A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space
"> Figure 1
<p>Study areas located within the Alpine Space.</p> "> Figure 2
<p>Basic steps of the tree matching workflow.</p> "> Figure 3
<p>Workflow of the matching procedure.</p> "> Figure 4
<p>Matching example visualized in Quantum GIS. The detected Test trees (green diamonds), Reference trees (red disks), Area of Interest (blue circle), and the matched connections (orange lines) are displayed together with a height-coded CHM.</p> "> Figure 5
<p>Bar graph examples for detection rates and spatial accuracy.</p> "> Figure 6
<p>Bar graphs of detection rates and accuracies of the different forest types.</p> "> Figure 7
<p>Overall performance of the tested methods.</p> ">
Abstract
:1. Introduction
2. Data and Materials
Study Area | Country | Localization | Field Inventory | Airborne Laser Scanning | ||||
---|---|---|---|---|---|---|---|---|
Nr. Plots | Total Size (ha) | Date | Date | Density (pts/m2) | Sensor | |||
Saint-Agnan | France | 44°52' N 5°25' E | 1 | 1.0 | 2010/7 | 2010/9 | 13 | Riegl LMS-Q560 |
Cotolivier | Italy | 45°2' N 6°46' E | 3 | 0.4 | 2012/9 | 2012/7 | 11 | Optech ALTM 3100 |
Berner Jura | Switzerland | 47°9' N 7°4' E | 1 | 0.1 | 2005 | 2011/4 | 5 | Leica ALS 70 |
Montafon | Austria | 47°4' N 9°58' E | 1 | 0.3 | 2009/6 | 2011/9 | 22 | Riegl LMS-Q560 |
Pellizzano | Italy | 46°18 N 10°46' E | 2 | 0.3 | 2013/8 | 2012/9 | 95–121 | Riegl LMS-Q680i |
Asiago | Italy | 45°49' N 11°30' E | 3 | 0.4 | 2012/10 | 2012/7 | 11 | Optech ALTM 3100 |
Tyrol | Austria | 47°23' N 11°44' E | 3 | 1.2 | 2010/11 | 2008/7 | 4–10 | Optech ALTM 3100 |
Leskova | Slovenia | 45°39' N 14°28' E | 4 | 0.8 | 2008/11 | 2009/10 | 30 | Riegl LMS-Q560 |
2.1. ALS Data
2.2. FI Data
2.2.1. Positioning
2.2.2. Classification
Plot # | Study Area | Plot Size (ha) | Caliper Threshold (cm) | Stem Density (/ha) | Mean Height (m) | Basal Area (m2/ha) | Mean Diameter (cm) | Stand Density Index | Coniferous Proportion (%) | Main species | Forest Class |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Saint-Agnan | 1.00 | 7.5 | 359 | 17.1 | 32.6 | 30.1 | 485 | 56 | Fir, beech | ML/M |
2 | Cotolivier | 0.13 | 4.0 | 843 | 18.1 | 50.5 | 25.8 | 889 | 97 | Scots pine, larch, and spruce | ML/C |
3 | Cotolivier | 0.13 | 4.0 | 390 | 16.5 | 34.3 | 29.7 | 514 | 92 | Scots pine and larch | SL/C |
4 | Cotolivier | 0.13 | 4.0 | 175 | 12.9 | 15.5 | 24.2 | 166 | 59 | Larch and sycamore | ML/M |
5 | Berner Jura | 0.10 | 12.0 | 340 | 29.8 | 67.6 | 47.7 | 959 | 100 | Spruce and fir | SL/C |
6 | Montafon | 0.30 | 10.0 | 400 | 13.9 | 35.7 | 25.0 | 401 | 100 | Spruce | ML/C |
7 | Pellizzano | 0.13 | 5.0 | 374 | 25.6 | 60.1 | 40.9 | 823 | 100 | Spruce, larch, and fir | SL/C |
8 | Pellizzano | 0.13 | 5.0 | 1870 | 13.7 | 68.1 | 16.7 | 974 | 80 | Larch, spruce, fir, sycamore, and poplar | ML/M |
