The Potential of High Resolution (5 m) RapidEye Optical Data to Estimate Above Ground Biomass at the National Level over Tanzania
<p>The ecological zone map of Tanzania [<a href="#B54-forests-10-00107" class="html-bibr">54</a>] with the location of the field plots (not to scale) to coincide with the satelite data. An excert of the points for one cluster overlaid on a RapidEye image is shown to the right.</p> "> Figure 2
<p>The RapidEye ABG map (<b>a</b>) for a sample centered on the 9° S 38° E confluence point and (<b>b</b>) the satellite image false colour composite (Shortwave Infrared (SWIR), Near-Infrared (NIR), Red). Cloud and cloud shadow are masked out in the first stages of the pre-processing, then image segments are assigned AGB values using the model developed using random forest.</p> "> Figure 2 Cont.
<p>The RapidEye ABG map (<b>a</b>) for a sample centered on the 9° S 38° E confluence point and (<b>b</b>) the satellite image false colour composite (Shortwave Infrared (SWIR), Near-Infrared (NIR), Red). Cloud and cloud shadow are masked out in the first stages of the pre-processing, then image segments are assigned AGB values using the model developed using random forest.</p> "> Figure 3
<p>Processing scheme to obtain 1 ha MMUs.</p> "> Figure 4
<p>Data extraction scheme.</p> "> Figure 5
<p>Box-plot of the importance of variables for AGB in the final Random forest model, showing the increase in mean standard error (MSE) when removing a variable (<span class="html-italic">y</span>-axis), and their importance on the x-axis. For the sake of simplicity, only the first 12 variables are shown. <span class="html-italic">RXSDX</span> denotes the ratio of the band X reflectance to its standard deviation.</p> "> Figure 6
<p>Scatterplot of predicted vs. modelled AGB in tha<sup>−1</sup> for the four models using the independent validation dataset. Both circle size and colour refer to the actual AGB. Model performance indicators are also shown in <a href="#forests-10-00107-t004" class="html-table">Table 4</a>. The blue line indicates the linear regression between the actual and modelled data and the grey area is the 95% confidence level interval.</p> ">
Abstract
:1. Introduction
1.1. Background to the Study—The REDD+ Initiative
1.2. Use of Remote Sensing Data to Map Above Ground Biomass
1.3. The Current Study
2. Materials and Methods
2.1. Study Area
2.2. NAFORMA Field Data
2.3. RapidEye Satellite Data
2.4. RapidEye Preprosessing—Radiometric Calibration
- ρλ = TOA reflectance for band λ
- Lλ = Radiance for band λ
- θSZ = Local solar zenith angle
- d = (1 − 0.01672 × cos (0.01745 × (0.9856 × (Julian Day Image − 4)))
2.5. RapidEye Preprosessing—Image Segmentation to Obtain The MMU
2.6. Cloud and Cloud Shadow Masking
2.7. Extraction of Remote Sensing Parameters for Developing Models for AGB
2.8. Reviewing the Field Plot Data with Respect to the Rapideye Data
- -
- The field data (15 m circle plots—circa 700 m2) cover 27 RapidEye pixels. However, the precision of the plot geolocation taken in the field (Garmin C60) had limited accuracy (+/−7 m). There are also known problems in changing between the Arc60 datum of topographic maps of East Africa used in the field survey, and that of the satellite reference datum, UTM-WGS84 [92];
- -
- there were a number of discrepancies in the geolocation of various RapidEye scenes, which after the review, were addressed by shifting images to a reference data base of Landsat scenes. Over 50 sample site images were shifted by up to 12 pixels, 30 in the X direction and 41 in the Y direction;
- -
- temporal differences; the field data collection took place over three years; satellite data were only available for one of these years. On average, the difference between field data collection and satellite image acquisition was 10 months (see Supplementary Materials Figure S1), with most of the field data collected after the image acquisition;
- -
- data collected in the field gave no systematic estimation of the respective cover of trees, shrubs, or other land cover classes, despite being foreseen in the original protocol. On a number of occasions, when given, the canopy cover did not correspond to that seen from the satellite image—perhaps due to problems of geolocation between the data sets, or differences in the time between the field visit and the image acquisition. Also, canopy density is known to be difficult to measure with accuracy from the ground [8];
- -
- the land cover classification given to the field teams was not adapted to providing adequate field data for calibrating remote sensing data. The vast majority of plots were classified as ‘woodland’, without further elaboration;
- -
- even if the land cover has not changed throughout the year, its condition does, especially in the tropics, predominantly due to seasonality. It may be in a lush green phase, drying out, exceptionally dry, burnt, or flooded. All these present different spectral signatures for the same land cover. We removed 33 plots that were burnt, 9 that were flooded, and 13 that had cloud or cloud shadow; and
- -
- finally, we found that the field plot was not always representative of the 1 ha image object on the remote sensing data.
