Development, Characterization, and Bioactivity of Non-Dairy Kefir-Like Fermented Beverage Based on Flaxseed Oil Cake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Flaxseed Oil Cake and Determiation of Cyanogenic Compounds
2.3. Fermentation
2.4. Determination of Total Solids Content (TSC), Protein Content (PC), Ash Content (AC), pH, and Titrable Acidity (TA)
2.5. Determination of Lactic Acid Bacteria and Yeast Viability
2.6. Firmness and Viscosity Measurements
2.7. Color Analysis
2.8. Preparation of Supernatants and Analysis of Antioxidant Activity
2.9. Determination of Reducing Power
2.10. Determination of Total Polyphenolics Content (TPC)
2.11. Determination of Total Flavonids Content (TFC)
2.12. Determination of Reducing Sugars Content (RSC)
2.13. Determination of Ascorbic Acid Content
2.14. Statistical Analysis
3. Results and Discussion
3.1. The Removal of Cyanogenic Compounds as a Result of Thermal Treatment
3.2. The Changes of Total Solids Content, Protein Content, Ash Content, pH, and Titrable Acidity
3.3. The Lactic Acid Bacteria and Yeast Survivability during Cold Storage
3.4. The Change of Color
3.5. Viscosity and Textural Changes
3.6. The Changes of Reducing Sugars, Total Phenolic, Total Flavonoid, and Ascorbic Acid Contents
3.7. The Changes of Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corona, O.; Randazzo, W.; Miceli, A.; Guarcello, R.; Francesca, N.; Erten, H.; Moschetti, G.; Settanni, L. Characterization of kefir-like beverages produced from vegetable juices. LWT—Food Sci. Technol. 2016, 66, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Sabokbar, N.; Moosavi-Nasab, M.; Khodaiyan, F. Preparation and characterization of an apple juice and whey based novel beverage fermented using kefir grains. Food Sci. Biotechnol. 2015, 24, 2095–2104. [Google Scholar] [CrossRef]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-J.; Huang, W.-C.; Lin, J.-S.; Chen, Y.-M.; Ho, S.-T.; Huang, C.-C.; Tung, Y.-T. Kefir Supplementation Modifies Gut Microbiota Composition, Reduces Physical Fatigue, and Improves Exercise Performance in Mice. Nutrients 2018, 10, 862. [Google Scholar] [CrossRef]
- Chen, Y.; Ouyang, X.; Laaksonen, O.; Liu, X.; Shao, Y.; Zhao, H.; Zhang, B.; Zhu, B. Effect of Lactobacillus acidophilus, Oenococcus oeni, and Lactobacillus brevis on Composition of Bog Bilberry Juice. Foods 2019, 8, 430. [Google Scholar] [CrossRef]
- Dmytrów, I.; Mituniewicz-Małek, A.; Ziarno, M.; Balejko, J. Storage stability of fermented milk with probiotic monoculture and transglutaminase. Czech J. Food Sci. 2019. [Google Scholar] [CrossRef]