9 | Asiago | 0.13 | 5.0 | 708 | 23.6 | 48.9 | 29.5 | 921 | 100 | Spruce and fir | SL/C |
10 | Asiago | 0.13 | 5.0 | 851 | 16.9 | 56.2 | 23.7 | 779 | 80 | Spruce, fir, and beech | ML/M |
11 | Asiago | 0.13 | 5.0 | 1344 | 13.9 | 37.9 | 16.0 | 660 | 28 | Spruce, fir, and beech | ML/M |
12 | Tyrol | 0.40 | 10.0 | 317 | 36.7 | 59.8 | 46.6 | 864 | 100 | Spruce | SL/C |
13 | Tyrol | 0.40 | 10.0 | 260 | 22.0 | 35.3 | 39.0 | 530 | 29 | Sycamore, beech, spruce, and fir | SL/M |
14 | Tyrol | 0.40 | 10.0 | 390 | 23.6 | 50.5 | 37.0 | 733 | 23 | Sycamore, beech, spruce, and pine | SL/M |
15 | Leskova | 0.20 | 10.0 | 265 | 22.9 | 29.1 | 34.2 | 439 | 76 | Fir, spruce, and beech | SL/M |
16 | Leskova | 0.20 | 10.0 | 185 | 24.6 | 27.6 | 22.0 | 359 | 78 | Fir, spruce, and beech | SL/M |
17 | Leskova | 0.20 | 10.0 | 585 | 20.6 | 38.2 | 25.5 | 603 | 47 | Fir, spruce, beech, sycamore, and elm | ML/M |
18 | Leskova | 0.20 | 10.0 | 460 | 24.6 | 54.0 | 32.7 | 708 | 53 | Fir, beech and sycamore | ML/M |
3. Methods
3.1. Methods of Participants
ID | Participant Name | Method | Raster/Point Cloud | Resolution of Raster (m) | Kernel Size (pixel) |
---|---|---|---|---|---|
1 | Irstea | LM + Filtering | R | 0.20 | 11 × 11 |
2 | FEM | LM + Region Growing | R | 0.50 | 5 × 5 |
3 | SFI | LM + Multi CHM | R | NA | 3 × 3 |
4 | TESAF | LM + Watershed | R | 0.50 | 3 × 3 |
5 | SLU | Segmentation + Clustering | R + P | 0.25 | - |
6 | TU Wien | LM 3 × 3 | R | 1.00 | 3 × 3 |
7 | TU Wien | LM 5 × 5 | R | 1.00 | 5 × 5 |
8 | UM-FERI | Polyn. Fitting + Watershed | R | 1.00 | 7 × 7 |
3.1.1. Method #1 (LM + Filtering)
- Calculation of rasterized products (0.2 × 0.2 m resolution) based on the ALS data. The DSM is computed by retaining the highest altitude value of the points located inside each pixel. A DTM is computed by resampling the provided DTM at 0.5 m resolution.
- Non-linear filtering. Void pixels and artefacts in the DSM are removed with a closing filter. A disk of radius 4 pixels is used as structuring element.
- Lowpass filtering. A smoothing filter, discrete approximation of a Gaussian kernel with sigma = 0.3 m, is applied to the DSM.
- Maxima extraction. A LM filtering with sliding window of size 11 × 11 pixels is applied to extract the LM.
- Maxima selection. Pixels that are a LM are retained if the value of the corresponding pixel in the CHM is superior to 7.5 m. The CHM is computed as the difference between the non-linear filtered DSM and the DTM.
3.1.2. Method #2 (LM + Region Growing)
- A low-pass (LP) filter is applied to the rasterized CHM. For the CHM, a spatial resolution of 0.5 × 0.5 m2 is used. For the LP filter, a window of 3 × 3 pixels is used.
- Seed points are defined using a moving window approach. The central pixel of a 5 × 5 pixel moving window is a seed point if it is (a) the highest point inside the window and (b) higher than 2.5 m.
