Protein Array-Based Approach to Evaluate Biomarkers of Beef Tenderness and Marbling in Cows: Understanding of the Underlying Mechanisms and Prediction
"> Figure 1
<p>Protein biomarkers differing among the tenderness classes (Tender (<span class="html-italic">n</span> = 93), Medium (<span class="html-italic">n</span> = 71) and Tough (<span class="html-italic">n</span> = 24)). (<b>a</b>) Heatmap comparing the protein abundances among the three WBSF (tenderness) classes. Significance—ns: not significant; *: <span class="html-italic">p</span> < 0.05; **: <span class="html-italic">p</span> < 0.01; ***: <span class="html-italic">p</span> < 0.001. The proteins are given by their biological family following the legend. (<b>b</b>) Principal component analysis highlighting the distribution of the individuals of each tenderness class based on the 11 discriminant protein biomarkers. Individuals belonging to the same class are encircled in clusters using the corresponding schematic colors. The descriptive statistics of the three tenderness classes are as follows—<b>Tender class:</b> mean value of 32.96 ± 3.99 N/cm<sup>2</sup> (CV, 12%), Min = 23.05 and Max = 38.76 N/cm<sup>2</sup>. <b>Medium class:</b> mean value of 44.74 ± 3.69 N/cm<sup>2</sup> (CV, 8%), Min = 39.00 and Max = 52.22 N/cm<sup>2</sup>. <b>Tough class:</b> mean value of 61.18 ± 7.87 N/cm<sup>2</sup> (CV, 13%), Min = 53.03 and Max = 81.49 N/cm<sup>2</sup>.</p> "> Figure 2
<p>Protein biomarkers differing among the marbling classes (Fat (<span class="html-italic">n</span> = 28), Medium (<span class="html-italic">n</span> = 69) and Lean (<span class="html-italic">n</span> = 87)). (<b>a</b>) Heatmap comparing the protein abundances among the three IMF (marbling) classes. Significance—ns: not significant; *: <span class="html-italic">p</span> < 0.05; **: <span class="html-italic">p</span> < 0.01; ***: <span class="html-italic">p</span> < 0.001. The proteins are given by their biological family following the legend. (<b>b</b>) Principal component analysis highlighting the distribution of the individuals of each marbling class based on the 11 discriminant protein biomarkers. Individuals belonging to the same class are encircled in clusters using the corresponding schematic colors. The descriptive statistics of the three marbling classes are as follows—<b>Fat class:</b> mean value of 7.72 ± 1.58% (CV, 20%), Min = 6.34 and Max = 13.82%. <b>Medium class:</b> 4.72 ± 0.63% (CV, 13%), Min = 3.76 and Max = 6.11%. <b>Lean class:</b> 2.72 ± 0.62% (CV, 23%), Min = 0.45 and Max = 3.69%.</p> "> Figure 3
<p>Partial least squares highlighting the protein biomarkers retained to explain (<b>a</b>) tenderness evaluated by WBSF and (<b>b</b>) IMF content (marbling) based on their variable importance in the projection (VIP). The proteins retained in positive and negative directions are shown in blue and red colors, respectively. For (<b>a</b>) WBSF, a total of 10 proteins were retained from which 8 had VIP > 1.0, and for (<b>b</b>) IMF, 9 proteins were retained, from which 7 had VIP > 1.0. A total of 7 proteins were common (MDH1, ALDH1A1, CRYAB, HSP20, HSP27, MYH1 and FHL1) in the two models to explain both WBSF and IMF variation.</p> "> Figure 4
<p>Summary of the evaluation of the 20 protein biomarkers quantified by RPPA using the three statistical methods (Pearson correlations, <span class="html-italic">k</span>-means clustering and Partial Least Squares regressions (PLS-R)) to explain/predict WBSF and IMF content on the <span class="html-italic">Longissimus thoracis</span> muscle of the 188 PDO Maine-Anjou cows.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Designs, Cows Handling and Slaughtering
2.2. Muscle and Meat Steaks Sampling
2.3. Intramuscular Fat Content Determination
2.4. Meat Tenderness Measurement by Warner–Bratzler Shear Force (WBSF)
2.5. Protein Extraction and Quantification
2.6. Reverse Phase Protein Array (RPPA) for Protein Biomarkers Quantification
2.7. Statistical Analyses
3. Results
3.1. Pearson Correlation Analyses between the Biomarkers and Meat Quality Traits
3.2. Discriminant Biomarkers of WBSF and Marbling
3.3. Partial Least Squares for the Prediction of WBSF and Marbling Using the Panel of 20 Protein Biomarkers
3.4. Summary of the Putative Common Protein Biomarkers from the Three Statistical Methods
4. Discussion
4.1. Common Biomarkers Explaining the Variation in WBSF (Tenderness) and IMF (Marbling)
4.2. Biomarkers Specific to WBSF
