, J.; Park, K. Effects of Consuming Calcium-Rich Foods on the Incidence of Type 2 Diabetes Mellitus. Nutrients 2018, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Lee, J.E. Dietary Patterns Related to Triglyceride and High-Density Lipoprotein Cholesterol and the Incidence of Type 2 Diabetes in Korean Men and Women. Nutrients 2018, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Ji, H.; Kong, X.; Lei, P.; Yang, Q.; Wu, W.; Jin, L.; Sun, D. Bacterial Ghosts-Based Vaccine and Drug Delivery Systems. Pharmaceutics 2021, 13, 1892. [Google Scholar] [CrossRef]
- Jung, M.-J.; Lee, J.; Shin, N.-R.; Kim, M.-S.; Hyun, D.-W.; Yun, J.-H.; Kim, P.S.; Whon, T.W.; Bae, J.-W. Chronic Repression of mTOR Complex 2 Induces Changes in the Gut Microbiota of Diet-induced Obese Mice. Sci. Rep. 2016, 6, 30887. [Google Scholar] [CrossRef] [Green Version]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the Human Intestinal Microbial Flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [Green Version]
- Krebs, M.; Brunmair, B.; Brehm, A.; Artwohl, M.; Szendroedi, J.; Nowotny, P.; Roth, E.; Fürnsinn, C.; Promintzer, M.; Anderwald, C.; et al. The Mammalian Target of Rapamycin Pathway Regulates Nutrient-Sensitive Glucose Uptake in Man. Diabetes 2007, 56, 1600–1607. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. mTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Nie, Q.; Hu, J.; Huang, X.; Yin, J.; Nie, S. Multiomics Approach to Explore the Amelioration Mechanisms of Glucomannans on the Metabolic Disorder of Type 2 Diabetic Rats. J. Agric. Food Chem. 2021, 69, 2632–2645. [Google Scholar] [CrossRef]
- Zalewski, B.M.; Chmielewska, A.; Szajewska, H. The effect of glucomannan on body weight in overweight or obese children and adults: A systematic review of randomized controlled trials. Nutrition 2015, 31, 437–442.e2. [Google Scholar] [CrossRef]
- Keithley, J.K.; Swanson, B.; Mikolaitis, S.L.; DeMeo, M.; Zeller, J.M.; Fogg, L.; Adamji, J. Safety and Efficacy of Glucomannan for Weight Loss in Overweight and Moderately Obese Adults. J. Obes. 2013, 2013, 610908. [Google Scholar] [CrossRef] [Green Version]
- Arvill, A.; Bodin, L. Effect of short-term ingestion of konjac glucomannan on serum cholesterol in healthy men. Am. J. Clin. Nutr. 1995, 61, 585–589. [Google Scholar] [CrossRef]
- Lei, P.; Chen, H.; Ma, J.; Fang, Y.; Qu, L.; Yang, Q.; Peng, B.; Zhang, X.; Jin, L.; Sun, D. Research progress on extraction technology and biomedical function of natural sugar substitutes. Front. Nutr. 2022, 9, 952147. [Google Scholar] [CrossRef]
- Bonelli, A.; Menna, P.; Minotti, G.; Angeletti, S.; Comandini, A.; Picollo, R.; Quarchioni, E.; Russo, V.; Salvatori, E.; Ferravante, F.; et al. Safety and tolerability of a novel oral nutritional supplement in healthy volunteers. Clin. Nutr. 2021, 40, 946–955. [Google Scholar] [CrossRef]
- Folwarski, M.; Kłęk, S.; Zoubek-Wójcik, A.; Szafrański, W.; Bartoszewska, L.; Figuła, K.; Jakubczyk, M.; Jurczuk, A.; Kamocki, Z.; Kowalczyk, T.; et al. Foods for Special Medical Purposes in Home Enteral Nutrition-Clinical Practice Experience. Multicenter Study. Front. Nutr. 2022, 9, 906186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ren, X.; Zhang, L.; Chen, J. Preparation and Performance of Thickened Liquids for Patients with Konjac Glucomannan-Mediated Dysphagia. Molecules 2022, 27, 2194. [Google Scholar] [CrossRef]