- Puerari, C.; Magalhães, K.T.; Schwan, R.F. New cocoa pulp-based kefir beverages: Microbiological, chemical composition and sensory analysis. Food Res. Int. 2012, 48, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Mizielińska, M.; Łopusiewicz, Ł. Encapsulation and evaluation of probiotic bacteria survival in simulated gastrointestinal conditions. Rom Biotechnol Lett. 2018, 23, 13690–13696. [Google Scholar]
- Magalhães, K.T.; Dragone, G.; de Melo Pereira, G.V.; Oliveira, J.M.; Domingues, L.; Teixeira, J.A.; e Silva, J.B.A.; Schwan, R.F. Comparative study of the biochemical changes and volatile compound formations during the production of novel whey-based kefir beverages and traditional milk kefir. Food Chem. 2011, 126, 249–253. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, D.C.; de Oliveira Filho, J.G.; Santana, A.C.A.; de Freitas, B.S.M.; Silva, F.G.; Takeuchi, K.P.; Egea, M.B. Optimization of soymilk fermentation with kefir and the addition of inulin: Physicochemical, sensory and technological characteristics. LWT 2019, 104, 30–37. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Garcia, C.; Fessard, A.; Barba, F.; Munekata, P.; Lorenzo, J.; Remize, F. Nutritional and Microbiological Quality of Tiger Nut Tubers (Cyperus esculentus), Derived Plant-Based and Lactic Fermented Beverages. Fermentation 2018, 5, 3. [Google Scholar] [CrossRef]
- Koh, W.Y.; Utra, U.; Rosma, A.; Effarizah, M.E.; Rosli, W.I.W.; Park, Y.-H. Development of a novel fermented pumpkin-based beverage inoculated with water kefir grains: A response surface methodology approach. Food Sci. Biotechnol. 2017, 27, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Plessas, S.; Nouska, C.; Mantzourani, I.; Kourkoutas, Y.; Alexopoulos, A.; Bezirtzoglou, E. Microbiological Exploration of Different Types of Kefir Grains. Fermentation 2016, 3, 1. [Google Scholar] [CrossRef]
- Randazzo, W.; Corona, O.; Guarcello, R.; Francesca, N.; Germanà, M.A.; Erten, H.; Moschetti, G.; Settanni, L. Development of new non-dairy beverages from Mediterranean fruit juices fermented with water kefir microorganisms. Food Microbiol. 2016, 54, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Slattery, C.; Cotter, P.D.; W O’Toole, P. Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir. Nutrients 2019, 11, 1252. [Google Scholar] [CrossRef]
- Bensmira, M.; Jiang, B. Total phenolic compounds and antioxidant activity of a novel peanut based kefir. Food Sci. Biotechnol. 2015, 24, 1055–1060. [Google Scholar] [CrossRef]
- Atalar, I. Functional kefir production from high pressure homogenized hazelnut milk. LWT 2019, 107, 256–263. [Google Scholar] [CrossRef]
