Sustainability Assessment of Alternative Thinning Operations in Mediterranean Softwood Plantations
<p>Specific productivity by treatment and work phase. Note: MM-WT = motor-manual whole-tree harvesting; MM-CTL = motor-manual cut-to-length harvesting; FM-WT = fully-mechanized whole-tree harvesting; FM-CTL = fully-mechanized cut-to-length harvesting.</p> "> Figure 2
<p>Ranking results of the multi-criteria analysis. Overall ranking of four alternative thinning operations. Phi (ϕ) indicates the degree of dominance of one alternative over another. Equal weights for the economic, environmental and social indicator cluster. Note: MM-WT = motor-manual whole-tree harvesting; MM-CTL = motor-manual cut-to-length harvesting; FM-WT = fully-mechanized whole-tree harvesting; FM-CTL = fully-mechanized cut-to-length harvesting.</p> "> Figure 3
<p>Preference results of the multi-criteria analysis. Preferences (Phi-values) for the four alternative thinning operations over all impact indicators. Note: MM-WT = motor-manual whole-tree harvesting; MM-CTL = motor-manual cut-to-length harvesting; FM-WT = fully-mechanized whole-tree harvesting; FM-CTL = fully-mechanized cut-to-length harvesting.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Approach
2.2. Supply Chain Modelling
2.3. System Description and Boundaries
2.4. Selection of Sustainability Indicators
2.5. Indicator Calculation
2.6. Biomass Removal and Retention
2.7. Multi-Criteria Analysis
2.8. Stand
2.9. Data Collection and Assumptions
3. Results
3.1. Material Flow and System Productivity
3.2. Indicator Results
3.3. Multi-Criteria Analysis of Harvesting Operations
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
MM | motor-manual |
FM | fully-mechanized |
WT | whole-tree |
CTL | cut-to-length |
SIA | sustainability impact assessment |
MCA | multi-criteria analysis |
PMH | productive machine hours, exclusive of delays |
gt | green tonne (fresh weight) |
CED | cumulated energy demand |
MJ | megajoules |
EE | energy efficiency |
GWP | global warming potential |
CO2 | carbon dioxide |
EP | eutrophication potential |
PO4 | phosphate |
POPC | photochemical ozone creation potential |
AP | acidification potential |
SO2 | sulfur dioxide |
FTE | full-time equivalent |
References
- Tapias, R.; Climent, J.; Pardos, J.; Gil, L. Life histories of Mediterranean pines. Plant Ecol. 2004, 171, 53–68. [Google Scholar] [CrossRef]
- Mercurio, R.; Spinelli, R. Exploring the silvicultural and economic viability of gap cutting in Mediterranean softwood plantations. For. Stud. China 2012, 14, 63–69. [Google Scholar] [CrossRef]
- Barbero, M.; Loiser, R.; Quezel, P.; Richardson, D.; Romane, F. Pines of the Mediterranean basin. In Ecology and Biogeography of Pinus; Richardson, D., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 153–170. ISBN 052-155-176-5. [Google Scholar]
- Mondino, G.; Bernetti, G. I tipi Forestali (Forest types); Regione Toscana, Giunta Regionale, Dipartimento dello Sviluppo Economico: Firenze, Italy, 1998; Available online: http://www.regione.toscana.it/-/i-tipi-forestali (accessed on 15 October 2017).
- Zerbe, S. Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations. For. Ecol. Manag. 2002, 167, 27–42. [Google Scholar] [CrossRef]
- Klvač, R. Forest Biomass Glossary; Cost Action FP0902; 2013. Available online: http://www.forestenergy.org/pages/cost-action-fp0902/glossary/ (accessed on 16 May 2018).
