A STELLA-Based Model to Simultaneously Predict Hydrological Processes, N Uptake and Biomass Production in a Eucalyptus Plantation
<p>Schematic diagram showing the water and N dynamics in a growing-eucalyptus plantation (<b>A</b>) with the modeled domain used in this study (<b>B</b>). The diagram is modified from Ouyang et al. [<a href="#B27-forests-12-00515" class="html-bibr">27</a>].</p> "> Figure 2
<p>A general STELLA model map showing soil water dynamics (<b>A</b>), N dynamics (<b>B</b>), and biomass production (<b>C</b>).</p> "> Figure 3
<p>A detailed explanation of the STELLA model.</p> "> Figure 4
<p>Comparison of model-predicted and field measured transpiration (<b>A</b>), N uptake (<b>B</b>), and ANPP (<b>C</b>) during the model calibration.</p> "> Figure 5
<p>Comparison of model-predicted and field measured transpiration (<b>A</b>), N uptake (<b>B</b>), and ANPP (<b>C</b>) during the model validation.</p> "> Figure 6
<p>Predicted rates of water use (<b>A</b>), N uptake (<b>B</b>), and NPP (<b>C</b>) during a 20-year simulation period.</p> "> Figure 7
<p>ANPP as a function of water use (<b>A</b>) and WUE as a function of eucalyptus age (<b>B</b>).</p> "> Figure 8
<p>ANPP as a function of N uptake (<b>A</b>); NUE as a function of eucalyptus age (<b>B</b>); and comparison of cumulative woody biomass, water use (transpiration), and N uptake for a simulation period of 17 years during the eucalyptus growing stage (<b>C</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. STELLA Model
2.3. Model Calibration and Validation
2.4. Model Scenario
3. Results and Discussion
3.1. Annual Variations of Water Use, N Uptake, and NPP
3.2. ANPP vs. Water Use
3.3. ANPP vs. N Uptake
3.4. Woody Biomass Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dye, P.J. Climate, forest and streamflow relationships in South African afforested catchments. Comm. Rev. 1996, 75, 31–38. [Google Scholar]
- Gonzalez, R.; Treasure, T.; Wright, J.; Saloni, D.; Phillips, R.; Abtb, R.; Jameel, H. Exploring the potential of eucalyptus for energy production in the Southern United States: Financial analysis of delivered biomass, Part I. Biomass Bioenergy 2011, 35, 755–766. [Google Scholar] [CrossRef]
- Albaugh, J.M.; Dye, P.J.; King, J.S. Eucalyptus and water use in South Africa. Int. J. For. Res. 2013, 2013, 852540. [Google Scholar]
- Callaham, M.A., Jr.; Stanturf, J.A.; Hammond, W.J.; Rockwood, D.L.; Wenk, E.S.; O’Brien, J.J. Survey to evaluate escape of Eucalyptus spp. seedlings from plantations in Southeastern USA. Int. J. For. Res. 2013, 2013, 946374. [Google Scholar]
- Valadão, M.B.X.; Carneiro, K.M.S.; Ribeiro, F.P.; Inkotte, J.; Rodrigues, M.I.; Mendes, T.R.; Vieira, D.A.; Matias, R.A.; Lima, M.B.; Miguel, E.P.; et al. Modeling Biomass and Nutrients in a Eucalyptus Stand in the Cerrado. Forests 2020, 11, 1097. [Google Scholar] [CrossRef]
- Sachs, R.M.; Gilpin, D.W.; Mock, T. Short-rotation eucalyptus as a biomass fuel. Calif. Agric. 1980, 34, 18–20. [Google Scholar]
- Hakamada, R.; Hubbard, R.M.; Ferraz, S.; Stape, J.L.; Lemos, C. Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes. South. For. 2017, 79, 251–257. [Google Scholar] [CrossRef]
- Dye, P.J. Estimating water use by Eucalyptus grandis with the Penman-Monteith equation. In Proceedings of the Vancouver Symposium of Forest Hydrology and Watershed Management; Swanson, R.H., Bernier, P.Y., Woodard, P.D., Eds.; IAHS Publication: Oxfordshire, UK, 1987; pp. 329–337. [Google Scholar]