- Leite, A.M.O.; Leite, D.C.A.; Del Aguila, E.M.; Alvares, T.S.; Peixoto, R.S.; Miguel, M.A.L.; Silva, J.T.; Paschoalin, V.M.F. Microbiological and chemical characteristics of Brazilian kefir during fermentation and storage processes. J. Dairy Sci. 2013, 96, 4149–4159. [Google Scholar] [CrossRef]
- Sirirat, D.; Jelena, P. Bacterial Inhibition and Antioxidant Activity of Kefir Produced from Thai Jasmine Rice Milk. Biotechnology 2010, 9, 332–337. [Google Scholar] [CrossRef]
- Liu, J.-R.; Chen, M.-J.; Lin, C.-W. Antimutagenic and Antioxidant Properties of Milk−Kefir and Soymilk−Kefir. J. Agric. Food Chem. 2005, 53, 2467–2474. [Google Scholar] [CrossRef]
- Cui, X.-H.; Chen, S.-J.; Wang, Y.; Han, J.-R. Fermentation conditions of walnut milk beverage inoculated with kefir grains. LWT—Food Sci. Technol. 2013, 50, 349–352. [Google Scholar]
- Satir, G.; Guzel-Seydim, Z.B. Influence of Kefir fermentation on the bioactive substances of different breed goat milks. LWT—Food Sci. Technol. 2015, 63, 852–858. [Google Scholar]
- Ziarno, M.; Zaręba, D.; Henn, E.; Margas, E.; Nowak, M. Properties of non-dairy gluten-free millet-based fermented beverages developed with yoghurt cultures. J. Food Nutr. Res. 2019, 58, 21–30. [Google Scholar]
- Karina, T.M.-G.; Uéllina, S.S.; Marcia, R.S.; Ferlando, L.S.; Itaciara, L.N. Production of rice cereal-based Kefir beverage. Afr. J. Biotechnol. 2018, 17, 322–327. [Google Scholar] [CrossRef]
- Norberto, A.P.; Marmentini, R.P.; Carvalho, P.H.; Campagnollo, F.B.; Takeda, H.H.; Alberte, T.M.; Rocha, R.S.; Cruz, A.G.; Alvarenga, V.O.; Sant’Ana, A.S. Impact of partial and total replacement of milk by water-soluble soybean extract on fermentation and growth parameters of kefir microorganisms. LWT 2018, 93, 491–498. [Google Scholar]
- Ramachandran, S.; Singh, S.K.; Larroche, C.; Soccol, C.R.; Pandey, A. Oil cakes and their biotechnological applications—A review. Bioresour. Technol. 2007, 98, 2000–2009. [Google Scholar]
- Wang, R.; Shaarani, S.M.; Godoy, L.C.; Melikoglu, M.; Vergara, C.S.; Koutinas, A.; Webb, C. Bioconversion of rapeseed meal for the production of a generic microbial feedstock. Enzym. Microb. Technol. 2010, 47, 77–83. [Google Scholar] [CrossRef]
- Dzuvor, C.; Taylor, J.; Acquah, C.; Pan, S.; Agyei, D. Bioprocessing of Functional Ingredients from Flaxseed. Molecules 2018, 23, 2444. [Google Scholar] [Green Version]
- Parikh, M.; Maddaford, T.G.; Austria, J.A.; Aliani, M.; Netticadan, T.; Pierce, G.N. Dietary Flaxseed as a Strategy for Improving Human Health. Nutrients 2019, 11, 1171. [Google Scholar] [Green Version]
- Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed-a potential functional food source. J. Food Sci. Technol. 2015, 52, 1857–1871. [Google Scholar] [CrossRef]
- Imran, M.; Anjum, F.M.; Butt, M.S.; Siddiq, M.; Sheikh, M.A. Reduction of cyanogenic compounds in flaxseed (Linum usitatissimum L.) meal using thermal treatment. Int. J. Food Prop. 2013, 16, 1809–1818. [Google Scholar] [CrossRef]
- Feng, D.; Shen, Y.; Chavez, E.R. Effectiveness of different processing methods in reducing hydrogen cyanide content of flaxseed. J. Sci. Food Agric. 2003, 83, 836–841. [Google Scholar] [CrossRef]
- Roozegar, M.H.; Shahedi, M.; Keramet, J.; Hamdami, N.; Roshanak, S. Effect of coated and uncoated ground flaxseed addition on rheological, physical and sensory properties of Taftoon bread. J. Food Sci. Technol. 2015, 52, 5102–5110. [Google Scholar] [PubMed]
- Horwitz, W. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg MD, USA, 2000. [Google Scholar]
- Bernat, N.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Development of a non-dairy probiotic fermented product based on almond milk and inulin. Food Sci. Technol. Int. 2015, 21, 440–453. [Google Scholar] [CrossRef]
- Tong, T.; Liu, Y.-J.; Kang, J.; Zhang, C.-M.; Kang, S.-G. Antioxidant Activity and Main Chemical Components of a Novel Fermented Tea. Molecules 2019, 24, 2917. [Google Scholar] [CrossRef]
- Kim, N.J.; Jang, H.L.; Yoon, K.Y. Potato juice fermented with Lactobacillus casei as a probiotic functional beverage. Food Sci. Biotechnol. 2012, 21, 1301–1307. [Google Scholar] [CrossRef]
- Salachna, P.; Grzeszczuk, M.; Wilas, J. Total phenolic content, photosynthetic pigment concentration and antioxidant activity of leaves and bulbs of selected Eucomis L’Hér. taxa. Fresenius Environ. Bull. 2015, 24, 4220–4225. [Google Scholar]
- Hu, Y.; Ge, C.; Yuan, W.; Zhu, R.; Zhang, W.; Du, L.; Xue, J. Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. J. Sci. Food Agric. 2010, 90, 1194–1202. [Google Scholar] [CrossRef]
- Obadina, A.O.; Akinola, O.J.; Shittu, T.A.; Bakare, H.A. Effect of Natural Fermentation on the Chemical and Nutritional Composition of Fermented Soymilk Nono. Niger. Food J. 2013, 31, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Bernat, N.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Hazelnut milk fermentation using probiotic Lactobacillus rhamnosus GG and inulin. Int. J. Food Sci. Technol. 2014, 49, 2553–2562. [Google Scholar] [CrossRef]
- Simova, E.; Beshkova, D.; Angelov, A.; Hristozova, T.; Frengova, G.; Spasov, Z. Lactic acid bacteria and yeasts in kefir grains and kefir made from them. J. Ind. Microbiol. Biotechnol. 2002, 28, 1–6. [Google Scholar] [CrossRef] [PubMed]