- Jacobson, S.; Kukkola, M.; Mälkönen, E.; Tveite, B. Impact of whole-tree harvesting and compensatory fertilization on growth of coniferous thinning stands. For. Ecol. Manag. 2000, 129, 41–51. [Google Scholar] [CrossRef]
- Smolander, A.; Kitunen, V.; Tamminen, P.; Kukkola, M. Removal of logging residue in Norway spruce thinning stands: Long-term changes in organic layer properties. Soil Biol. Biochem. 2010, 42, 1222–1228. [Google Scholar] [CrossRef]
- Kellogg, L.D.; Bettinger, P.; Studier, D. Terminology of Ground-Based Mechanized Logging in the Pacific Northwest; Research Contribution 1; Forest Research Laboratory, Oregon State University: Corvallis, OR, USA, 1993. [Google Scholar]
- Lindroos, O.; Lidestav, G.; Nordfjell, T. Swedish non-industrial private forest owners: A survey of self-employment and equipment investments. Small-Scale For. Econ. Manag. Policy 2005, 4, 409–425. [Google Scholar] [CrossRef]
- Tuomasjukka, D.; Athanassiadis, D.; Vis, M. Threefold sustainability impact assessment method comparison for renewable energy value chains. Int. J. For. Eng. 2017, 28, 116–122. [Google Scholar] [CrossRef]
- Lindner, M.; Suominen, T.; Palosuo, T.; Garcia-Gonzalo, J.; Verweij, P.; Zudin, S.; Päivinen, R. ToSIA. A tool for sustainability impact assessment of forest-wood-chains. Ecol. Model. 2010, 221, 2197–2205. [Google Scholar] [CrossRef]
- Päivinen, R.; Lindner, M.; Rosén, K.; Lexer, M.J. A concept for assessing sustainability impacts of forestry-wood chains. Eur. J. For. Res. 2012, 131, 7–19. [Google Scholar] [CrossRef]
- Institute for Environment, and Sustainability of European Commission. ILCD Handbook: Specific Guide for Life Cycle Inventory Data Sets; Publication Office of the European Union: Luxembourg, 2010; ISBN 978-92-79-19093-3. [Google Scholar]
- Päivinen, R.; Lindner, M. Assessment of sustainability of forestwood chains. In The Multifunctional Role of Forests-Policies, Methods and Case Studies; EFI Proceedings; Cesaro, L., Gatto, P., Pettenella, D., Eds.; European Forest Institute: Joensuu, Finland, 2008; pp. 153–160. [Google Scholar]
- Institut für Umweltinformatik (IFU). Umberto 5.6; IFU: Hamburg, Germany, 2011. [Google Scholar]
- Pülzl, H.; Prokofieva, I.; Berg, S.; Rametsteiner, E.; Aggestam, F.; Wolfslehner, B. Indicator development in sustainability impact assessment: Balancing theory and practice. Eur. J. For. Res. 2012, 131, 35–46. [Google Scholar] [CrossRef]
- OECD. Environmental Indicators. Towards Sustainable Development; OECD Publications: Paris, France, 2001. [Google Scholar]
- MCPFE (Ministerial Conference on the Protection of Forests in Europe). Improved Pan-European Indicators for Sustainable Forest Management; MCPFE Liaison Unit: Vienna, Austria, 2003; Available online: http://www.foresteurope.org/documentos/improved_indicators.pdf (accessed on 18 October 2017).
- International Organization of Standardization. ISO 14040: 2006. Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Ecoinvent. Swiss Centre for Life Cycle Inventories; Ecoinvent Centre, Empa: St. Gallen, Switzerland, 2010; Available online: http://www.ecoinvent.org/ (accessed on 1 October 2014).