2.9. Models for Predicting Above Ground Biomass
2.10. Interpolating the Results to the National Level
2.11. The Relative Efficiency to Measure the Improvement in Precision Brought by the Remote Sensing Data
3. Results
3.1. Model Results
3.2. Analysis at the National Level and by Ecoregion
3.3. Relative Efficiency
4. Discussion
4.1. Practical and Operational Consderations to Imprvve AGB Estimates from RapidEye Data
4.1.1. Co-Location of the Data Sets
4.1.2. Data Collected
4.1.3. Data Cleaning
4.1.4. Spectral Signatures
4.1.5. Ancillary Data
4.2. Reviewing the Results
4.2.1. Estimation by Ecozone
4.2.2. Relative Efficiency
4.2.3. Model Results
- (i)
- The limited sensitivity of satellite sensors to variations in canopy height and tree diameter in dense forests. Specifically, optical sensors’ radiometers (such as RapidEye) tend to saturate at high biomass in dense forest where there is a weak reflectance-biomass relationship, e.g., [103]. For this reason, the combined use optical data in combination with SAR and LiDAR data would improve results as shown in [104,105];
- (ii)
- we were limited to the use of single date imagery with most of the images acquired in the dry season when many seasonal forests have lost their leaves and are spectrally similar to low biomass grasslands; and
- (iii)
- RF is trained on a dataset where high biomass values represent the tail of the frequency distribution and therefore its performance decreases as the biomass increases.
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Van der Werf, G.R.; Morton, D.C.; DeFries, R.S.; Olivier, J.G.J.; Kasibhatla, P.S.; Jackson, R.B.; Collatz, G.J.; Randerson, J.T. CO2 emissions from forest loss. Nat. Geosci. 2009, 2, 737–738. [Google Scholar] [CrossRef]
- UNFCCCC. Report of the Conference of the Parties on Its Nineteenth Session, Held in Warsaw from 11 to 23 November 2013. Part One: Proceedings; United Nations Framework Convention on Climate Change: Bonn, Germany, 2014. [Google Scholar]
- IPCC. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 1996. [Google Scholar]
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry (GPG-LULUCF); IPCC: Geneva, Switzerland, 2003. [Google Scholar]
- GOFC-GOLD; Achard, F.; Boschetti, L.; Brown, S.; Brady, M.; DeFries, R.; Grassi, G.; Herold, M.; Mollicone, D.; Pandey, D.; et al. A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Associated with Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation. Available online: https://www.researchgate.net/publication/283417201_A_sourcebook_of_methods_and_procedures_for_monitoring_and_reporting_anthropogenic_greenhouse_gas_emissions_and_removals_associated_with_deforestation_gains_and_losses_of_carbon_stocks_in_forests_remai (accessed on 28 January 2019).