- Olbrich, B.W.; Le Roux, D.; Poulter, A.G.; Bond, W.J.; Stock, W.D. Variation in water use efficiency and 13C levels in Eucalyptus grandis clones. J. Hydrol. 1993, 150, 615–633. [Google Scholar] [CrossRef]
- Soares, J.V.; Almeida, A.C. Modeling the water balance and soil water fluxes in a fast-growing Eucalyptus plantation in Brazil. J. Hydrol. 2001, 253, 130–147. [Google Scholar] [CrossRef]
- Scott, D.F.; Lesch, F. Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchments, South Africa. J. Hydrol. 1997, 199, 360–377. [Google Scholar] [CrossRef]
- Calder, I.R.; Hall, R.L.; Adlard, P.G. Growth and Water Use of Forest Plantations; John Wiley and Sons: Chichester, UK, 1992; p. 381. [Google Scholar]
- Morris, J.; Zhang, N.N.; Yang, Z.J.; Collopy, J.; Xu, D.P. Water use by fast-growing Eucalyptus urophylla plantations in southern China. Tree Physiol. 2004, 24, 1035–1044. [Google Scholar] [CrossRef] [Green Version]
- Poore, M.E.D.; Fries, C. The Ecological Effects of Eucalyptus; FAO Forestry Paper No. 59; Food and Agriculture Organization: Rome, Italy, 1985; p. 87. [Google Scholar]
- White, K.; Ball, J.; Kashio, M. Proceedings of the regional expert consultation on Eucalyptus, October 1993; RAPA Publication 1995/6; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 1995; p. 196. [Google Scholar]
- Casson, A. The Controversy Surrounding Eucalypts in Social Forestry Programs of Asia; Economics Division Working Paper 97/1; National Centre for Development Studies, Australian National University: Canberra, Australia, 1997; p. 46. [Google Scholar]
- Heilman, P. Sustaining production: Nutrient dynamics and soils. In Ecophysiology of Short Rotation Forest Crops; Mitchell, C.P., Ford-Robertson, J.B., Hinckley, T., Sennerby-Forsse, L., Eds.; Elsevier Applied Science: London, UK, 1992; pp. 216–230. [Google Scholar]
- Guo, L.B.; Sims, R.E.H.; Horne, D.J. Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zealand: II. Litter fall and nutrient return. Biomass Bioenergy 2002, 30, 393–404. [Google Scholar] [CrossRef]
- Stape, J.L.; Binkley, D.; Ryan, M.D. Eucalyptus production and the supply, use, and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil. For. Ecol. Manag. 2004, 193, 17–31. [Google Scholar] [CrossRef]
- Landsberg, J.J.; Waring, R.H. A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- McMurtrie, R.E.; Benson, M.L.; Linder, S.; Running, S.W.; Talsma, T.; Crane, W.J.B.; Myers, B.J. Water/nutrient interactions affecting the productivity of stands of Pinus radiata. For. Ecol. Manag. 1990, 30, 415–423. [Google Scholar] [CrossRef]
- Corbeels, M.; McMurtrie, R.E.; Pepper, D.A.; Mendham, D.S.; Grove, T.S.; O’Connell, A.M. Long-term changes in productivity of eucalypt plantations under different harvest residue and nitrogen management practices: A modelling analysis. For. Ecol. Manag. 2005, 217, 1–18. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, M.; Almeida, A.; Hevia, A.; Majada, J.; Beadle, C. Application of a process-based model for predicting the productivity of Eucalyptus nitens bioenergy plantations in Spain. Glob. Chang. Bioenergy 2016, 8, 194–210. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Z.; Chen, P.; Chen, X. Development of a tree growth difference equation and its application in forecasting the biomass carbon stocks of Chinese forests in 2050. Forests 2019, 10, 582. [Google Scholar] [CrossRef] [Green Version]