- HadiNezhad, M.; Duc, C.; Han, N.F.; Hosseinian, F. Flaxseed Soluble Dietary Fibre Enhances Lactic Acid Bacterial Survival and Growth in Kefir and Possesses High Antioxidant Capacity. J. Food Res. 2013, 2, 152. [Google Scholar] [CrossRef]
- Daneshi, M. Effect of Cold Storage on Viability of Probiotic Bacteria in Carrot Fortified Milk. J. Nutr. Food Sci. 2012, 2, 2–5. [Google Scholar] [CrossRef]
- Reale, A.; Di Renzo, T.; Coppola, R. Factors affecting viability of selected probiotics during cheese-making of pasta filata dairy products obtained by direct-to-vat inoculation system. LWT 2019, 116, 108476. [Google Scholar] [CrossRef]
- Mani-López, E.; Palou, E.; López-Malo, A. Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. J. Dairy Sci. 2014, 97, 2578–2590. [Google Scholar] [CrossRef] [Green Version]
- McCue, P.P.; Shetty, K. Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochem. 2005, 40, 1791–1797. [Google Scholar] [CrossRef]
- Ding, W.; Wang, L.; Zhang, J.; Ke, W.; Zhou, J.; Zhu, J.; Guo, X.; Long, R. Characterization of antioxidant properties of lactic acid bacteria isolated from spontaneously fermented yak milk in the Tibetan Plateau. J. Funct. Foods 2017, 35, 481–488. [Google Scholar] [CrossRef]
- Reale, A.; Ianniello, R.G.; Ciocia, F.; Di Renzo, T.; Boscaino, F.; Ricciardi, A.; Coppola, R.; Parente, E.; Zotta, T.; McSweeney, P.L.H. Effect of respirative and catalase-positive Lactobacillus casei adjuncts on the production and quality of Cheddar-type cheese. Int. Dairy J. 2016, 63, 78–87. [Google Scholar] [CrossRef]
Sample * | Time of Storage (days) | |||||
---|---|---|---|---|---|---|
Unfermented Sample | 1 | 4 | 7 | 14 | 21 | |
TSC (%) | ||||||
A | 6.32 ± 1.95 Aa | 6.38 ± 0.82 Ba | 8.65 ± 2.81 Ca | 7.21 ± 1.35 Da | 4.82 ± 0.60 Ea | 1.01 ± 0.19 Fa |
B | 10.33 ± 0.93 Ab | 9.94 ± 0.72 Bb | 11.44 ± 0.46 Cb | 8.09 ± 0.35 Da | 8.05 ± 0.80 Eb | 7.69 ± 0.00 Fb |
C | 15.68 ± 3.53 Ac | 10.63 ± 0.88 Bb | 12.64 ± 1.86 Cc | 12.57 ± 0.68 Dc | 12.02 ± 0.66 Ec | 11.39 ± 0.53 Bc |
Protein content (mg/100 g) | ||||||
A | 152.42 ± 1.57 Aa | 141.42 ± 0.29 Ba | 201.81 ± 0.77 Ca | 171.82 ± 0.15 Da | 217.26 ± 2.77 Ea | 290.13 ± 0.91 Fa |
B | 284.90 ± 1.36 Ab | 299.90 ± 1.61 Bb | 332.27 ± 0.14 Cb | 231.21 ± 3.41 Db | 304.77 ± 3.65 Eb | 235.22 ± 0.64 Db |
C | 526.13 ± 0.87 Ac | 431.88 ± 0.93 Bc | 479.26 ± 0.46 Cc | 551.55 ± 0.92 Dc | 516.69 ± 0.51 Ec | 453.52 ± 0.96 Fc |
Ash content (%) | ||||||
A | 0.28 ± 0.01 Aa | 0.36 ± 0.01 Ba | 0.31 ± 0.01 Ca | 0.33 ± 0.01 Da | 0.35 ± 0.01 Ba | 0.31 ± 0.01 Ca |