- Cichero, J.A.Y.; Steele, C.; Duivestein, J.; Clavé, P.; Chen, J.; Kayashita, J.; Dantas, R.; Lecko, C.; Speyer, R.; Lam, P.; et al. The Need for International Terminology and Definitions for Texture-Modified Foods and Thickened Liquids Used in Dysphagia Management: Foundations of a Global Initiative. Curr. Phys. Med. Rehabil. Rep. 2013, 1, 280–291. [Google Scholar] [CrossRef]
- Tatirat, O. Physicochemical properties of extrusion-modified konjac glucomannan. Carbohydr. Polym. 2012, 7, 1545–1551. [Google Scholar] [CrossRef]
- Chen, M.; Wang, H.; Yan, Q.; Zheng, Q.; Yang, M.; Lv, Z.; He, M.; Feng, L.; Zhao, J.; Tang, T.; et al. Effects of dietary oxidized konjac glucomannan sulfates (OKGMS) and acidolysis-oxidized konjac glucomannan (A-OKGM) on the immunity and expression of immune-related genes of Schizothorax prenanti. Fish Shellfish Immunol. 2016, 56, 96–105. [Google Scholar] [CrossRef]
- Zhang, L. Effects of oxidized konjac glucomannan on the intestinal microbial flora and intestinal morphology of Schizothorax prenanti. Aquacult. Int. 2017, 18, 233–250. [Google Scholar] [CrossRef]
- Zheng, Q.; Wu, Y.; Xu, H. Effect of dietary oxidized konjac glucomannan on Schizothorax prenanti growth performance, body composition, intestinal morphology and intestinal microflora. Fish Physiol. Biochem. 2015, 41, 733–743. [Google Scholar] [CrossRef]
- Liu, M.; Zou, T.; Li, H.; Zhou, M.; Cheng, Z. Research Status of the Technology for Reducing Sulfur Dioxide Residue in Konjac Flour. Farm Prod. Process. 2021, 2021, 59–62. [Google Scholar]
- Vuksan, V.; Sievenpiper, J.L.; Xu, Z.; Wong, E.Y.Y.; Jenkins, A.L.; Beljan-Zdravkovic, U.; Leiter, L.A.; Josse, R.G.; Stavro, M.P. Konjac-Mannan and American Ginsing: Emerging Alternative Therapies for Type 2 Diabetes Mellitus. J. Am. Coll. Nutr. 2001, 20, S370–S380. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Zhong, J.; Long, J.; Zou, X.; Wang, D.; Song, Y.; Zhou, K.; Liang, Y.; Huang, R.; Wei, X.; et al. Hypoglycemic effects and mechanism of different molecular weights of konjac glucomannans in type 2 diabetic rats. Int. J. Biol. Macromol. 2020, 165, 2231–2243. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Ma, J.; Lei, P.; Wang, L.; Qu, J.; Zhao, J.; Liu, F.; Yan, X.; Wu, W.; Jin, L.; et al. Konjac Glucomannan: An Emerging Specialty Medical Food to Aid in the Treatment of Type 2 Diabetes Mellitus. Foods 2023, 12, 363. https://doi.org/10.3390/foods12020363
Fang Y, Ma J, Lei P, Wang L, Qu J, Zhao J, Liu F, Yan X, Wu W, Jin L, et al. Konjac Glucomannan: An Emerging Specialty Medical Food to Aid in the Treatment of Type 2 Diabetes Mellitus. Foods. 2023; 12(2):363. https://doi.org/10.3390/foods12020363
Chicago/Turabian StyleFang, Yimeng, Jiahui Ma, Pengyu Lei, Lei Wang, Junying Qu, Jing Zhao, Fan Liu, Xiaoqing Yan, Wei Wu, Libo Jin, and et al. 2023. "Konjac Glucomannan: An Emerging Specialty Medical Food to Aid in the Treatment of Type 2 Diabetes Mellitus" Foods 12, no. 2: 363. https://doi.org/10.3390/foods12020363
APA StyleFang, Y., Ma, J., Lei, P., Wang, L., Qu, J., Zhao, J., Liu, F., Yan, X., Wu, W., Jin, L., Ji, H., & Sun, D. (2023). Konjac Glucomannan: An Emerging Specialty Medical Food to Aid in the Treatment of Type 2 Diabetes Mellitus. Foods, 12(2), 363. https://doi.org/10.3390/foods12020363