- Sanquetta, C.R.; Wojciechowski, J.; Corte, D.A.P.; Behling, A.; Netto, S.P.; Rodrigues, A.L.; Sanquetta, M.N.I. Comparison of data mining and allometric model in estimation of tree biomass. Bioinformatics 2015, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mendes, T.R.S.; Miguel, E.P.; Vasconcelos, P.G.A.; Valadão, M.B.X.; Rezende, A.V.; Matricardi, E.A.; Angelo, H.; Gatto, A.; Nappo, M.E. Use of aerial image in the estimation of volume and biomass of eucalyptus sp. forest stand. Aust. J. Crop. Sci. 2020, 14, 286–294. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zhang, J.E.; Leininger, T.D.; Frey, B. A STELLA model to estimate water and nitrogen dynamics in a short-rotation woody crop plantation. J. Environ. Qual. 2015, 44, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Xu, D.P.; Leininger, T.D.; Zhang, N.N. A system dynamic model to estimate hydrological processes and water use in a eucalypt plantation. Ecol. Eng. 2016, 86, 290–299. [Google Scholar] [CrossRef]
- Nobel, P.S. Biophysical Plant Physiology and Ecology; Freeman and Company: San Francisco, CA, USA, 1983. [Google Scholar]
- Zhang, H.; Guan, D.S.; Song, M.W. Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, South China. For. Ecol. Manag. 2012, 277, 90–97. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to Soil Physics; Academic Press: Orlando, FL, USA, 1982. [Google Scholar]
- Christensen, V.G.; Jian, X.; Ziegler, A.C. Regression Analysis and Real-Time Water-Quality Monitoring to Estimate Constituent Concentrations, Loads, and Yields in the Little Arkansas River, South-Central Kansas, 1995–1999: U.S. Geological Survey Water-Resources Investigations Report 00-4126 2000. p. 36. Available online: https://pubs.er.usgs.gov/publication/wri004126 (accessed on 19 April 2021).
- Ryberg, K.R. Continuous Water-Quality Monitoring and Regression Analysis to Estimate Constituent Concentrations and Loads in the Sheyenne River, North Dakota, 1980–2006: U.S. Geological Survey Scientific Investigations Report 2007–5153. 2007; p. 22. Available online: https://pubs.usgs.gov/sir/2007/5153/ (accessed on 19 April 2021).
- Nearing, M.A.; Liu, B.Y.; Risse, L.M.; Zhang, X. Curve number and Green-Ampt effective hydraulic conductivities. Water Resour. Bull. 1996, 32, 125–136. [Google Scholar] [CrossRef]
- Ferraz, S.F.B.; Rodrigues, C.B.; Garcia, L.G.; Alvares, C.A.; de Paula Lima, W. Effects of eucalyptus plantations on streamflow in Brazil: Moving beyond the water use debate. For. Ecol. Manag. 2019, 453, 117571. [Google Scholar] [CrossRef]
- He, L.; Chen, J.M.; Pan, Y.; Birdsey, R.; Kattge, J. Relationships between net primary productivity and forest stand age in U.S. forests. Glob. Biogeochem. Cycles 2012, 26, GB3009. [Google Scholar] [CrossRef]
- Drake, J.E.; Davis, S.C.; Raetz, L.M.; DeLucia, E.H. Mechanisms of age-related changes in forest production: The influence of physiological and successional changes. Glob. Chang. Biol. 2011, 17, 1522–1535. [Google Scholar] [CrossRef]
Equation | Constant | Value | Reference |
---|---|---|---|
(1) | a1 | 1.2 × 10−9 | Estimated and calibrated based on Morris et al. [13] |
(1) | a2 | −3.6 × 10−5 | Estimated and calibrated based on Morris et al. [13] |
(1) | a3 | 0.24 | Estimated and calibrated based on Morris et al. [13] |
(1) | a4 | 0.0025 | Estimated and calibrated based on Morris et al. [13] |
(3) | b1 | 3.0 | Ouyang et al. [27] |
(3) | b2 | −0.5 | Ouyang et al. [27] |
(3) | b3 | 12.5 | Ouyang et al. [27] |
(3) | b4 | 2.5 | Ouyang et al. [27] |
(4) | c1 | 9.0 | Estimated and calibrated based on Zhang et al. [30] |
(4) | c2 | −0.0005 | Estimated and calibrated based on Zhang et al. [30] |
(7) | d1 | 2500 | Model calibrated |
(7) | d2 | 0.01 | Model calibrated |