B | 0.48 ± 0.01 Ab | 0.54 ± 0.01 Bb | 0.50 ± 0.01 Cb | 0.50 ± 0.01 Cb | 0.53 ± 0.01 Bb | 0.55 ± 0.01 Bb |
C | 0.52 ± 0.01 Ac | 0.69 ± 0.01 Bc | 0.63 ± 0.01 Cc | 0.67 ± 0.01 Dc | 0.69 ± 0.01 Bc | 0.73 ± 0.01 Ec |
pH | ||||||
A | 6.71 ± 0.02 Aa | 3.84 ± 0.01 Ba | 4.05 ± 0.07 Ca | 3.78 ± 0.01 Da | 3.99 ± 0.01 Ea | 3.89 ± 0.01 Fa |
B | 6.73 ± 0.01 Aa | 4.03 ± 0.01 Bb | 4.36 ± 0.01 Cb | 4.09 ± 0.01 Db | 4.58 ± 0.01 Eb | 4.16 ± 0.01 Fb |
C | 6.63 ± 0.01 Ab | 4.18 ± 0.01 Bc | 4.33 ± 0.01 Cb | 4.14 ± 0.01 Db | 4.26 ± 0.01 Ec | 4.12 ± 0.01 Fc |
TA (g lactic acid/100 mL) | ||||||
A | 0.05 ± 0.00 Aa | 0.54 ± 0.01 Ba | 0.74 ± 0.01 Ca | 1.17 ± 0.01 Da | 1.14 ± 0.03 Ea | 1.09 ± 0.02 Fa |
B | 0.08 ± 0.00 Ab | 0.67 ± 0.01 Bb | 0.77 ± 0.02 Ca | 1.01 ± 0.01 Db | 0.90 ± 0.04 Eb | 1.22 ± 0.02 Fb |
C | 0.09 ± 0.00 Ac | 0.68 ± 0.00 Bb | 1.17 ± 0.00 Cb | 1.25 ± 0.06 Da | 1.19 ± 0.01 Ec | 1.43 ± 0.01 Fc |
Sample * | Time of Storage (days) | ||||
---|---|---|---|---|---|
1 | 4 | 7 | 14 | 21 | |
LAB (CFU/mL) | |||||
A | 3.82 × 107 ± 0.64 Aa | 6.43 × 107 ± 0.04 Ba | 1.51 × 108 ± 0.35 Ca | 2.38 × 107 ± 0.40 Da | 2.64 × 107 ± 0.43 Ea |
B | 1.38 × 108 ± 0.13 Ab | 2.05 × 108 ± 0.26 Bb | 2.30 × 108 ± 2.83 Cb | 1.06 × 108 ± 0.14 Db | 3.25 × 107 ± 1.91 Eb |
C | 8.87 × 107 ± 2.10 Ac | 4.68 × 107 ± 0.32 Bc | 2.04 × 107 ± 1.36 Cc | 6.36 × 107 ± 0.40 Dc | 3.07 × 107 ± 0.47 Ec |
Yeast (CFU/mL) | |||||
A | 2.69 × 106 ± 0.84 Aa | 1.79 × 107 ± 2.07 Ba | 3.25 × 106 ± 0.50 Ca | 1.47 × 106 ± 0.20 Da | 1.56 × 106 ± 0.00 Ea |
B | 6.64 × 108 ± 4.75 Ab | 1.50 × 109 ± 0.40 Bb | 1.43 × 108 ± 0.11 Cb | 7.97 × 107 ± 2.23 Db | 1.97 × 106 ± 0.03 Eab |
C | 6.09 × 10 6± 2.57 Ac | 6.59 × 107 ± 0.06 Bc | 3.86 × 106 ± 0.50 Ca | 2.27 × 106 ± 0.03 Dc | 2.41 × 106 ± 0.19 Eb |
Sample * | Time of Storage (days) | |||||
---|---|---|---|---|---|---|
Unfermented Sample | 1 | 4 | 7 | 14 | 21 | |
L * | ||||||
A | 34.51 ± 0.45 Aa | 63.37 ± 0.03 Ba | 51.21 ± 0.04 Ca | 63.59 ± 0.08 Da | 63.10 ± 0.08 Ea | 63.13 ± 0.05 Ea |
B | 41.58 ± 0.03 Ab | 60.09 ± 0.04 Bb | 51.81 ± 0.02 Cb | 59.98 ± 0.05 Db | 59.44 ± 0.03 Eb | 59.93 ± 0.04 Db |
C | 49.96 ± 0.02 Ac | 57.20 ± 0.02 Bc | 50.82 ± 0.01 Cc | 57.47 ± 0.05 Dc | 55.17 ± 0.06 Ec | 57.23 ± 0.06 Ec |
a * | ||||||
A | 5.59 ± 0.01 Aa | 5.02 ± 0.01 Ba | 5.60 ± 0.02 Ca | 5.1 3± 0.01 Da | 5.17 ± 0.01 Ea | 5.17 ± 0.02 Fa |
B | 6.63 ± 0.01 Ab | 5.50 ± 0.00 Bb | 5.55 ± 0.00 Cb | 5.44 ± 0.01 Db | 5.31 ± 0.01 Eb | 5.77 ± 0.01 Fb |
C | 6.67 ± 0.01 Ac | 5.69 ± 0.01 Bc | 5.90 ± 0.01 Cc | 5.64 ± 0.01 Dc | 5.96 ± 0.01 Ec | 6.04 ± 0.01 Fc |
b * | ||||||