4.3. Biomarkers Specific to IMF
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jia, X.; Hollung, K.; Therkildsen, M.; Hildrum, K.I.; Bendixen, E. Proteome analysis of early post-mortem changes in two bovine muscle types: M. longissimus dorsi and M. semitendinosis. Proteomics 2006, 6, 936–944. [Google Scholar] [CrossRef]
- Lametsch, R.; Karlsson, A.; Rosenvold, K.; Andersen, H.J.; Roepstorff, P.; Bendixen, E. Postmortem proteome changes of porcine muscle related to tenderness. J. Agric. Food Chem. 2003, 51, 6992–6997. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Lametsch, R. Application of Proteomics for Analysis of Protein Modifications in Postmortem Meat. In Proteomics in Foods: Principles and Applications; Toldrá, F., Nollet, L.M.L., Eds.; Springer: Boston, MA, USA, 2013; pp. 111–125. [Google Scholar] [CrossRef]
- Picard, B.; Gagaoua, M. Meta-proteomics for the discovery of protein biomarkers of beef tenderness: An overview of integrated studies. Food Res. Int. 2020, 127, 108739. [Google Scholar] [CrossRef] [PubMed]
- Gagaoua, M.; Hughes, J.; Terlouw, E.M.C.; Warner, R.D.; Purslow, P.P.; Lorenzo, J.M.; Picard, B. Proteomic biomarkers of beef colour. Trends Food Sci. Technol. 2020, 101, 234–252. [Google Scholar] [CrossRef]
- Picard, B.; Gagaoua, M.; Hollung, K. Chapter 12—Gene and Protein Expression as a Tool to Explain/Predict Meat (and Fish) Quality. In New Aspects of Meat Quality: From Genes to Ethics; Purslow, P., Ed.; Woodhead Publishing: Sawston, UK; Cambridge, UK, 2017; pp. 321–354. [Google Scholar] [CrossRef]
- Te Pas, M.F.; Hoekman, A.J.; Smits, M.A. Biomarkers as management tools for industries in the pork production chain. J. Chain Netw. Sci. 2011, 11, 155–166. [Google Scholar] [CrossRef]
- Bouley, J.; Chambon, C.; Picard, B. Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2004, 4, 1811–1824. [Google Scholar] [CrossRef] [PubMed]
- Gagaoua, M.; Hafid, K.; Boudida, Y.; Becila, S.; Ouali, A.; Picard, B.; Boudjellal, A.; Sentandreu, M.A. Caspases and Thrombin Activity Regulation by Specific Serpin Inhibitors in Bovine Skeletal Muscle. Appl. Biochem. Biotechnol. 2015, 177, 279–303. [Google Scholar] [CrossRef] [PubMed]
- Gagaoua, M.; Dunoyer, N.; Picard, B. Differences in the levels of bov-SERPINA3 in Rectus Abdominis Muscle Explain the Variability of Beef Tenderness. In Proceedings of the 63rd International Congress of Meat Science and Technology, Cork, Ireland, 13–18 August 2017; pp. 832–833. [Google Scholar]
- Picard, B.; Gagaoua, M. Chapter 11—Proteomic Investigations of Beef Tenderness. In Proteomics in Food Science: From Farm to Fork; Colgrave, M.L., Ed.; Academic Press: London, UK, 2017; pp. 177–197. [Google Scholar] [CrossRef]
- Ouali, A.; Gagaoua, M.; Boudida, Y.; Becila, S.; Boudjellal, A.; Herrera-Mendez, C.H.; Sentandreu, M.A. Biomarkers of meat tenderness: Present knowledge and perspectives in regards to our current understanding of the mechanisms involved. Meat Sci. 2013, 95, 854–870. [Google Scholar] [CrossRef]
- Gagaoua, M.; Picard, B.; Monteils, V. Assessment of cattle inter-individual cluster variability: The potential of continuum data from the farm-to-fork for ultimate beef tenderness management. J. Sci. Food Agric. 2019, 99, 4129–4141. [Google Scholar] [CrossRef]
- Gagaoua, M.; Monteils, V.; Picard, B. Data from the farmgate-to-meat continuum including omics-based biomarkers to better understand the variability of beef tenderness: An integromics approach. J. Agric. Food Chem. 2018, 66, 13552–13563. [Google Scholar] [CrossRef]
- Hocquette, J.F.; Gondret, F.; Baeza, E.; Medale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Ceciliani, F.; Lecchi, C.; Bazile, J.; Bonnet, M. Proteomics Research in the Adipose Tissue. In Proteomics in Domestic Animals: From Farm to Systems Biology; de Almeida, A.M., Eckersall, D., Miller, I., Eds.; Springer: Cham, Switzerland, 2018; pp. 233–254. [Google Scholar] [CrossRef]
- Keady, S.M.; Kenny, D.A.; Ohlendieck, K.; Doyle, S.; Keane, M.G.; Waters, S.M. Proteomic profiling of bovine M. longissimus lumborum from Crossbred Aberdeen Angus and Belgian Blue sired steers varying in genetic merit for carcass weight. J. Anim. Sci. 2013, 91, 654–665. [Google Scholar] [CrossRef]
- Picard, B.; Gagaoua, M.; Al Jammas, M.; Bonnet, M. Beef tenderness and intramuscular fat proteomic biomarkers: Effect of gender and rearing practices. J. Proteom. 2019, 200, 1–10. [Google Scholar] [CrossRef]