- Herold, M.; Román-Cuesta, R.M.; Mollicone, D.; Hirata, Y.; Van Laake, P.; Asner, G.P.; Souza, C.; Skutsch, M.; Avitabile, V.; MacDicken, K. Options for monitoring and estimating historical carbon emissions from forest degradation in the context of REDD+. Carbon Balance Manag. 2011, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Maniatis, D.; Mollicone, D. Options for sampling and stratification for national forest inventories to implement REDD+ under the UNFCCC. Carbon Balance Manag. 2010, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, S.; Brown, N.; Sheil, D. Assessing canopies and understorey illumination: Canopy closure, canopy cover and other measures. Forestry 1999, 72, 60–73. [Google Scholar] [CrossRef]
- Gonçalves, F.; Treuhaft, R.; Law, B.; Almeida, A.; Walker, W.; Baccini, A.; dos Santos, J.; Graça, P. Estimating Aboveground Biomass in Tropical Forests: Field Methods and Error Analysis for the Calibration of Remote Sensing Observations. Remote Sens. 2017, 9, 47. [Google Scholar] [CrossRef]
- Hansen, E.; Gobakken, T.; Solberg, S.; Kangas, A.; Ene, L.; Mauya, E.; Næsset, E. Relative Efficiency of ALS and InSAR for Biomass Estimation in a Tanzanian Rainforest. Remote Sens. 2015, 7, 9865–9885. [Google Scholar] [CrossRef] [Green Version]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Henry, M.; Picard, N.; Trotta, C.; Manlay, R.J.; Valentini, R.; Bernoux, M.; Saint-André, L. Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fennica 2011, 45, 477–569. [Google Scholar] [CrossRef]
- Lewis, S.L.; Sonke, B.; Sunderland, T.; Begne, S.K.; Lopez-Gonzalez, G.; van der Heijden, G.M.F.; Phillips, O.L.; Affum-Baffoe, K.; Baker, T.R.; Banin, L.; et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120295. [Google Scholar] [CrossRef]
- Feldpausch, T.R.; Banin, L.; Phillips, O.L.; Baker, T.R.; Lewis, S.L.; Quesada, C.A.; Affum-Baffoe, K.; Arets, E.J.M.M.; Berry, N.J.; Bird, M.; et al. Height-diameter allometry of tropical forest trees. Biogeosciences 2011, 8, 1081–1106. [Google Scholar] [CrossRef] [Green Version]
- Goetz, S.; Dubayah, R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manag. 2011, 2, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Timothy, D.; Onisimo, M.; Riyad, I. Quantifying aboveground biomass in African environments: A review of the trade-offs between sensor estimation accuracy and costs. Trop. Ecol. 2016, 57, 393–405. [Google Scholar]
- Goetz, S.J.; Hansen, M.; Houghton, R.A.; Walker, W.; Laporte, N.; Busch, J. Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environ. Res. Lett. 2015, 10, 123001. [Google Scholar] [CrossRef] [Green Version]
- Avitabile, V.; Herold, M.; Henry, M.; Schmullius, C. Mapping biomass with remote sensing: A comparison of methods for the case study of Uganda. Carbon Balance Manag. 2011, 6, 7. [Google Scholar] [CrossRef]
- Baccini, A.; Laporte, N.; Goetz, S.J.; Sun, M.; Dong, H. A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environ. Res. Lett. 2008, 3, 045011. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Asner, G.P.; Mascaro, J.; Muller-Landau, H.C.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.S.; van Breugel, M. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 2012, 168, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P.; Mascaro, J. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sens. Environ. 2014, 140, 614–624. [Google Scholar] [CrossRef]