A | 12.64 ± 0.07 Aa | 13.94 ± 0.02 Ba | 14.55 ± 0.01 Ca | 13.65 ± 0.02 Da | 13.50 ± 0.01 Ea | 13.04 ± 0.02 Fa |
B | 15.39 ± 0.01 Ab | 14.16 ± 0.04 Bb | 13.74 ± 0.01 Cb | 14.18 ± 0.01 Db | 13.72 ± 0.08 Eb | 14.57 ± 0.04 Fb |
C | 16.13 ± 0.02 Ac | 15.01 ± 0.01 Bc | 15.31 ± 0.01 Cc | 14.25 ± 0.01 Dc | 15.33 ± 0.08 Ec | 15.41 ± 0.04 Fc |
Sample * | Time of Storage (days) | |||||
---|---|---|---|---|---|---|
Unfermented Sample | 1 | 4 | 7 | 14 | 21 | |
Viscosity (MPa·s) | ||||||
A | 244.05 ± 0.20 Aa | 545.44 ± 5.00 Ba | 112.47 ± 1.15 Ca | 101.74 ± 0.58 Da | 102.85 ± 2.05 Ea | 102.35 ± 0.06 Fa |
B | 271.11 ± 0.25 Ab | 1051.20 ± 5.33 Bb | 1149.66 ± 3.46 Cb | 1115.40 ± 0.58 Db | 1001.25 ± 0.52 Eb | 1084.40 ± 4.50 Fb |
C | 302.37 ± 0.52 Ac | 1075.78 ± 2.86 Bc | 2121.03 ± 2.31 Cc | 5089.96 ± 2.49 Dc | 4563.20 ± 0.46 Ec | 2969.15 ± 0.35 Fc |
Firmness (N) | ||||||
A | 0.16 ± 0.02 Aa | 0.20 ± 0.02 Ba | 0.22 ± 0.36 Ca | 0.16 ± 0.14 Da | 0.40 ± 0.54 Ea | 0.45 ± 0.03 Fa |
B | 0.25 ± 0.02 Ab | 0.27 ± 0.07 Bb | 0.34 ± 0.03 Ca | 0.39 ± 0.02 Da | 0.51 ± 0.05 Ea | 0.62 ± 0.95 Fab |
C | 0.40 ± 0.02 Ac | 0.59 ± 0.01 Bc | 1.06 ± 0.13 Cc | 0.99 ± 0.02 Db | 1.53 ± 0.24 Eb | 1.13 ± 0.10 Fb |
Sample * | Time of Storage (days) | |||||
---|---|---|---|---|---|---|
Unfermented Sample | 1 | 4 | 7 | 14 | 21 | |
RSC (mg/mL) | ||||||
A | 6.16 ± 0.01 Aa | 10.50 ± 0.01 Ba | 7.75 ± 0.01 Ca | 7.29 ± 0.01 Da | 3.92 ± 0.00 Ea | 4.12 ± 0.00 Fa |
B | 6.15 ± 0.02 Aa | 10.51 ± 0.00 Ba | 9.83 ± 0.01 Cb | 7.87 ± 0.00 Db | 5.67 ± 0.00 Eb | 5.22 ± 0.00 Fb |
C | 7.90 ± 0.00 Ab | 16.24 ± 0.02 Bb | 14.32 ± 0.01 Cc | 13.84 ± 0.01 Dc | 11.00 ± 0.01 Ec | 10.34 ± 0.01 Fc |
TPC (mg GAE/mL) | ||||||
A | 26.88 ± 0.03 Aa | 32.90 ± 0.08 Ba | 30.17 ± 0.04 Ca | 37.66 ± 0.08 Da | 39.59 ± 0.00 Ea | 48.87 ± 0.03 Fa |
B | 41.91 ± 0.15 Ab | 42.67 ± 0.06 Bb | 36.74 ± 0.06 Cb | 41.89 ± 0.03 Db | 35.24 ± 0.04 Eb | 38.73 ± 0.00 Fb |
C | 57.16 ± 0.15 Ac | 76.27 ± 0.11 Bc | 71.37 ± 0.21 Cc | 65.67 ± 0.08 Dc | 75.68 ± 0.18 Ec | 73.93 ± 0.15 Fc |
TFC (mg QE/mL) | ||||||
A | 6.03 ± 0.00 Aa | 6.26 ± 0.03 Ba | 5.48 ± 0.00 Ca | 6.13 ± 0.00 Da | 6.40 ± 0.00 Ea | 6.11 ± 0.03 Fa |
B | 10.16 ± 0.03 Ab | 10.95 ± 0.03 Bb | 10.84 ± 0.00 Cb | 9.55 ± 0.00 Db | 10.83 ± 0.15 Eb | 11.20 ± 0.03 Fb |
C | 11.74 ± 0.03 Ac | 13.68 ± 0.04 Bc | 14.49 ± 0.00 Cc | 15.88 ± 0.03 Dc | 13.28 ± 0.03 Ec | 16.27 ± 0.03 Fc |
AAC (mg/mL) | ||||||
A | 0.05 ± 0.01 Aa | 0.05 ± 0.00 Ba | 0.04 ± 0.01 Ba | 0.04 ± 0.01 Ba | 0.05 ± 0.01 Aa | 0.06 ± 0.01 Aa |
B | 0.06 ± 0.01 Aba | 0.04 ± 0.01 Bb | 0.05 ± 0.02 BCb | 0.06 ± 0.01 Cb | 0.06 ± 0.01 Cab | 0.06 ± 0.01 Ca |
C | 0.07 ± 0.00 Ab | 0.05 ± 0.01 Bb | 0.07 ± 0.00 Ab | 0.07 ± 0.01 ACb | 0.07 ± 0.00 Ab | 0.11 ± 0.01 Dc |