- Mao, Y.; Hopkins, D.L.; Zhang, Y.; Li, P.; Zhu, L.; Dong, P.; Liang, R.; Dai, J.; Wang, X.; Luo, X. Beef quality with different intramuscular fat content and proteomic analysis using isobaric tag for relative and absolute quantitation of differentially expressed proteins. Meat Sci. 2016, 118, 96–102. [Google Scholar] [CrossRef]
- Shen, Y.N.; Kim, S.H.; Yoon, D.H.; Lee, H.G.; Kang, H.S.; Seo, K.S. Proteome Analysis of Bovine Longissimus dorsi Muscle Associated with the Marbling Score. Asian Australas. J. Anim. Sci. 2012, 25, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Bazile, J.; Picard, B.; Chambon, C.; Valais, A.; Bonnet, M. Pathways and biomarkers of marbling and carcass fat deposition in bovine revealed by a combination of gel-based and gel-free proteomic analyses. Meat Sci. 2019, 156, 146–155. [Google Scholar] [CrossRef]
- Kim, N.K.; Lee, S.H.; Cho, Y.M.; Son, E.S.; Kim, K.Y.; Lee, C.S.; Yoon, D.; Im, S.K.; Oh, S.J.; Park, E.W. Proteome analysis of the m. longissimus dorsi between fattening stages in Hanwoo steer. BMB Rep. 2009, 42, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Lee, H.G.; Han, J.A.; Kim, E.B.; Kang, S.K.; Yin, J.; Baik, M.; Shen, Y.; Kim, S.H.; Seo, K.S.; et al. Differentially expressed proteins during fat accumulation in bovine skeletal muscle. Meat Sci. 2010, 86, 814–820. [Google Scholar] [CrossRef]
- Rifai, N.; Gillette, M.A.; Carr, S.A. Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nat. Biotechnol. 2006, 24, 971–983. [Google Scholar] [CrossRef]
- Bonnet, M.; Soulat, J.; Bons, J.; Léger, S.; De Koning, L.; Carapito, C.; Picard, B. Quantification of biomarkers for beef meat qualities using a combination of Parallel Reaction Monitoring- and antibody-based proteomics. Food Chem. 2020, 317, 126376. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.K.; Cho, S.; Lee, S.H.; Park, H.R.; Lee, C.S.; Cho, Y.M.; Choy, Y.H.; Yoon, D.; Im, S.K.; Park, E.W. Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Sci. 2008, 80, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Veiseth-Kent, E.; Grove, H.; Kuziora, P.; Aass, L.; Hildrum, K.I.; Hollung, K. Peroxiredoxin-6—A potential protein marker for meat tenderness in bovine longissimus thoracis muscle. J. Anim. Sci. 2009, 87, 2391–2399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, E.; Lee, B.; Choi, Y.M. Associations of Heat-Shock Protein Expression with Meat Quality and Sensory Quality Characteristics in Highly Marbled Longissimus Thoracis Muscle from Hanwoo Steers Categorized by Warner–Bratzler Shear Force Value. Foods 2019, 8, 638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillemin, N.; Meunier, B.; Jurie, C.; Cassar-Malek, I.; Hocquette, J.F.; Leveziel, H.; Picard, B. Validation of a Dot-Blot quantitative technique for large scale analysis of beef tenderness biomarkers. J. Physiol. Pharmacol. 2009, 60 (Suppl. 3), 91–97. [Google Scholar] [PubMed]
- Guillemin, N.; Jurie, C.; Cassar-Malek, I.; Hocquette, J.F.; Renand, G.; Picard, B. Variations in the abundance of 24 protein biomarkers of beef tenderness according to muscle and animal type. Animal 2011, 5, 885–894. [Google Scholar] [CrossRef] [Green Version]
- Gagaoua, M.; Terlouw, E.M.C.; Picard, B. The study of protein biomarkers to understand the biochemical processes underlying beef color development in young bulls. Meat Sci. 2017, 134, 18–27. [Google Scholar] [CrossRef]
- Gagaoua, M.; Terlouw, E.M.; Micol, D.; Boudjellal, A.; Hocquette, J.F.; Picard, B. Understanding Early Post-Mortem Biochemical Processes Underlying Meat Color and pH Decline in the Longissimus thoracis Muscle of Young Blond d’Aquitaine Bulls Using Protein Biomarkers. J. Agric. Food Chem. 2015, 63, 6799–6809. [Google Scholar] [CrossRef]
- Gagaoua, M.; Terlouw, C.; Richardson, I.; Hocquette, J.F.; Picard, B. The associations between proteomic biomarkers and beef tenderness depend on the end-point cooking temperature, the country origin of the panelists and breed. Meat Sci. 2019, 157, 107871. [Google Scholar] [CrossRef]
- Gagaoua, M.; Bonnet, M.; Ellies-Oury, M.P.; De Koning, L.; Picard, B. Reverse phase protein arrays for the identification/validation of biomarkers of beef texture and their use for early classification of carcasses. Food Chem. 2018, 250, 245–252. [Google Scholar] [CrossRef]
- Picard, B.; Gagaoua, M.; Al-Jammas, M.; De Koning, L.; Valais, A.; Bonnet, M. Beef tenderness and intramuscular fat proteomic biomarkers: Muscle type effect. Peer J. 2018, 6, e4891. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Dai, R.T.; Bendixen, E. Comparing SRM and SWATH Methods for Quantitation of Bovine Muscle Proteomes. J. Agric. Food Chem. 2019, 67, 1608–1618. [Google Scholar] [CrossRef] [PubMed]