- Hajj, M.E.; Baghdadi, N.; Fayad, I.; Vieilledent, G.; Bailly, J.-S.; Minh, D.H.T. Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas. Remote Sens. 2017, 9, 213. [Google Scholar] [CrossRef]
- Nelson, R.; Margolis, H.; Montesano, P.; Sun, G.; Cook, B.; Corp, L.; Andersen, H.-E.; deJong, B.; Pellat, F.P.; Fickel, T.; et al. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations. Remote Sens. Environ. 2017, 188, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M.; Boyd, D.S.; Cutler, M.E.J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens. Environ. 2003, 85, 463–474. [Google Scholar] [CrossRef]
- Ploton, P.; Pélissier, R.; Barbier, N.; Proisy, C.; Ramesh, B.R.; Couteron, P. Canopy Texture Analysis for Large-Scale Assessments of Tropical Forest Stand Structure and Biomass. In Treetops at Risk; Lowman, M., Devy, S., Ganesh, T., Eds.; Springer: New York, NY, USA, 2013; pp. 237–245. ISBN 978-1-4614-7160-8. [Google Scholar]
- Bastin, J.-F.; Barbier, N.; Couteron, P.; Adams, B.; Shapiro, A.; Bogaert, J.; De Cannière, C. Aboveground biomass mapping of African forest mosaics using canopy texture analysis: Toward a regional approach. Ecol. Appl. 2014, 24, 1984–2001. [Google Scholar] [CrossRef] [PubMed]
- Ploton, P. Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecol. Appl. 2012, 22, 993–1003. [Google Scholar] [CrossRef]
- Baynes, J. Assessing forest canopy density in a highly variable landscape using Landsat data and FCD Mapper software. Aust. For. 2004, 67, 247–253. [Google Scholar] [CrossRef]
- Gonzalez, P.; Asner, G.P.; Battles, J.J.; Lefsky, M.A.; Waring, K.M.; Palace, M. Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sens. Environ. 2010, 114, 1561–1575. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Langner, A.; Achard, F.; Grassi, G. Can recent pan-tropical biomass maps be used to derive alternative Tier 1 values for reporting REDD+ activities under UNFCCC? Environ. Res. Lett. 2014, 9, 124008. [Google Scholar] [CrossRef] [Green Version]
- Potapov, P.; Yaroshenko, A.; Turubanova, S.; Dubinin, M.; Laestadius, L.; Thies, C.; Aksenov, D.; Egorov, A.; Yesipova, Y.; Glushkov, I.; et al. Mapping the World’s Intact Forest Landscapes by Remote Sensing. Ecol. Soc. 2008, 13, 51. [Google Scholar] [CrossRef]
- Mitchard, E.T.; Saatchi, S.S.; Baccini, A.; Asner, G.P.; Goetz, S.J.; Harris, N.L.; Brown, S. Uncertainty in the spatial distribution of tropical forest biomass: A comparison of pan-tropical maps. Carbon Balance Manag. 2013, 8, 10. [Google Scholar] [CrossRef]
- Peregon, A.; Yamagata, Y. The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: A case study in Western Siberia. Remote Sens. Environ. 2013, 137, 139–146. [Google Scholar] [CrossRef]
- Soja, M.J.; Sandberg, G.; Ulander, L.M.H. Regression-Based Retrieval of Boreal Forest Biomass in Sloping Terrain Using P-Band SAR Backscatter Intensity Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2646–2665. [Google Scholar] [CrossRef] [Green Version]
- Cartus, O.; Kellndorfer, J.; Walker, W.; Franco, C.; Bishop, J.; Santos, L.; Fuentes, J.M.M. A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico. Remote Sens. 2014, 6, 5559–5588. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.D.; Yoshino, K.; Bui, D.T. Biomass estimation of Sonneratia caseolaris (L.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks. GISci. Remote Sens. 2017, 54, 329–353. [Google Scholar] [CrossRef]