- Meng, W. Baumverletzungen durch Transportvorgänge bei der Holzernte—Ausmaß und Verteilung, Folgeschäden am Holz und Versuch ihrer Bewertung. Doctoral thesis, Selbstverl. d. Landesforstverwaltung Baden-Württemberg, Stuttgart, Germany, 1978; p. 159. [Google Scholar]
- Spinelli, R.; Lombardini, C.; Magagnotti, N. Effect of mechanization level and harvesting system on the thinning cost of Mediterranean softwood plantations. Silva Fenn. 2014, 48. [Google Scholar] [CrossRef]
- Klun, J.; Medved, M. Fatal accidents in forestry in some European countries. Croat. J. For. Eng. 2007, 28, 55–62. [Google Scholar]
- Blombäck, P.; Poschen, P.; Lövgren, M. Employment Trends and Prospects in the European Forest Sector; Geneva Timber and Forest Discussion Papers, European Forest Sector Outlook Study (EFSOS); United Nations: Geneva, Switzerland, 2003. [Google Scholar]
- Ackerman, P.; Belbo, H.; Eliasson, L.; de Jong, A.; Lazdins, A.; Lyons, J. The COST model for calculation of forest operations costs. Int. J. For. Eng. 2014, 25, 75–81. [Google Scholar] [CrossRef]
- Björheden, R.; Apel, K.; Shiba, M.; Thompson, M.A. IUFRO Forest Work Study Nomenclature; Swedish University of Agricultural Science, Department of Operational Efficiency: Garpenberg, Sweden, 1995. [Google Scholar]
- Spinelli, R.; Visser, R. Analyzing and estimating delays in harvester operations. Int. J. For. Eng. 2008, 19, 35–40. [Google Scholar]
- Ghaffariyan, M.R.; Andonovski, V.; Brown, M. Application of slash-bundler for collecting harvest restudies in Eucalyptus plantation. Silva Balcan 2011, 1–2, 83–89. [Google Scholar]
- Triantaphyllou, E.; Shu, B.; Nieto Sanchez, S.; Ray, T. Multi-Criteria Decision Making: An Operations Research Approach. In Encyclopedia of Electrical and Electronics Engineering; John Wiley & Sons: New York, NY, USA, 2015; Volume 15, pp. 175–186. [Google Scholar]
- Diaz-Balteiro, L.; Romero, C. Making forestry decisions with multiple criteria: A review and an assessment. For. Ecol. Manag. 2008, 255, 3222–3241. [Google Scholar] [CrossRef]
- Acosta, M.; Corral, S. Multicriteria decision analysis and participatory decision support systems in forest management. Forests 2017, 8, 116. [Google Scholar] [CrossRef]
- Wolfslehner, B.; Brüchert, F.; Fischbach, J.; Rammer, W.; Becker, G.; Lindner, M.; Lexer, M.J. Exploratory multi-criteria analysis in sustainability impact assessment of forest-wood chains: The example of a regional case study in Baden-Württemberg. Eur. J. For. Res. 2012, 131, 47–56. [Google Scholar] [CrossRef]
- Brans, J.P.; Vincke, P.; Mareschal, B. How to select and how to rank projects: The PROMETHEE method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Wolfslehner, B.; Vacik, H.; Lexer, M.J. Application of the Analytic Network Process in multi-criteria analysis of sustainable forest management. For. Ecol. Manag. 2005, 207, 157–170. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Picchi, G. Complete tree harvesting as an alternative to mulching in early thinnings. For. Prod. J. 2009, 59, 79–84. [Google Scholar]
- Schweier, J.; Molina-Herrera, S.; Ghirardo, A.; Grote, R.; Díaz-Pinés, E.; Kreuzwieser, J.; Haas, E.; Butterbach-Bahl, K.; Rennenberg, H.; Schnitzler, J.-P.; et al. Environmental impacts of bioenergy wood production from poplar short rotation coppice grown at a marginal agricultural site in Germany. GCB Bioenergy 2016, 9, 1207–1221. [Google Scholar] [CrossRef]
- Achat, D.L.; Deleuze, C.; Landmann, G.; Pousse, N.; Ranger, J.; Augusto, L. Quantifying consequences of removing harvesting residues on forest soils and tree growth—A meta-analysis. For. Ecol. Manag. 2015, 348, 124–141. [Google Scholar] [CrossRef]