- Gagaoua, M.; Monteils, V.; Couvreur, S.; Picard, B. Identification of Biomarkers Associated with the Rearing Practices, Carcass Characteristics, and Beef Quality: An Integrative Approach. J. Agric. Food Chem. 2017, 65, 8264–8278. [Google Scholar] [CrossRef] [PubMed]
- Lepetit, J.; Culioli, J. Mechanical properties of meat. Meat Sci. 1994, 36, 203–237. [Google Scholar] [CrossRef]
- Gagaoua, M.; Micol, D.; Picard, B.; Terlouw, C.E.; Moloney, A.P.; Juin, H.; Meteau, K.; Scollan, N.; Richardson, I.; Hocquette, J.F. Inter-laboratory assessment by trained panelists from France and the United Kingdom of beef cooked at two different end-point temperatures. Meat Sci. 2016, 122, 90–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagaoua, M.; Bonnet, M.; De Koning, L.; Picard, B. Reverse Phase Protein array for the quantification and validation of protein biomarkers of beef qualities: The case of meat color from Charolais breed. Meat Sci. 2018, 145, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Akbani, R.; Becker, K.F.; Carragher, N.; Goldstein, T.; de Koning, L.; Korf, U.; Liotta, L.; Mills, G.B.; Nishizuka, S.S.; Pawlak, M.; et al. Realizing the promise of reverse phase protein arrays for clinical, translational, and basic research: A workshop report: The RPPA (Reverse Phase Protein Array) society. Mol. Cell. Proteom. MCP 2014, 13, 1625–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troncale, S.; Barbet, A.; Coulibaly, L.; Henry, E.; He, B.; Barillot, E.; Dubois, T.; Hupe, P.; de Koning, L. NormaCurve: A SuperCurve-based method that simultaneously quantifies and normalizes reverse phase protein array data. PLoS ONE 2012, 7, e38686. [Google Scholar] [CrossRef]
- Gagaoua, M.; Monteils, V.; Couvreur, S.; Picard, B. Beef Tenderness Prediction by a Combination of Statistical Methods: Chemometrics and Supervised Learning to Manage Integrative Farm-To-Meat Continuum Data. Foods 2019, 8, 274. [Google Scholar] [CrossRef] [Green Version]
- Gagaoua, M.; Picard, B.; Soulat, J.; Monteils, V. Clustering of sensory eating qualities of beef: Consistencies and differences within carcass, muscle, animal characteristics and rearing factors. Livest. Sci. 2018, 214, 245–258. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Gagaoua, M.; Listrat, A.; Andueza, D.; Gruffat, D.; Normand, J.; Mairesse, G.; Picard, B.; Hocquette, J.-F. What are the drivers of beef sensory quality using metadata of intramuscular connective tissue, fatty acids and muscle fiber characteristics? Livest. Sci. 2020. [Google Scholar] [CrossRef]
- Bernard, C.; Cassar-Malek, I.; Le Cunff, M.; Dubroeucq, H.; Renand, G.; Hocquette, J.F. New indicators of beef sensory quality revealed by expression of specific genes. J. Agric. Food Chem. 2007, 55, 5229–5237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Alessandro, A.; Marrocco, C.; Rinalducci, S.; Mirasole, C.; Failla, S.; Zolla, L. Chianina beef tenderness investigated through integrated Omics. J. Proteom. 2012, 75, 4381–4398. [Google Scholar] [CrossRef] [PubMed]
- Guillemin, N.; Bonnet, M.; Jurie, C.; Picard, B. Functional analysis of beef tenderness. J. Proteom. 2011, 75, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Couvreur, S.; Le Bec, G.; Micol, D.; Picard, B. Relationships Between Cull Beef Cow Characteristics, Finishing Practices and Meat Quality Traits of Longissimus thoracis and Rectus abdominis. Foods 2019, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Gagaoua, M.; Couvreur, S.; Le Bec, G.; Aminot, G.; Picard, B. Associations among Protein Biomarkers and pH and Color Traits in Longissimus thoracis and Rectus abdominis Muscles in Protected Designation of Origin Maine-Anjou Cull Cows. J. Agric. Food Chem. 2017, 65, 3569–3580. [Google Scholar] [CrossRef]
- Gagaoua, M.; Terlouw, E.M.C.; Micol, D.; Hocquette, J.F.; Moloney, A.P.; Nuernberg, K.; Bauchart, D.; Boudjellal, A.; Scollan, N.D.; Richardson, R.I.; et al. Sensory quality of meat from eight different types of cattle in relation with their biochemical characteristics. J. Integr. Agric. 2016, 15, 1550–1563. [Google Scholar] [CrossRef] [Green Version]
- Picard, B.; Gagaoua, M.; Micol, D.; Cassar-Malek, I.; Hocquette, J.F.; Terlouw, C.E. Inverse relationships between biomarkers and beef tenderness according to contractile and metabolic properties of the muscle. J. Agric. Food Chem. 2014, 62, 9808–9818. [Google Scholar] [CrossRef]