- Initial regions are defined starting from the seed points, and a label map is defined: if is a seed point with index , otherwise .
- Region growing according to the following procedure:
- consider a label map point and take its neighbor pixels:
- a neighbor pixel is added to the region if:
- iterate over all the pixels , and repeat until no pixels are added to any region.
- From each region, extract the first return ALS points, and apply Otsu thresholding [33] to the normalized heights of the extracted points.
- Take only the first return ALS points higher than the Otsu threshold and apply a 2D convex hull to these points;
- The resulting polygons are the final tree crowns. The positions of the trees are defined as the position of the highest ALS point inside each crown. The height of the crown is defined as the 95th percentile of the first return ALS points inside the crown.
3.1.3. Method #3 (LM + Multi CHM)
3.1.4. Method #4 (LM + Watershed)
3.1.5. Method #5 (Segmentation + Clustering)
3.1.6. Method #6 (LM 3 × 3)
3.1.7. Method #7 (LM 5 × 5)
3.1.8. Method #8 (Polynomial Fitting + Watershed)
3.2. Tree Matching Process
3.2.1. Input Data
- Resulting single tree data from benchmark participants (hereinafter referred to as “Test”);
- Forest Inventory data of the study areas (hereinafter referred to as “Reference”); and
- Area of Interest of the study areas (hereinafter referred to as “AoI”).
3.2.2. Implementation of the Matching Algorithm
3.2.3. Candidate Search
Criterion | Height Test | Distance Test |
---|---|---|
1 | HTest ≤ 10 m and ΔH < 3 m | ΔD2D < 3 m |
2 | 10 m < HTest ≤ 15 m and ΔH < 3 m | ΔD2D < 4 m |
3 | 15 m < HTest ≤ 25 m and ΔH < 4 m | ΔD2D < 5 m |
4 | HTest > 25 m and ΔH < 4 m | ΔD2D < 5 m |
3.2.4. Candidate Voting
3.2.5. Candidate Testing
3.2.6. Products of the Matching Process
- -
- Number of extracted trees NTest and number of Reference trees NRef
- -
- Number of matched trees NMatch and commission errors NCom. NCom+NMatch=NTest
- -
- Extraction rate → Total number (NTest) or rate (NTest/NRef) of extracted Test trees by a method
- -
- Matching (assignment) rate → Total number (NMatch) or rate (NMatch/NRef) of matched trees
- -
- Commission rate → Total number (NCom) or rate (NCom/NTest) of Test trees that could not be matched
- -
- Omission rate → Total number (NOm=NRef-NMatch) or rate (NOm/NRef) of Reference trees that could not be matched
- -
- HMean → Mean of horizontal modulus of matching vectors (2D vector between Test and Reference)
- -
- VMean → Mean of tree height differences (ΔH between matched Test and Reference)
- -
- RMSextr → Root Mean Square of extraction rates
- -
- RMSass → Root Mean Square of matching rates
- -
- RMSH → Root Mean Square of HMean values
- -
- RMSV → Root Mean Square of VMean values
- -
- RMSCom → Root Mean Square of commission rates
- -
- RMSOm → Root Mean Square of omission rates
3.2.7. Validation of the Matching Procedure
4. Results
4.1. Validation of the Matching Procedure
Reference—Manual Interpretation | ||||
---|---|---|---|---|
Matching Result | Match | No Match | Totals | User’s Accuracy |
Match | 307 | 8 | 315 | 97% |
No match | 14 | 370 | 384 | 96% |
Totals | 321 | 378 | 699 | |