Sample * | Time of Storage (days) | |||||
---|---|---|---|---|---|---|
Unfermented Sample | 1 | 4 | 7 | 14 | 21 | |
RP (%) | ||||||
A | 65.60 ± 0.08 Aa | 77.15 ± 0.06 Ba | 84.03 ± 0.10 Ca | 86.88 ± 0.05 Da | 89.80 ± 0.10 Ea | 98.45 ± 0.08 Fa |
B | 81.60 ± 0.08 Ab | 76.65 ± 0.13 Bb | 78.75 ± 0.06 Cb | 81.10 ± 0.06 Db | 86.70 ± 0.08 Eb | 92.45 ± 0.00 Fb |
C | 92.73 ± 0.05 Ac | 95.88 ± 0.10 Bc | 91.28 ± 0.10 Cc | 96.28 ± 0.06 Dc | 94.05 ± 0.05 Ec | 91.75 ± 0.10 Fc |
DPPH inhibition (%) | ||||||
A | 50.52 ± 0.68 Aa | 76.21 ± 0.01 Ba | 79.02 ± 0.06 Ca | 78.33 ± 0.31 Da | 79.47 ± 0.02 Ea | 83.68 ± 0.06 Fa |
B | 80.52 ± 0.23 Ab | 94.88 ± 0.00 Bb | 95.25 ± 0.00 Cb | 96.32 ± 0.06 Db | 97.56 ± 0.00 Eb | 95.13 ± 0.00 Fb |
C | 85.98 ± 0.00 Ac | 97.44 ± 0.26 Bc | 96.71 ± 0.00 Cc | 94.64 ± 0.00 Dc | 97.02 ± 0.07 Ec | 97.47 ± 0.47 Fc |
ABTS inhibition (%) | ||||||
A | 68.13 ± 0.58 Aa | 77.43 ± 0.05 Ba | 83.95 ± 0.06 Ca | 81.98 ± 0.13 Da | 78.05 ± 0.06 Ea | 77.20 ± 0.26 Fa |
B | 68.60 ± 0.39 Ab | 84.53 ± 0.44 Bb | 83.35 ± 0.26 Cb | 80.90 ± 0.45 Db | 84.20 ± 0.22 Eb | 78.85 ± 0.44 Fb |
C | 69.78 ± 0.39 Ac | 76.58 ± 0.26 Bc | 79.35 ± 0.13 Cc | 87.60 ± 0.76 Dc | 79.45 ± 0.24 Cc | 78.63 ± 0.53 Dc |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łopusiewicz, Ł.; Drozłowska, E.; Siedlecka, P.; Mężyńska, M.; Bartkowiak, A.; Sienkiewicz, M.; Zielińska-Bliźniewska, H.; Kwiatkowski, P. Development, Characterization, and Bioactivity of Non-Dairy Kefir-Like Fermented Beverage Based on Flaxseed Oil Cake. Foods 2019, 8, 544. https://doi.org/10.3390/foods8110544
Łopusiewicz Ł, Drozłowska E, Siedlecka P, Mężyńska M, Bartkowiak A, Sienkiewicz M, Zielińska-Bliźniewska H, Kwiatkowski P. Development, Characterization, and Bioactivity of Non-Dairy Kefir-Like Fermented Beverage Based on Flaxseed Oil Cake. Foods. 2019; 8(11):544. https://doi.org/10.3390/foods8110544
Chicago/Turabian StyleŁopusiewicz, Łukasz, Emilia Drozłowska, Paulina Siedlecka, Monika Mężyńska, Artur Bartkowiak, Monika Sienkiewicz, Hanna Zielińska-Bliźniewska, and Paweł Kwiatkowski. 2019. "Development, Characterization, and Bioactivity of Non-Dairy Kefir-Like Fermented Beverage Based on Flaxseed Oil Cake" Foods 8, no. 11: 544. https://doi.org/10.3390/foods8110544
APA StyleŁopusiewicz, Ł., Drozłowska, E., Siedlecka, P., Mężyńska, M., Bartkowiak, A., Sienkiewicz, M., Zielińska-Bliźniewska, H., & Kwiatkowski, P. (2019). Development, Characterization, and Bioactivity of Non-Dairy Kefir-Like Fermented Beverage Based on Flaxseed Oil Cake. Foods, 8(11), 544. https://doi.org/10.3390/foods8110544