- Golenhofen, N.; Perng, M.D.; Quinlan, R.A.; Drenckhahn, D. Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle. Histochem. Cell Biol. 2004, 122, 415–425. [Google Scholar] [CrossRef]
- Lomiwes, D.; Farouk, M.M.; Wiklund, E.; Young, O.A. Small heat shock proteins and their role in meat tenderness: A review. Meat Sci. 2014, 96, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Picard, B.; Kammoun, M.; Gagaoua, M.; Barboiron, C.; Meunier, B.; Chambon, C.; Cassar-Malek, I. Calcium Homeostasis and Muscle Energy Metabolism Are Modified in HspB1-Null Mice. Proteomes 2016, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreiza, C.M.; Komalavilas, P.; Furnish, E.J.; Flynn, C.R.; Sheller, M.R.; Smoke, C.C.; Lopes, L.B.; Brophy, C.M. The small heat shock protein, HSPB6, in muscle function and disease. Cell Stress Chaperones 2010, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rembold, C.M.; Foster, D.B.; Strauss, J.D.; Wingard, C.J.; Eyk, J.E. cGMP-mediated phosphorylation of heat shock protein 20 may cause smooth muscle relaxation without myosin light chain dephosphorylation in swine carotid artery. J. Physiol. 2000, 524 Pt 3, 865–878. [Google Scholar] [CrossRef]
- Lomiwes, D.; Hurst, S.M.; Dobbie, P.; Frost, D.A.; Hurst, R.D.; Young, O.A.; Farouk, M.M. The protection of bovine skeletal myofibrils from proteolytic damage post mortem by small heat shock proteins. Meat Sci. 2014, 97, 548–557. [Google Scholar] [CrossRef]
- Ma, D.; Kim, Y.H.B. Proteolytic changes of myofibrillar and small heat shock proteins in different bovine muscles during aging: Their relevance to tenderness and water-holding capacity. Meat Sci. 2020, 163, 108090. [Google Scholar] [CrossRef]
- Kamradt, M.C.; Chen, F.; Cryns, V.L. The Small Heat Shock Protein αB-Crystallin Negatively Regulates Cytochrome c- and Caspase-8-dependent Activation of Caspase-3 by Inhibiting Its Autoproteolytic Maturation. J. Biol. Chem. 2001, 276, 16059–16063. [Google Scholar] [CrossRef] [Green Version]
- Kamradt, M.C.; Chen, F.; Sam, S.; Cryns, V.L. The Small Heat Shock Protein αB-crystallin Negatively Regulates Apoptosis during Myogenic Differentiation by Inhibiting Caspase-3 Activation. J. Biol. Chem. 2002, 277, 38731–38736. [Google Scholar] [CrossRef] [Green Version]
- Pulford, D.J.; Fraga Vazquez, S.; Frost, D.F.; Fraser-Smith, E.; Dobbie, P.; Rosenvold, K. The intracellular distribution of small heat shock proteins in post-mortem beef is determined by ultimate pH. Meat Sci. 2008, 79, 623–630. [Google Scholar] [CrossRef]
- Pulford, D.J.; Dobbie, P.; Fraga Vazquez, S.; Fraser-Smith, E.; Frost, D.A.; Morris, C.A. Variation in bull beef quality due to ultimate muscle pH is correlated to endopeptidase and small heat shock protein levels. Meat Sci. 2009, 83, 1–9. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Rinalducci, S.; Marrocco, C.; Zolla, V.; Napolitano, F.; Zolla, L. Love me tender: An Omics window on the bovine meat tenderness network. J. Proteom. 2012, 75, 4360–4380. [Google Scholar] [CrossRef] [PubMed]
- Polati, R.; Menini, M.; Robotti, E.; Millioni, R.; Marengo, E.; Novelli, E.; Balzan, S.; Cecconi, D. Proteomic changes involved in tenderization of bovine Longissimus dorsi muscle during prolonged ageing. Food Chem. 2012, 135, 2052–2069. [Google Scholar] [CrossRef] [PubMed]
- Zapata, I.; Zerby, H.N.; Wick, M. Functional proteomic analysis predicts beef tenderness and the tenderness differential. J. Agric. Food Chem. 2009, 57, 4956–4963. [Google Scholar] [CrossRef] [PubMed]
- Morzel, M.; Terlouw, C.; Chambon, C.; Micol, D.; Picard, B. Muscle proteome and meat eating qualities of Longissimus thoracis of “Blonde d’Aquitaine” young bulls: A central role of HSP27 isoforms. Meat Sci. 2008, 78, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.E.; Gasparin, G.; Poleti, M.D.; Rosa, A.F.; Balieiro, J.C.; Labate, C.A.; Nassu, R.T.; Tullio, R.R.; Regitano, L.C.; Mourao, G.B.; et al. Heat shock and structural proteins associated with meat tenderness in Nellore beef cattle, a Bos indicus breed. Meat Sci. 2014, 96, 1318–1324. [Google Scholar] [CrossRef]
- Thornton, K.J.; Chapalamadugu, K.C.; Eldredge, E.M.; Murdoch, G.K. Analysis of Longissimus thoracis Protein Expression Associated with Variation in Carcass Quality Grade and Marbling of Beef Cattle Raised in the Pacific Northwestern United States. J. Agric. Food Chem. 2017, 65, 1434–1442. [Google Scholar] [CrossRef]