- Kaarakka, L.; Tamminen, P.; Saarsalmi, A.; Kukkola, M.; Helmisaari, H.-S.; Burton, A.J. Effects of repeated whole-tree harvesting on soil properties and tree growth in a Norway spruce (Picea abies (L.) Karst.) stand. For. Ecol. Manag. 2014, 313, 180–187. [Google Scholar] [CrossRef]
- Wall, A.; Hytönen, J. The long-term effects of logging residue removal on forest floor nutrient capital, foliar chemistry and growth of a Norway spruce stand. Biomass Bioenergy 2011, 35, 3328–3334. [Google Scholar] [CrossRef]
- Wall, A. Risk analysis of effects of whole-tree harvesting on site productivity. For. Ecol. Manag. 2012, 282, 175–184. [Google Scholar] [CrossRef]
- Olsson, B.A.; Staaf, H.; Lundkvist, H.; Bengtsson, J.; Rosen, K. Carbon and nitrogen in coniferous forest soils after clear-felling and harvests of different intensity. For. Ecol. Manag. 1996, 82, 19–32. [Google Scholar] [CrossRef]
- Clarke, N.; Gundersen, P.; Jönsson-Belyazid, U.; Kjønaas, O.J.; Persson, T.; Sigurdsson, B.D.; Stupak, I.; Vesterdal, L. Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems. For. Ecol. Manag. 2015, 351, 9–19. [Google Scholar] [CrossRef]
- Adebayo, A.; Han, H.; Johnson, L. Productivity and cost of cut-to-length and whole-tree harvesting in a mixed-conifer stand. For. Prod. J. 2007, 57, 59–69. [Google Scholar]
- Coates, E.; Cronin, B.; Kent, T. A comparison of biomass production and machine system productivity using three harvesting methods in a conifer first thinning. Irish For. 2016, 73, 122–140. [Google Scholar]
- Labelle, E.R.; Jaeger, D. Soil compaction caused by cut-to-length forest operations and possible short-term natural rehabilitation of soil density. Soil Sci. Soc. Am. J. 2011, 75, 2314–2329. [Google Scholar] [CrossRef]
- Kleibl, M.; Klvač, R.; Lombardini, C.; Porhaly, J.; Spinelli, R. Soil Compaction and Recovery after Mechanized Final Felling of Italian Coastal Pine Plantations. Croat. J. For. Eng. 2014, 35, 63–71. [Google Scholar]
- Allman, M.; Jankovský, M.; Messingerová, V.; Allmanová, Z.; Ferenčík, M. Soil compaction of various Central European forest soils caused by traffic of forestry machines with various chassis. For. Syst. 2015, 24, e038. [Google Scholar] [CrossRef]
- Jourgholami, M.; Fathi, K.; Labelle, E.R. Effects of foliage and traffic intensity on runoff and sediment in skid trails after trafficking in a deciduous forest. Eur. J. For. Res. 2018. [Google Scholar] [CrossRef]
- Rodrigues, C.K.; da Silva Lopes, E.; Polizeli, K.M.V.C.; Müller, M.M.L. Soil compaction due to wood harvesting traffic at different extraction distances. Floresta e Ambiente 2018, 25, e20160045. [Google Scholar] [CrossRef]
- Albizu-Urionabarrenetxea, P.M.; Tolosana-Esteban, E.; Roman-Jordan, E. Safety and health in forest harvesting operations. Diagnosis and preventive actions. A review. For. Syst. 2013, 22, 392–400. [Google Scholar] [CrossRef]
- Huth, A.; Drechsler, M.; Köhler, P. Using multicriteria decision analysis and a forest growth model to assess impacts of tree harvesting in Dipterocarp lowland rain forests. For. Ecol. Manag. 2005, 207, 215–232. [Google Scholar] [CrossRef]
- Kiker, G.A.; Bridges, T.S.; Varghese, A.; Seager, T.P.; Linkovjj, I. Application of Multicriteria Decision Analysis in Environmental Decision Making. Integr. Environ. Assess. Manag. 2005, 1, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Nordström, E.-M.; Eriksson, L.O.; Öhman, K. Integrating multiple criteria decision analysis in participatory forest planning: Experience from a case study in northern Sweden. For. Policy Econ. 2010, 12, 562–574. [Google Scholar] [CrossRef] [Green Version]