- Le Toan, T.; Quegan, S.; Davidson, M.W.J.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Saatchi, S.; Shugart, H.; et al. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 2011, 115, 2850–2860. [Google Scholar] [CrossRef] [Green Version]
- Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests—The potential of combined X- and L-band SAR data use. Remote Sens. Environ. 2011, 115, 1260–1271. [Google Scholar] [CrossRef]
- Yu, Y.; Saatchi, S. Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests. Remote Sens. 2016, 8, 522. [Google Scholar] [CrossRef]
- Schlund, M.; Davidson, M.W.J. Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions. Remote Sens. 2018, 10, 1151. [Google Scholar] [CrossRef]
- Joshi, N.; Mitchard, E.T.A.; Brolly, M.; Schumacher, J.; Fernández-Landa, A.; Johannsen, V.K.; Marchamalo, M.; Fensholt, R. Understanding ‘saturation’ of radar signals over forests. Sci. Rep. 2017, 7, 3505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vafaei, S.; Soosani, J.; Adeli, K.; Fadaei, H.; Naghavi, H.; Pham, T.D.; Tien Bui, D. Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran). Remote Sens. 2018, 10, 172. [Google Scholar] [CrossRef]
- Pham, T.D.; Yoshino, K.; Le, N.N.; Bui, D.T. Estimating aboveground biomass of a mangrove plantation on the Northern coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A data. Int. J. Remote Sens. 2018, 39, 7761–7788. [Google Scholar] [CrossRef]
- Ho Tong Minh, D.; Ndikumana, E.; Vieilledent, G.; McKey, D.; Baghdadi, N. Potential value of combining ALOS PALSAR and Landsat-derived tree cover data for forest biomass retrieval in Madagascar. Remote Sens. Environ. 2018, 213, 206–214. [Google Scholar] [CrossRef]
- Deng, S.; Katoh, M.; Guan, Q.; Yin, N.; Li, M. Estimating Forest Aboveground Biomass by Combining ALOS PALSAR and WorldView-2 Data: A Case Study at Purple Mountain National Park, Nanjing, China. Remote Sens. 2014, 6, 7878–7910. [Google Scholar] [CrossRef] [Green Version]
- Hame, T.; Rauste, Y.; Antropov, O.; Ahola, H.A.; Kilpi, J. Improved Mapping of Tropical Forests with Optical and SAR Imagery, Part II: Above Ground Biomass Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 92–101. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Stehman, S.V.; Loveland, T.R.; Pittman, K. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss. Remote Sens. Environ. 2008, 112, 3708–3719. [Google Scholar] [CrossRef]
- Köhl, M.; Lister, A.; Scott, C.T.; Baldauf, T.; Plugge, D. Implications of sampling design and sample size for national carbon accounting systems. Carbon Balance Manag. 2011, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego, F.J. Remote sensing and land cover area estimation. Int. J. Remote Sens. 2004, 25, 3019–3047. [Google Scholar] [CrossRef]
- Gong, P.; Marceau, D.J.; Howarth, P.J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sens. Environ. 1992, 40, 137–151. [Google Scholar] [CrossRef]
- White, F. The Vegetation of Africa: A Descriptive Memoir to Accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa; UNESCO: Paris, France, 1983; ISBN 92-3-101955-4. [Google Scholar]
- MNRT. NAFORMA Main Results; MNRT: Dodoma, Tanzania, 2015.
- UN-REDD. Draft Action Plan for Implementation of National Strategy for REDD+; UN-REDD: Geneva, Switzerland, 2012. [Google Scholar]
- UN-REDD. Estimating the Cost Elements of REDD+ in Tanzania; UN-REDD: Geneva, Switzerland, 2012. [Google Scholar]
- NAFORMA. Field Manual, Biophysical Survey; Ministry of Natural Resources and Tourism, Forestry and Beekeeping Division: Dar es Salaam, Tanzania, 2010.