Producer’s accuracy | 96% | 98% | ||
Overall accuracy: 97% | Kappa: 0.94 |
4.2. Matching Results at Method Level
ID | Method | RMSextr. (%) Extraction Rate | RMSass. (%) Matching Rate | RMSCom (%) Commission Rate | RMSOm (%) Omission Rate | RMSH (m) Height Accuracy | RMSV (m) Planar Accuracy |
---|---|---|---|---|---|---|---|
1 | LM + Filtering | 51 | 45 | 9 | 59 | 1.6 | 0.9 |
2 | LM + Region Growing | 57 | 43 | 20 | 61 | 1.8 | 1.2 |
3 | LM + Multi CHM | 101 | 46 | 61 | 57 | 1.7 | 0.7 |
4 | LM + Watershed | 86 | 49 | 49 | 55 | 1.6 | 1.1 |
5 | Segment. + Clustering | 139 | 53 | 95 | 51 | 1.7 | 1.0 |
6 | LM 3 × 3 | 154 | 54 | 113 | 51 | 1.6 | 0.9 |
7 | LM 5 × 5 | 52 | 41 | 16 | 63 | 1.8 | 1.1 |
8 | Polyn. Fitting + Watersh. | 54 | 44 | 13 | 59 | 1.8 | 1.1 |
ID | Method | RMSass. 2–5 m | RMSass. 5–10 m | RMSass. 10–15 m | RMSass. 15–20 m | RMSass. > 20 m |
---|---|---|---|---|---|---|
1 | LM + Filtering | 0% | 3% | 16% | 35% | 72% |
2 | LM + Region Growing | 0% | 5% | 15% | 30% | 72% |
3 | LM + Multi CHM | 0% | 3% | 32% | 46% | 68% |
4 | LM + Watershed | 4% | 7% | 20% | 36% | 76% |
5 | Segment + Clustering | 15% | 17% | 32% | 45% | 76% |
6 | LM 3 × 3 | 4% | 6% | 28% | 44% | 82% |
7 | LM 5 × 5 | 2% | 4% | 14% | 24% | 66% |
8 | Polyn. Fitting + Watersh | 2% | 9% | 16% | 40% | 73% |
4.3. Matching Results by Forest Type
Type | Nr. Plots | RMSextr. | RMSass. | RMSCom | RMSOm | RMSH | RMSV |
---|---|---|---|---|---|---|---|
SL/M | 4 | 142% | 47% | 104% | 56% | 1.9 m | 0.9 m |
SL/C | 5 | 86% | 60% | 37% | 42% | 1.5 m | 1.1 m |
ML/M | 7 | 74% | 38% | 45% | 65% | 1.7 m | 0.8 m |
ML/C | 2 | 55% | 35% | 22% | 65% | 1.5 m | 1.6 m |
4.4. Overall Performance
5. Discussion
5.1. Input Data
- -
- false omission errors due to tree growth in diameter (small trees reaching the caliper threshold between the ALS and the field surveys);
- -
- false commission errors due to tree removal;
- -
- false commission errors combined with false omission errors due to tree growth in height, which exceeds the matching threshold.
5.2. Matching Results
5.3. Matching Results per Method
5.4. Matching Results per Forest Type
5.5. Overall Performance
5.6. Perspectives
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hyyppä, J.; Holopainen, M.; Olsson, H. Laser Scanning in Forests. Remote Sens. 2012, 4, 2919–2922. [Google Scholar] [CrossRef]
- Holopainen, M.; Vastaranta, M.; Hyyppä, J. Outlook for the next generation’s precision forestry in Finland. Forests 2014, 5, 1682–1694. [Google Scholar] [CrossRef]
- Franklin, S.E. Remote Sensing for Sustainable Forest Management; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2001. [Google Scholar]
- Wulder, M.A.; Bater, C.W.; Coops, N.C.; Hilker, T.; White, J.C. The role of lidar in sustainable forest management. For. Chron. 2008, 84, 807–826. [Google Scholar] [CrossRef]
- Akay, A.E.; Oğuz, H.; Karas, I.R.; Aruga, K. Using lidar technology in forestry activities. Environ. Monitor. Assess. 2009, 151, 117–125. [Google Scholar] [CrossRef]
- LidarComm. Second Largest Forest Products Company Realizes Multiple Benefits from LIDAR and Ortho Imagery. Available online: http://www10.giscafe.com/nbc/articles/view_article.php?articleid=432054 (accessed on 9 April 2015).