- Eggers, J.; Holmgren, S.; Nordström, E.-M.; Lämås, T.; Lind, T.; Öhman, K. Balancing different forest values: Evaluation of forest management scenarios in a multi-criteria decision analysis framework. For. Policy Econ. 2017. [Google Scholar] [CrossRef]
- Wolfslehner, B.; Huber, P.; Lexer, M.J. Smart use of small-diameter hardwood—A forestry-wood chain sustainability impact assessment in Austria. Scand. J. For. Res. 2013, 28, 184–192. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R.; Brown, M. Selecting the efficient harvesting method using multiple-criteria analysis: A case study in south-west Western Australia. J. For. Sci. 2013, 12, 479–486. [Google Scholar] [CrossRef]
No. | Indicator | Description | Unit |
---|---|---|---|
1 | Productivity | Rate of product output per unit of time for a production system. A productivity ratio may also be calculated for resources other than time. | PMH gt−1 |
2 | Costs | Sum of production costs (fixed costs accruing regardless of the rate of activity inclusive of personnel costs, as well as variable costs that vary with the quantity of production). | € gt−1 |
3 | Delays | Interruptions of the work process that can be related back to the organization of the work; commonly subdivided into the categories mechanical (e.g., repair), personnel (e.g., rest breaks) and operational delays (e.g., waiting times). | % of total working time |
4 | GWP | The potential of global warming is mainly caused by the release of greenhouse gas emissions due to anthropogenic activities such as fossil fuel combustion, chemical processing and transportation. | kg CO2-eq. gt−1 |
5 | CED of fossil energy | The cumulative energy demand of fossil energy investigates the energy use throughout the overall life cycle, including the use of direct and indirect consumption of energy due to the use of materials. | MJ gt−1 |
6 | EP | Potential eutrophication due to some substances, calculated through the conversion factor of phosphorous and nitrogen compounds into phosphorous equivalents. | kg PO4-eq. gt−1 |
7 | POPC (low NOx) | The potential of photochemical ozone creation, also known as summer smog, contains nitrogen oxides and volatile organic compounds. | kg ethylene gt−1 |
8 | AP | Potential acidification due to atmospheric deposition of sulfur and nitrogen. | kg SO2-eq. gt−1 |
9 | Employment | Rate of full-time employments related to forest operations. | FTE 1000 gt−1 |
10 | Fatal accident | Fatal accidents related to forest operations. | Fatalities 10−6 gt−1 |
11 | Tree damage | Percentage of stand damage after forest operations (excluding wounds with an exposed surface <10 cm²). | % of total trees |
12 | Soil compaction | The increase of bulk density was used to show possible soil compaction. | Difference in % (untrafficked/trafficked) |
Forest-Wood Chain | Biomass Volume (gt ha−1) |
---|---|
1-MM-WT | 51.0 |
2-MM-CTL | 29.6 |
3-FM-WT | 53.9 |
4-FM-CTL | 33.5 |
Indicator | Unit | Process | 1-MM-WT | 2-MM-CTL | 3-FM-WT | 4-FM-CTL |
---|---|---|---|---|---|---|
Costs | € gt−1 | felling | 27.70 | 40.40 | 2.76 | 8.99 |
extraction | 8.72 | 32.50 | 2.69 | 5.90 | ||
chipping | 3.94 | 4.29 | 4.55 | 4.39 | ||
total value | 40.36 | 77.19 | 9.99 | 19.28 | ||
Delay | % | felling | 54.00 | 54.00 | 19.00 | 10.00 |
extraction | 28.00 | 28.00 | 10.00 | 10.00 | ||
chipping | 17.00 | 17.00 | 17.00 | 17.00 | ||
total value | 29.70 | 29.70 | 14.40 | 11.70 | ||
GWP | kg CO2-eq. gt−1 | felling | 0.43 | 0.58 | 0.68 | 1.73 |
extraction | 1.16 | 4.01 | 0.58 | 1.01 | ||
chipping | 0.89 | 0.96 | 1.12 | 1.11 | ||