- DeLany, J.P.; Floyd, Z.E.; Zvonic, S.; Smith, A.; Gravois, A.; Reiners, E.; Wu, X.; Kilroy, G.; Lefevre, M.; Gimble, J.M. Proteomic Analysis of Primary Cultures of Human Adipose-derived Stem Cells. Modul. Adipogenes. 2005, 4, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Sriram, S.; Chan, X.H.D.; Ong, W.K.; Yeo, C.R.; Tan, B.; Lee, S.-A.; Kong, K.V.; Hoon, S.; Jiang, H.; et al. Retinoic Acid Mediates Visceral-Specific Adipogenic Defects of Human Adipose-Derived Stem Cells. Diabetes 2016, 65, 1164–1178. [Google Scholar] [CrossRef] [Green Version]
- Grabez, V.; Kathri, M.; Phung, V.; Moe, K.M.; Slinde, E.; Skaugen, M.; Saarem, K.; Egelandsdal, B. Protein expression and oxygen consumption rate of early postmortem mitochondria relate to meat tenderness. J. Anim. Sci. 2015, 93, 1967–1979. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Ekman, M.; Grove, H.; Faergestad, E.M.; Aass, L.; Hildrum, K.I.; Hollung, K. Proteome changes in bovine longissimus thoracis muscle during the early postmortem storage period. J. Proteome Res. 2007, 6, 2720–2731. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yu, Q.Q.; Fu, Y.; Tian, X.J.; Jia, F.; Li, X.M.; Dai, R.T. Towards muscle-specific meat color stability of Chinese Luxi yellow cattle: A proteomic insight into post-mortem storage. J. Proteom. 2016, 147, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Vasiliou, V.; Thompson, D.C.; Smith, C.; Fujita, M.; Chen, Y. Aldehyde dehydrogenases: From eye crystallins to metabolic disease and cancer stem cells. Chem. Biol. Interact. 2013, 202, 2–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, K.; Motoyama, M.; Narita, T.; Hagi, T.; Ojima, K.; Oe, M.; Nakajima, I.; Kitsunai, K.; Saito, Y.; Hatori, H.; et al. Characterization and classification of Japanese consumer perceptions for beef tenderness using descriptive texture characteristics assessed by a trained sensory panel. Meat Sci. 2014, 96, 994–1002. [Google Scholar] [CrossRef]
- Bonnet, M.; Faulconnier, Y.; Leroux, C.; Jurie, C.; Cassar-Malek, I.; Bauchart, D.; Boulesteix, P.; Pethick, D.; Hocquette, J.F.; Chilliard, Y. Glucose-6-phosphate dehydrogenase and leptin are related to marbling differences among Limousin and Angus or Japanese Black × Angus steers1,2. J. Anim. Sci. 2007, 85, 2882–2894. [Google Scholar] [CrossRef] [Green Version]
- Ertbjerg, P.; Puolanne, E. Muscle structure, sarcomere length and influences on meat quality: A review. Meat Sci. 2017, 132, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Lana, A.; Zolla, L. Proteolysis in meat tenderization from the point of view of each single protein: A proteomic perspective. J. Proteom. 2016, 147, 85–97. [Google Scholar] [CrossRef]
- Picard, B.; Gagaoua, M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. J. Agric. Food Chem. 2020, 68, 6021–6039. [Google Scholar] [CrossRef]
- Hocquette, J.-F.; Jurie, C.; Picard, B.; Alberti, P.; Panea, B.; Christensen, M.; Failla, S.; Gigli, S.; Levéziel, H.; Olleta, J.L.; et al. Metabolic and contractile characteristics of Longissimus thoracis muscle of young bulls from 15 European breeds in relationship with body composition. In Proceedings of the International Symposium on Energy and Protein Metabolism and Nutrition (ISEP 2007), Vichy, France, 9–13 September 2007; pp. 111–112. [Google Scholar]
- Poleti, M.D.; Regitano, L.C.A.; Souza, G.H.M.F.; Cesar, A.S.M.; Simas, R.C.; Silva-Vignato, B.; Oliveira, G.B.; Andrade, S.C.S.; Cameron, L.C.; Coutinho, L.L. Longissimus dorsi muscle label-free quantitative proteomic reveals biological mechanisms associated with intramuscular fat deposition. J. Proteom. 2018, 179, 30–41. [Google Scholar] [CrossRef]
- Poleti, M.D.; Regitano, L.C.A.; Souza, G.H.M.F.; Cesar, A.S.M.; Simas, R.C.; Silva-Vignato, B.; Montenegro, H.; Pértille, F.; Balieiro, J.C.C.; Cameron, L.C.; et al. Proteome alterations associated with the oleic acid and cis-9, trans-11 conjugated linoleic acid content in bovine skeletal muscle. J. Proteom. 2020, 222, 103792. [Google Scholar] [CrossRef]
- Zhao, C.; Zan, L.; Wang, Y.; Scott Updike, M.; Liu, G.; Bequette, B.J.; Baldwin Vi, R.L.; Song, J. Functional proteomic and interactome analysis of proteins associated with beef tenderness in Angus cattle. Livest. Sci. 2014, 161, 201–209. [Google Scholar] [CrossRef]
- Beldarrain, L.R.; Aldai, N.; Picard, B.; Sentandreu, E.; Navarro, J.L.; Sentandreu, M.A. Use of liquid isoelectric focusing (OFFGEL) on the discovery of meat tenderness biomarkers. J. Proteom. 2018, 183, 25–33. [Google Scholar] [CrossRef]