- NEWFOR Alpine Space Programme. European Territorial Cooperation 2007–2013. Available online: http://www.alpine-space.eu/projects/projects/detail/NEWFOR/show/ (accessed on 15 January 2015).
- Hollaus, M.; Wagner, W.; Schadauer, K.; Maier, B.; Gabler, K. Growing stock estimation for alpine forests in Austria: A robust lidar-based approach. Can. J. For. Res. 2009, 39, 1387–1400. [Google Scholar] [CrossRef]
- Holmgren, J. Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning. Scand. J. For. Res. 2004, 19, 543–553. [Google Scholar] [CrossRef]
- Hyyppa, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans. Geosci. Remote Sens. 2001, 39, 969–975. [Google Scholar] [CrossRef]
- Yao, W.; Krzystek, P.; Heurich, M. Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform lidar data. Remote Sens. Environ. 2012, 123, 368–380. [Google Scholar] [CrossRef]
- Korpela, I.; Dahlin, B.; Schäfer, H.; Bruun, E.; Haapaniemi, F.; Honkasalo, J.; Ilvesniemi, S.; Kuutti, V.; Linkosalmi, M.; Mustonen, J. Single-Tree Forest Inventory Using Lidar and Aerial Images for 3D Treetop Positioning, Species Recognition, Height and Crown Width Estimation. In Proceedings of ISPRS workshop on Laser Scanning and SilviLaser 2007, Espoo, Finland, 12–14 September 2007; pp. 227–233.
- Dalponte, M.; Bruzzone, L.; Gianelle, D. A system for the estimation of single-tree stem diameter and volume using multireturn lidar data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2479–2490. [Google Scholar] [CrossRef]
- Ancelin, P.; Barthelon, C.; Berger, F.; Cardew, M.; Chauvin, C.; Courbaud, B.; Descroix, L.; Dorren, L.; Fay, J.; Gaudry, P.; et al. Guide des Sylvicultures de Montagne Alpes du Nord Françaises; ONF/CEMAGREF: Grenoble, France, 2006; p. 154. [Google Scholar]
- Lafond, V.; Lagarrigues, G.; Cordonnier, T.; Courbaud, B. Uneven-aged management options to promote forest resilience for climate change adaptation: Effects of group selection and harvesting intensity. Ann. For. Sci. 2014, 71, 173–186. [Google Scholar] [CrossRef]
- Dorren, L. Rockyfor3D (v5.2) Revealed—Transparent Description of the Complete 3D Rockfall Model; Association ecorisQ: Geneva, Switzerland, 2015; p. 32. [Google Scholar]
- Kania, A.; Lindberg, E.; Schroiff, A.; Mücke, W.; Holmgren, J.; Pfeifer, N. Individual Tree Detection as Input Information for Natura 2000 Habitat Quality Mapping. In Proceedings of the Remote Sensing and GIS for Monitoring Habitat Quality—RSGIS4HQ, Vienna, Austria, 24–25 September 2014; p. 3.