- Tomppo, E.; Katila, M.; Peräsaari, J.; Malimbwi, R.; Chamuya, N.; Otieno, J.; Dalsgaard, S.; Leppänen, M. A Report to the Food and Agriculture Organization of the United Nations (FAO) in Support of Sampling Study for National Forestry Resources Monitoring and Assessment (NAFORMA) in Tanzania; Sokoine University of Agriculture: Morogoro, Tanzania, 2010. [Google Scholar]
- Tomppo, E.; Malimbwi, R.; Katila, M.; Mäkisara, K.; Henttonen, H.M.; Chamuya, N.; Zahabu, E.; Otieno, J. A sampling design for a large area forest inventory: case Tanzania. Can. J. For. Res. 2014, 44, 931–948. [Google Scholar] [CrossRef]
- Hojas Gascón, L.; Eva, H. Field Guide for Forest Mapping with High Resolution Satellite Data; Publications Office: Luxembourg, 2014; ISBN 978-92-79-44012-0. [Google Scholar]
- Mascaro, J.; Litton, C.M.; Hughes, R.F.; Uowolo, A.; Schnitzer, S.A. Minimizing Bias in Biomass Allometry: Model Selection and Log-Transformation of Data. Biotropica 2011, 43, 649–653. [Google Scholar] [CrossRef]
- FAO; JRC; SDSU; UCL. The 2010 Global Forest Resources Assessment Remote Sensing Survey: FRA Working Paper 155; FAO: Rome, Italy, 2009. [Google Scholar]
- Tyc, G.; Tulip, J.; Schulten, D.; Krischke, M.; Oxfort, M. The RapidEye mission design. Acta Astronaut. 2005, 56, 213–219. [Google Scholar] [CrossRef]
- Beuchle, R.; Grecchi, R.C.; Shimabukuro, Y.E.; Seliger, R.; Eva, H.D.; Sano, E.; Achard, F. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl. Geogr. 2015, 58, 116–127. [Google Scholar] [CrossRef]
- RapidEye. Planet Labs San Francisco Satellite Imagery Product Specifications, version 6.1; RapidEye: Berlin, Germany, 2016. [Google Scholar]
- Beuchle, R.; Eva, H.D.; Stibig, H.-J.; Bodart, C.; Brink, A.; Mayaux, P.; Johansson, D.; Achard, F.; Belward, A. A satellite data set for tropical forest area change assessment. Int. J. Remote Sens. 2011, 32, 7009–7031. [Google Scholar] [CrossRef]
- Hojas Gascón, L.; Eva, H.; Laporte, N.; Simonetti, D.; Fritz, S. The Application of Medium-Resolution MERIS Satellite Data for Continental Land-Cover Mapping over South America: Results and Caveats. In Remote Sensing of Land Use and Land Cover: Principles and Applications; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2012. [Google Scholar]
- Hansen, M.C.; Roy, D.P.; Lindquist, E.; Adusei, B.; Justice, C.O.; Altstatt, A. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sens. Environ. 2008, 112, 2495–2513. [Google Scholar] [CrossRef]
- UNFCCC. Report of the Conference of the Parties on Its Seventh Session, Held at Marrakesh from 29 October to 10 November 2001; United Nations Framework Convention on Climate Change: Bonn, Germany, 2001. [Google Scholar]
- The United Republic of Tanzania. Tanzania’s Forest Reference Emission Level Submission to the UNFCCC 2016. Available online: https://redd.unfccc.int/files/frel__for__tanzania_december2016_27122016.pdf (accessed on 28 January 2019).