total value | 2.49 | 5.55 | 2.37 | 3.85 | ||
CED of | MJ gt−1 | felling | 29.89 | 39.98 | 34.93 | 100.50 |
fossil energy | extraction | 65.04 | 209.23 | 33.02 | 57.37 | |
chipping | 61.21 | 65.06 | 69.80 | 70.05 | ||
total value | 156.14 | 314.27 | 137.75 | 227,92 | ||
EP | kg PO4-eq gt−1 | felling | 0.0006 | 0.0021 | 0.0012 | 0.0031 |
extraction | 0.0023 | 0.0120 | 0.0010 | 0.0017 | ||
chipping | 0.0017 | 0.0034 | 0.0018 | 0.0018 | ||
total value | 0.0046 | 0.0175 | 0.0040 | 0.0066 | ||
POPC | kg ethylene gt−1 | felling | 0.0001 | 0.0001 | 0.0002 | 0.0005 |
(low NOx) | extraction | 0.0004 | 0.0010 | 0.0002 | 0.0003 | |
chipping | 0.0003 | 0.0007 | 0.0004 | 0.0004 | ||
total value | 0.0008 | 0.0019 | 0.0008 | 0.0012 | ||
AP | kg SO2-eq gt−1 | felling | 0.0038 | 0.0051 | 0.0042 | 0.0120 |
extraction | 0.0091 | 0.0301 | 0.0036 | 0.0065 | ||
chipping | 0.0079 | 0.0084 | 0.0077 | 0.0075 | ||
total value | 0.0208 | 0.0437 | 0.0156 | 0.0260 | ||
Employment | FTE 1000 gt−1 | felling | 0.7976 | 1.1634 | 0.0188 | 0.0764 |
extraction | 0.1561 | 0.5817 | 0.0254 | 0.0542 | ||
chipping | 0.0192 | 0.0209 | 0.0221 | 0.0214 | ||
total value | 0.9729 | 1.7659 | 0.0664 | 0.1520 | ||
Fatal | fatalities 10−6 gt−1 | felling | n.a. | n.a. | n.a. | n.a. |
accident | extraction | n.a. | n.a. | n.a. | n.a. | |
chipping | n.a. | n.a. | n.a. | n.a. | ||
total value | 0.2168 | 0.2108 | 0.0259 | 0.0283 | ||
Tree damage | % trees | felling | n.a. | n.a. | n.a. | n.a. |
extraction | n.a. | n.a. | n.a. | n.a. | ||
chipping | n.a. | n.a. | n.a. | n.a. | ||
total value | 6.0 | 15.7 | 2.5 | 1.5 | ||
Soil | % difference | felling | n.a. | n.a. | n.a. | n.a. |
compaction | (untrafficked/ | extraction | n.a. | n.a. | n.a. | n.a. |
trafficked) | chipping | n.a. | n.a. | n.a. | n.a. | |
total value | −1.2 | 8.8 | 2.5 | 11.9 |
Indicator | Unit | 1-MM-WT | 2-MM-CTL | 3-FM-WT | 4-FM-CTL |
---|---|---|---|---|---|
Productivity | PMH ha−1 | 24.01 | 31.45 | 4.60 | 6.84 |
Costs | € ha−1 | 2058.52 | 2284.92 | 538.55 | 645.89 |
Delays | % | 29.70 | 29.70 | 14.40 | 11.70 |
GWP | kg CO2-eq. ha−1 | 126.91 | 164.21 | 127.68 | 128.83 |
CED of fossil energy | GJ-eq. ha−1 | 7.96 | 16.03 | 7.03 | 11.62 |
EP | kg PO4-eq. ha−1 | 0.23 | 0.52 | 0.22 | 0.22 |
POPC (low NOx) | kg ethylene ha−1 | 0.04 | 0.06 | 0.04 | 0.04 |
AP | kg SO2-eq. ha−1 | 1.06 | 1.29 | 0.84 | 0.87 |
Employment | FTE 1000 ha−1 | 49.62 | 52.27 | 3.58 | 5.09 |
Fatal accident | fatalities 10−6 ha−1 | 11.06 | 6.24 | 1.40 | 0.95 |
Tree damage | % trees | 6.00 | 15.70 | 2.50 | 1.50 |
Soil compaction | % difference | −1.20 | 8.80 | 2.50 | 11.90 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schweier, J.; Spinelli, R.; Magagnotti, N.; Wolfslehner, B.; Lexer, M.J. Sustainability Assessment of Alternative Thinning Operations in Mediterranean Softwood Plantations. Forests 2018, 9, 375. https://doi.org/10.3390/f9070375
Schweier J, Spinelli R, Magagnotti N, Wolfslehner B, Lexer MJ. Sustainability Assessment of Alternative Thinning Operations in Mediterranean Softwood Plantations. Forests. 2018; 9(7):375. https://doi.org/10.3390/f9070375
Chicago/Turabian StyleSchweier, Janine, Raffaele Spinelli, Natascia Magagnotti, Bernhard Wolfslehner, and Manfred J. Lexer. 2018. "Sustainability Assessment of Alternative Thinning Operations in Mediterranean Softwood Plantations" Forests 9, no. 7: 375. https://doi.org/10.3390/f9070375
APA StyleSchweier, J., Spinelli, R., Magagnotti, N., Wolfslehner, B., & Lexer, M. J. (2018). Sustainability Assessment of Alternative Thinning Operations in Mediterranean Softwood Plantations. Forests, 9(7), 375. https://doi.org/10.3390/f9070375