- Brosofske, K.D.; Froese, R.E.; Falkowski, M.J.; Banskota, A. A review of methods for mapping and prediction of inventory attributes for operational forest management. For. Sci. 2014, 60, 733–756. [Google Scholar]
- Lindberg, E.; Hollaus, M. Comparison of methods for estimation of stem volume, stem number and basal area from airborne laser scanning data in a hemi-boreal forest. Remote Sens. 2012, 4, 1004–1023. [Google Scholar] [CrossRef]
- Maltamo, M.; Gobakken, T. Predicting Tree Diameter Distributions. In Forestry Applications of Airborne Laser Scanning; Maltamo, M., Næsset, E., Vauhkonen, J., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 27, pp. 177–191. [Google Scholar]
- Saad, R.; Wallerman, J.; Lämås, T. Estimating stem diameter distributions from airborne laser scanning data and their effects on long term forest management planning. Scand. J. For. Res. 2014, 11. [Google Scholar] [CrossRef]
- Xu, Q.; Hou, Z.; Maltamo, M.; Tokola, T. Calibration of area based diameter distribution with individual tree based diameter estimates using airborne laser scanning. ISPRS J. Photogramm. Remote Sens. 2014, 93, 65–75. [Google Scholar] [CrossRef]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sen. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Kaartinen, H.; Hyyppä, J.; Yu, X.; Vastaranta, M.; Hyyppä, H.; Kukko, A.; Holopainen, M.; Heipke, C.; Hirschmugl, M.; Morsdorf, F.; et al. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens. 2012, 4, 950–974. [Google Scholar] [CrossRef] [Green Version]
- Kaartinen, H.; Hyyppä, J. EuroSDR/ISPRS Project, Commission II “Tree Extraction”; Final Report; EuroSDR (European Spatial Data Research): Dublin, Ireland, 2008. [Google Scholar]
- Vauhkonen, J.; Ene, L.; Gupta, S.; Heinzel, J.; Holmgren, J.; Pitkänen, J.; Solberg, S.; Wang, Y.; Weinacker, H.; Hauglin, K.M.; et al. Comparative testing of single-tree detection algorithms under different types of forest. Forestry 2012, 85, 27–40. [Google Scholar] [CrossRef]
- Eysn, L.; Hollaus, M.; Monnet, J.-M.; Dalponte, M.; Kobal, M.; Pellegrini, M.; Lindberg, E.; Mongus, D.; Berger, F. NEWFOR—Single Tree Detection Benchmark—Report; NEWFOR: Wien, Austria, 2014; p. 87. [Google Scholar]
- NEWFOR. The NEWFOR Single Tree Detection Benchmark Dataset. Available online: http://www.newfor.net/download-newfor-single-tree-detection-benchmark-dataset/ (accessed on 1 Feburary 2015).
- QGIS Development Team QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://www.qgis.org (accessed on 11 March 2015).
- Monnet, J.-M.; Mermin, E.; Chanussot, J.; Berger, F. Tree Top Detection Using Local Maxima Filtering: A Parameter Sensitivity Analysis. In Proceedings of Silvilaser 2010, the 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems, Freiburg, Germany, 14–17 September 2010; p. 9.
- Monnet, J.-M. Using Airborne Laser Scanning for Mountain Forests Mapping: Support Vector Regression for Stand Parameters Estimation and Unsupervised Training for Treetop Detection. Ph.D. Thesis, University of Grenoble, Grenoble, France, 25 October 2011. [Google Scholar]
- Dalponte, M.; Frizzera, L.; Gianelle, D. Estimation of Forest Attributes at Single Tree Level Using Hyperspectral and ALS data. In Proceedings of the ForestSAT 2014, Riva del Garda, Italy, 4–7 November 2014.
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cyb. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Sambugaro, M.; Colpi, C.; Marzano, R.; Pellegrini, M.; Pirotti, F.; Lingua, E. Utilizzo Del Telerilevamento Per l’Analisi Della Biodiversità Strutturale: Il Caso Studio Della Riserva Forestale di Clöise (Asiago, VI). In Proceedings of the 17th Conferenza Nazionale ASITA, Riva del Garda, Italy, 5–7 November 2013; pp. 1171–1178.
- Koch, B.; Heyder, U.; Weinacker, H. Detection of individual tree crowns in airborne lidar data. Photogramm. Eng. Remote Sens. 2006, 72, 357–363. [Google Scholar] [CrossRef]
- ESRI ArcGIS Desktop: Release 10.2. Available online: http://www.esri.com/software/arcgis/arcgis-for-desktop (accessed on 30 November 2014).