- Ouali, A. Meat Tenderization: Possible Causes and Mechanisms. A Review. J. Muscle Foods 1990, 1, 129–165. [Google Scholar] [CrossRef]
- Shathasivam, T.; Kislinger, T.; Gramolini, A.O. Genes, proteins and complexes: The multifaceted nature of FHL family proteins in diverse tissues. J. Cell. Mol. Med. 2010, 14, 2702–2720. [Google Scholar] [CrossRef] [Green Version]
- Laville, E.; Sayd, T.; Morzel, M.; Blinet, S.; Chambon, C.; Lepetit, J.; Renand, G.; Hocquette, J.F. Proteome changes during meat aging in tough and tender beef suggest the importance of apoptosis and protein solubility for beef aging and tenderization. J. Agric. Food Chem. 2009, 57, 10755–10764. [Google Scholar] [CrossRef]
- Bjarnadottir, S.G.; Hollung, K.; Hoy, M.; Bendixen, E.; Codrea, M.C.; Veiseth-Kent, E. Changes in protein abundance between tender and tough meat from bovine longissimus thoracis muscle assessed by isobaric Tag for Relative and Absolute Quantitation (iTRAQ) and 2-dimensional gel electrophoresis analysis. J. Anim. Sci. 2012, 90, 2035–2043. [Google Scholar] [CrossRef] [Green Version]
- Boudon, S.; Ounaissi, D.; Viala, D.; Monteils, V.; Picard, B.; Cassar-Malek, I. Label free shotgun proteomics for the identification of protein biomarkers for beef tenderness in muscle and plasma of heifers. J. Proteom. 2020, 217, 103685. [Google Scholar] [CrossRef]
- Wang, Y.H.; Bower, N.I.; Reverter, A.; Tan, S.H.; De Jager, N.; Wang, R.; McWilliam, S.M.; Cafe, L.M.; Greenwood, P.L.; Lehnert, S.A. Gene expression patterns during intramuscular fat development in cattle1. J. Anim. Sci. 2009, 87, 119–130. [Google Scholar] [CrossRef]
- Pillar, N.; Pleniceanu, O.; Fang, M.; Ziv, L.; Lahav, E.; Botchan, S.; Cheng, L.; Dekel, B.; Shomron, N. A rare variant in the FHL1 gene associated with X-linked recessive hypoparathyroidism. Hum. Genet. 2017, 136, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Carafoli, E. Calcium signaling: A tale for all seasons. Proc. Natl. Acad. Sci. USA 2002, 99, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Demaurex, N.; Distelhorst, C. Cell biology. Apoptosis--the calcium connection. Science 2003, 300, 65–67. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Lori, D.; Wells, D.J.; Kemp, P.R. FHL1 activates myostatin signalling in skeletal muscle and promotes atrophy. FEBS Open Bio 2015, 5, 753–762. [Google Scholar] [CrossRef] [Green Version]
- Malheiros, J.M.; Braga, C.P.; Grove, R.A.; Ribeiro, F.A.; Calkins, C.R.; Adamec, J.; Chardulo, L.A.L. Influence of oxidative damage to proteins on meat tenderness using a proteomics approach. Meat Sci. 2019, 148, 64–71. [Google Scholar] [CrossRef]
- Mato, A.; Rodríguez-Vázquez, R.; López-Pedrouso, M.; Bravo, S.; Franco, D.; Zapata, C. The first evidence of global meat phosphoproteome changes in response to pre-slaughter stress. BMC Genom. 2019, 20, 590. [Google Scholar] [CrossRef] [Green Version]
- Rosa, A.F.; Moncau, C.T.; Poleti, M.D.; Fonseca, L.D.; Balieiro, J.C.C.; Silva, S.L.E.; Eler, J.P. Proteome changes of beef in Nellore cattle with different genotypes for tenderness. Meat Sci. 2018, 138, 1–9. [Google Scholar] [CrossRef]
- Silva, L.H.P.; Rodrigues, R.T.S.; Assis, D.E.F.; Benedeti, P.D.B.; Duarte, M.S.; Chizzotti, M.L. Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. J. Proteom. 2019, 199, 51–66. [Google Scholar] [CrossRef]
- Marino, R.; Albenzio, M.; Della Malva, A.; Caroprese, M.; Santillo, A.; Sevi, A. Changes in meat quality traits and sarcoplasmic proteins during aging in three different cattle breeds. Meat Sci. 2014, 98, 178–186. [Google Scholar] [CrossRef]
- Didiasova, M.; Schaefer, L.; Wygrecka, M. When Place Matters: Shuttling of Enolase-1 across Cellular Compartments. Front. Cell Dev. Biol. 2019, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Sedoris, K.C.; Thomas, S.D.; Miller, D.M. Hypoxia induces differential translation of enolase/MBP-1. BMC Cancer 2010, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Fisher, A.B. Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling. Arch. Biochem. Biophys. 2017, 617, 68–83. [Google Scholar] [CrossRef] [Green Version]
- Arriga, R.; Pacifici, F.; Capuani, B.; Coppola, A.; Orlandi, A.; Scioli, M.G.; Pastore, D.; Andreadi, A.; Sbraccia, P.; Tesauro, M.; et al. Peroxiredoxin 6 Is a Key Antioxidant Enzyme in Modulating the Link between Glycemic and Lipogenic Metabolism. Oxidative Med. Cell. Longev. 2019, 2019, 9685607. [Google Scholar] [CrossRef]