- Raši, R.; Bodart, C.; Stibig, H.-J.; Eva, H.; Beuchle, R.; Carboni, S.; Simonetti, D.; Achard, F. An automated approach for segmenting and classifying a large sample of multi-date Landsat imagery for pan-tropical forest monitoring. Remote Sens. Environ. 2011, 115, 3659–3669. [Google Scholar] [CrossRef]
- Flanders, D.; Hall-Beyer, M.; Pereverzoff, J. Preliminary evaluation of eCognition object-based software for cut block delineation and feature extraction. Can. J. Remote Sens. 2003, 29, 441–452. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Dube, T.; Mutanga, O. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS J. Photogramm. Remote Sens. 2015, 108, 12–32. [Google Scholar] [CrossRef]
- Konstanski, H. Apparent Cloud Shift in RapidEye Image Data; RapidEye: Berlin, Germany, 2012. [Google Scholar]
- Simonetti, D.; Simonetti, E.; Szantoi, Z.; Lupi, A.; Eva, H.D. First results from the phenology-based synthesis classifier using Landsat 8 imagery. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1496–1500. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Haboudane, D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. For. Ecol. Manag. 2004, 198, 149–167. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Gwenzi, D.; Helmer, E.; Zhu, X.; Lefsky, M.; Marcano-Vega, H. Predictions of Tropical Forest Biomass and Biomass Growth Based on Stand Height or Canopy Area Are Improved by Landsat-Scale Phenology across Puerto Rico and the U.S. Virgin Islands. Remote Sens. 2017, 9, 123. [Google Scholar] [CrossRef]
- Eckert, S. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data. Remote Sens. 2012, 4, 810–829. [Google Scholar] [CrossRef] [Green Version]
- Rikimaru, A.; Roy, P.S.; Miyatake, S. Tropical forest cover density mapping. Trop. Ecol. 2002, 43, 39–47. [Google Scholar]
- Eitel, J.U.H.; Long, D.S.; Gessler, P.E.; Smith, A.M.S. Using in-situ measurements to evaluate the new RapidEye satellite series for prediction of wheat nitrogen status. Int. J. Remote Sens. 2007, 28, 4183–4190. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Moses, M.; Stevens, T.S.; Bax, G. GIS Data Ineroperability in Uganda. Int. J. Spat. Data Infrastruct. Res. 2012, 7, 488–507. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning—Data Mining, Inference, and Prediction; Springer Series in Statistics; Springer: New York, NY, USA, 2001; Volume 1. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer, Inc.: New York, NY, USA, 1995; ISBN 978-0-387-94559-0. [Google Scholar]
- Payandeh, B. Relative Efficiency of Two-Dimensional Systematic Sampling. For. Sci. 1970, 16, 271–276. [Google Scholar]
- Guyot, G.; Guyon, D.; Riom, J. Factors affecting the spectral response of forest canopies: A review. Geocarto Int. 1989, 4, 3–18. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Dedieu, G.; Sylvander, S. SPOT4 (Take 5) Times series over 45 sites to prepare Sentinel-2 applications and methods. In Proceedings of the ESA’s Living Planet Symposium, Edinburgh, UK, 9–13 September 2013; Volume 11. [Google Scholar]
- Hojas-Gascon, L.; Belward, A.; Eva, H.; Ceccherini, G.; Hagolle, O.; Garcia, J.; Cerutti, P. Potential improvement for forest cover and forest degradation mapping with the forthcoming Sentinel-2 program. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 417–423. [Google Scholar] [CrossRef]
- Hojas-Gascon, L.; Eva, H.D.; Ehrlich, D.; Pesaresi, M.; Achard, F.; Garcia, J. Urbanization and Forest Degradation in East Africa—A Case Study around Dar es Salaam, Tanzania; IEEE: Piscataway, NJ, USA, 2016; pp. 7293–7295. [Google Scholar]