(7) | d3 | 0.00006 | Model calibrated |
(8) | e1 | −1.677 × 10−5 | Estimated and calibrated based on Stape et al. [19] |
(8) | e2 | 0.445 | Estimated and calibrated based on Stape et al. [19] |
(8) | e3 | 3.876 × 10−7 | Estimated and calibrated based on Stape et al. [19] |
(9) | f1 | −4.8 × 10−5 | Estimated and calibrated based on Stape et al. [19] |
(9) | f2 | 1.2 | Estimated and calibrated based on Stape et al. [19] |
(9) | f3 | 4.8 × 10−6 | Estimated and calibrated based on Stape et al. [19] |
Parameter | Value | Source |
---|---|---|
Soil Water | ||
Curve number | 38 | Nearing et al. [34] |
Rainfall (cm/h) | Time series measurements | Ouyang et al. [28] |
Plantation area (cm2) | 1.0 × 10+9 | Assumed |
Soil depth (cm) | 400 | Ouyang et al. [28] |
Soil porosity (cm3/cm3) | 0.35 | Ouyang et al. [28] |
Field capacity (cm3/cm3) | 0.31 | Hillel, 1982 [32] |
Wilting point | 0.16 | Ouyang et al. [29] |
Percolation coefficient (1/h) | 0.125 | Ouyang et al. [29] |
Initial soil water content (cm3/cm3) | 0.25 | Assumed |
Soil evaporation rate (cm3/cm2/h) | −10−14t3 + 3 × 10−11t2 + 6 × 10−07t + 0.0005 | Ouyang et al. [29] |
Initial soil water storage (cm3) | 1.2 × 10+11 | Calculated based on initial soil water content |
Nitrogen | ||
Initial dissolved SON (g/ha) | 31,200 | Ouyang et al. [29] |
SON mineralization rate | 0.005 | Ouyang et al. [29] |
Initial dissolved NH4 (g/ha) | 7500 | Ouyang et al. [29] |
Initial dissolved NO3 (g/ha) | 1500 | Ouyang et al. [29] |
NH4 nitrification rate (1/h) | 0.3 | Ouyang et al. [29] |
NH4 volatilization rate (1/h) | 0.00015 | Ouyang et al. [29] |
NH4 adsorption rate (1/h) | 0.0005 | Ouyang et al. [29] |
NO3 denitrification (1/h) | 0.005 | Ouyang et al. [29] |
Litter enzyme hydrolysis rate | 1.00 × 10−6 | Ouyang et al. [29] |
Application of N fertilizers | None | |
Eucalyptus | ||
Initial root water (cm3/ha) | 359,618,230.9 | Ouyang et al. [29] |
Initial stem water (cm3/ha) | 1,027,480,660 | Ouyang et al. [29] |
Initial leaf water (cm3/ha) | 1,027,480,660 | Ouyang et al. [29] |
Canopy transpiration (cm3/cm2/h) | 2 × 10−14t3–6 × 10−10t2 + 4 × 10−6t + 0.0025 | Ouyang et al. [29] |
Forest cover factor | 0.85 | Assumed |
Reflection coefficient | 0.001 | Calibrated based on Nobel [30] |
Diurnal factor | 3exp(−0.5((t − 12.5)/2.5)2) | Ouyang et al. [29] |
Litter fall (1/h) | 0.0006t | Estimated from Zhang et al. [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Y.; Feng, G.; Renninger, H.; Leininger, T.D.; Parajuli, P.; Grace, J.M. A STELLA-Based Model to Simultaneously Predict Hydrological Processes, N Uptake and Biomass Production in a Eucalyptus Plantation. Forests 2021, 12, 515. https://doi.org/10.3390/f12050515
Ouyang Y, Feng G, Renninger H, Leininger TD, Parajuli P, Grace JM. A STELLA-Based Model to Simultaneously Predict Hydrological Processes, N Uptake and Biomass Production in a Eucalyptus Plantation. Forests. 2021; 12(5):515. https://doi.org/10.3390/f12050515
Chicago/Turabian StyleOuyang, Ying, Gary Feng, Heidi Renninger, Theodor D. Leininger, Prem Parajuli, and Johnny M. Grace. 2021. "A STELLA-Based Model to Simultaneously Predict Hydrological Processes, N Uptake and Biomass Production in a Eucalyptus Plantation" Forests 12, no. 5: 515. https://doi.org/10.3390/f12050515
APA StyleOuyang, Y., Feng, G., Renninger, H., Leininger, T. D., Parajuli, P., & Grace, J. M. (2021). A STELLA-Based Model to Simultaneously Predict Hydrological Processes, N Uptake and Biomass Production in a Eucalyptus Plantation. Forests, 12(5), 515. https://doi.org/10.3390/f12050515