- Cai, C.; Masumiya, H.; Weisleder, N.; Matsuda, N.; Nishi, M.; Hwang, M.; Ko, J.-K.; Lin, P.; Thornton, A.; Zhao, X.; et al. MG53 nucleates assembly of cell membrane repair machinery. Nat. Cell Biol. 2009, 11, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-Y.; Ko, Y.-G. TRIM72, a novel negative feedback regulator of myogenesis, is transcriptionally activated by the synergism of MyoD (or myogenin) and MEF2. Biochem. Biophys. Res. Commun. 2010, 396, 238–245. [Google Scholar] [CrossRef]
Protein Biomarkers Name (Gene) | Uniprot ID | Monoclonal (Mo) or Polyclonal (Po) Antibodies References | Antibody Dilutions |
---|---|---|---|
Energy metabolic enzymes | |||
Malate dehydrogenase (MDH1) | Q3T145 | Mo. anti-pig Rockland 100-601-145 | 1/1000 |
β-enolase 3 (ENO3) | Q3ZC09 | Mo. anti-human Abnova Eno3 (M01), clone 5D1 | 1/30,000 |
Retinal dehydrogenase 1 (ALDH1A1) | P48644 | Po. anti-bovine Abcam ab23375 | 1/500 |
Triosephosphate isomerase (TPI1) | Q5E956 | Po. anti-human Novus NBP1-31470 | 1/50,000 |
Phosphoglycerate kinase 1 (PGK1) | Q3T0P6 | Po. anti-human Abcam ab90787 | 1/5000 |
Fructose-bisphosphate aldolase (ALDOA) | A6QLL8 | Po. anti-human Sigma AV48130 | 1/4000 |
Glycogen phosphorylase (PYGB) | Q3B7M9 | Po. anti-human Santa Cruz SC-46347 | 1/250 |
Heat shock proteins | |||
Alpha-crystallin B chain (CRYAB) | P02510 | Mo. anti-bovine Assay Designs SPA-222 | 1/1000 |
Heat shock protein beta-6, Hsp20 (HSPB6) | Q148F8 | Mo. anti-human Santa Cruz HSP20-11:SC51955 | 1/500 |
Heat shock protein beta-1, Hsp27 (HSPB1) | Q3T149 | Mo. anti-human Santa Cruz HSP27 (F-4):SC13132 | 1/3000 |
DnaJ homolog subfamily A member 1, Hsp40 (DNAJA1) | Q5E954 | Mo. anti-human Santa Cruz HSP40-4 (SPM251):SC-56400 | 1/250 |
Heat shock 70 kDa protein 1A, Hsp70-1A (HSPA1A) | Q27975 | Mo. anti-human RD Systems MAB1663 | 1/1000 |
Oxidative stress proteins | |||
Peroxiredoxin-6 (PRDX6) | O77834 | Mo. anti-human Abnova PRDX6 (M01), clone 3A10-2A11 | 1/500 |
Structural proteins | |||
Myosin light chain 1/3 (MYL1) | A0JNJ5 | Po. anti-human Abnova MYL1 (A01) | 1/1000 |
Myosin heavy chain-IIx (MYH1) | Q9BE40 | Mo anti-bovine Biocytex 8F4 | 1/500 |
Troponin T, slow skeletal muscle (TNNT1) | Q8MKH6 | Po. anti-human Sigma SAB2102501 | 1/4000 |
Titin (TTN) | Q8WZ42 | Mo. anti-human Novocastra NCL-TITIN | 1/100 |
Tubulin alpha-4A chain (TUBA4A) | P81948 | Mo anti-human Sigma T6074 | 1/1000 |
Cell death and protein binding | |||
Tripartite motif protein 72 (TRIM72) | E1BE77 | Po. anti-human Sigma SAB2102571 | 1/2000 |
Four and a half LIM domains 1 (FHL1) | F1MR86 | Po. anti-human Sigma AV34378 | 1/5000 |
Protein Biomarkers 1 | WBSF | IMF |
---|---|---|
Energy metabolic enzymes | ||
MDH1 | −0.29 *** | −0.18 * |
ENO3 | −0.21 ** | - |
ALDH1A1 | +0.34 *** | +0.38 *** |
TPI1 | - | - |
PGK1 | −0.15 * | - |
ALDOA | - | - |
PYGB | - | - |
Heat shock proteins | ||
CRYAB | +0.32 *** | +0.37 *** |
HSP20 (HSPB6) | +0.21 ** | +0.31 *** |
HSP27 (HSPB1) | +0.28 *** | +0.22 ** |
HSP40 (DNAJA1) | - | - |
HSP70-1A | - | - |
Oxidative stress proteins | ||
PRDX6 | - | +0.20 * |
Structural proteins | ||
MYL1 | −0.18 * | - |
MYH1 | −0.26 *** | −0.26 ** |
TNNT1 | +0.22 ** | +0.15 * |
TTN | - | - |
TUBA4A | - | - |
Cell death and protein binding | ||
TRIM72 | - | −0.33 *** |
FHL1 | +0.18 * | +0.22 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gagaoua, M.; Bonnet, M.; Picard, B. Protein Array-Based Approach to Evaluate Biomarkers of Beef Tenderness and Marbling in Cows: Understanding of the Underlying Mechanisms and Prediction. Foods 2020, 9, 1180. https://doi.org/10.3390/foods9091180
Gagaoua M, Bonnet M, Picard B. Protein Array-Based Approach to Evaluate Biomarkers of Beef Tenderness and Marbling in Cows: Understanding of the Underlying Mechanisms and Prediction. Foods. 2020; 9(9):1180. https://doi.org/10.3390/foods9091180
Chicago/Turabian StyleGagaoua, Mohammed, Muriel Bonnet, and Brigitte Picard. 2020. "Protein Array-Based Approach to Evaluate Biomarkers of Beef Tenderness and Marbling in Cows: Understanding of the Underlying Mechanisms and Prediction" Foods 9, no. 9: 1180. https://doi.org/10.3390/foods9091180
APA StyleGagaoua, M., Bonnet, M., & Picard, B. (2020). Protein Array-Based Approach to Evaluate Biomarkers of Beef Tenderness and Marbling in Cows: Understanding of the Underlying Mechanisms and Prediction. Foods, 9(9), 1180. https://doi.org/10.3390/foods9091180