- Lindberg, E.; Eysn, L.; Hollaus, M.; Holmgren, J.; Pfeifer, N. Delineation of tree crowns and tree species classification from full-waveform airborne laser scanning data using 3-d ellipsoidal clustering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3174–3181. [Google Scholar] [CrossRef]
- Eysn, L.; Hollaus, M.; Schadauer, K.; Pfeifer, N. Forest delineation based on airborne lidar data. Remote Sens. 2012, 4, 762–783. [Google Scholar] [CrossRef]
- Hollaus, M.; Mandlburger, G.; Pfeifer, N.; Mücke, W. Land Cover Dependent Derivation of Digital Surface Models from Airborne Laser Scanning Data. In Proceedings of the ISPRS Commission III Symposium PCV2010, Saint-Mandré, France, 1–3 September 2010; p. 6.
- OPALS Orientation and Processing of Airborne Laser Scanning Data. Available online: http://geo.tuwien.ac.at/opals (accessed on 1 Feburary 2015).
- Mongus, D.; Lukač, N.; Žalik, B. Ground and building extraction from lidar data based on differential morphological profiles and locally fitted surfaces. ISPRS J. Photogramm. Remote Sens. 2014, 93, 145–156. [Google Scholar] [CrossRef]
- Foundation, P.S. Python Language Reference, Version 2.7. Available online: http://www.python.org (accessed on 15 July 2014).
- Wallace, L.; Lucieer, A.; Watson, C.S. Evaluating tree detection and segmentation routines on very high resolution UAV lidar data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7619–7628. [Google Scholar] [CrossRef]
- Dorigo, W.; Hollaus, M.; Wagner, W.; Schadauer, K. An application-oriented automated approach for co-registration of forest inventory and airborne laser scanning data. Int. J. Remote Sens. 2010, 31, 1133–1153. [Google Scholar] [CrossRef]
- Monnet, J.-M.; Mermin, É. Cross-correlation of diameter measures for the co-registration of forest inventory plots with airborne laser scanning data. Forests 2014, 5, 2307–2326. [Google Scholar] [CrossRef]
- Hauglin, M.; Lien, V.; Næsset, E.; Gobakken, T. Geo-referencing forest field plots by co-registration of terrestrial and airborne laser scanning data. Int. J. Remote Sens. 2014, 35, 3135–3149. [Google Scholar] [CrossRef]
- Vega, C.; Hamrouni, A.; El Mokhtari, S.; Morel, J.; Bock, J.; Renaud, J.-P.; Bouvier, M.; Durrieu, S. PTrees: A point-based approach to forest tree extraction from lidar data. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 98–108. [Google Scholar] [CrossRef]
- Kandare, K.; Dalponte, M.; Gianelle, D.; Chan, J.C.W. A New Procedure For Identifying Single Trees in Understory Layer Using Discrete LiDAR Data. In Proceedings of 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 1357–1360.
- Reitberger, J.; Schnörr, C.; Krzystek, P.; Stilla, U. 3D segmentation of single trees exploiting full waveform lidar data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 561–574. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eysn, L.; Hollaus, M.; Lindberg, E.; Berger, F.; Monnet, J.-M.; Dalponte, M.; Kobal, M.; Pellegrini, M.; Lingua, E.; Mongus, D.; et al. A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space. Forests 2015, 6, 1721-1747. https://doi.org/10.3390/f6051721
Eysn L, Hollaus M, Lindberg E, Berger F, Monnet J-M, Dalponte M, Kobal M, Pellegrini M, Lingua E, Mongus D, et al. A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space. Forests. 2015; 6(5):1721-1747. https://doi.org/10.3390/f6051721
Chicago/Turabian StyleEysn, Lothar, Markus Hollaus, Eva Lindberg, Frédéric Berger, Jean-Matthieu Monnet, Michele Dalponte, Milan Kobal, Marco Pellegrini, Emanuele Lingua, Domen Mongus, and et al. 2015. "A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space" Forests 6, no. 5: 1721-1747. https://doi.org/10.3390/f6051721
APA StyleEysn, L., Hollaus, M., Lindberg, E., Berger, F., Monnet, J. -M., Dalponte, M., Kobal, M., Pellegrini, M., Lingua, E., Mongus, D., & Pfeifer, N. (2015). A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space. Forests, 6(5), 1721-1747. https://doi.org/10.3390/f6051721