- Avitabile, V.; Camia, A. An assessment of forest biomass maps in Europe using harmonized national statistics and inventory plots. For. Ecol. Manag. 2018, 409, 489–498. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative Analysis of Modeling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, L. Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China. Sensors 2016, 16, 834. [Google Scholar] [CrossRef] [PubMed]
- Attarchi, S.; Gloaguen, R. Improving the Estimation of Above Ground Biomass Using Dual Polarimetric PALSAR and ETM+ Data in the Hyrcanian Mountain Forest (Iran). Remote Sens. 2014, 6, 3693–3715. [Google Scholar] [CrossRef] [Green Version]
- Avitabile, V.; Herold, M.; Heuvelink, G.B.M.; Lewis, S.L.; Phillips, O.L.; Asner, G.P.; Armston, J.; Ashton, P.S.; Banin, L.; Bayol, N.; et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 2016, 22, 1406–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoa, N.H. Comparison of various spectral indices for estimating mangrove covers using PlanetScope data: A case study in Xuan Thuy national park, Nam Dinh province. J. For. Sci. Technol. 2017, 5, 74–83. [Google Scholar]
- McRoberts, R.E.; Holden, G.R.; Nelson, M.D.; Liknes, G.C.; Gormanson, D.D. Using satellite imagery as ancillary data for increasing the precision of estimates for the Forest Inventory and Analysis program of the USDA Forest Service. Can. J. For. Res. 2005, 35, 2968–2980. [Google Scholar] [CrossRef]
- Guidolavespa. Guidolavespa/Forest v1.0; Zenodo: Geneva, Switzerland, 2018. [Google Scholar]
Vegetation | Area (ha) | AGB (t/ha) | Share of Carbon Stock (%) |
---|---|---|---|
Forest | 3,364,457 | 59.5 | 11.5 |
Woodland | 44,726,246 | 27.7 | 73.5 |
Bushland | 6,445,471 | 11 | 4.4 |
Grassland | 8,242,245 | 2.9 | 2.3 |
Cultivated land | 22,248,092 | 5.9 | 8 |
Water | 1,162,552 | 0.3 |
Channel | Spectral Band Name | Spectral Range (nm) |
---|---|---|
1 | Blue | 440–510 |
2 | Green | 520–590 |
3 | Red | 630–685 |
4 | Red Edge | 690–730 |
5 | Near infra-red | 760–850 |
Single Band Reflectance of Objects | Equation | Acronym |
Mean bands 1 to 5 | BLUE, GREEN, RED, REdge, NIR | R1–R5 |
Standard deviation bands 1 to 5 | SD1–SD5 | |
Simple Ratios | ||
Ratio of mean to standard deviation for all bands | [Mean band #]/[SD band #] | e.g., R1SD1 |
Standard deviation. ratios | [SD band #]/[SD band #] | e.g., SD1SD2 |
Red Vegetation Index | NIR/RED | RVI |
Green Vegetation Index | NIR/GREEN | GVI |
Green Red Vegetation Index | GREEN/RED | GRVI |
Other Indices | ||
Normalised Difference Vegetation Index [87] | (NIR − RED)/(NIR + RED) | NDVI |
Enhanced Vegetation Index [88] | 2.5 × ((NIR − RED))/((NIR + 6 × RED − 7.5 × BLUE + 1)) | EVI |
Soil Adjusted Vegetation Index [89] | (NIR − RED)/((NIR + RED + L)) × (1 + L) | SAVI |
Shadow Index [85] | ((1 − BLUE) × (1 − GREEN) × (1 − RED))0.33 | Shadow_Index |
Modified Transverse Vegetation Index [86] | (1.5 × (1.2 × ([R5] − [R2]) − 2.5 × ([R3] − [R2])))/((2 × [R5] + 1)^2 − (6 × [R5] − 5 × ([R3])^0.5) − 0.5)^0.5 | MTVI |
Modified Chlorophyll Absorption Reflectance Index [90] | (([NIR] − [RED]) − 0.2 × ([NIR] − [GREEN])) × ([NIR]/[RED]) | MCARI |
Bare Soil Index | ((([NIR] + [RED]) − ([REdge] + [BLUE]))/(([NIR] + [RED]) + ([REdge] + [BLUE]))) + 1 | Bare_soil |
Shadow to Soil Ratio | ShadowIndex/Bare_Soil | Shadsoil |
GLCM Texture Features | (1) In all directions, 0°, 45°, 90°, 135° | |
(2) For combined and for individual bands | ||
Homogeneity | See Haralick [91] | GCLM_Hom |
Contrast | GCLM_Con | |
Dissimilarity | GCLM_Diss | |
Angular 2nd moment | GCLM_Ang2 | |
Entropy | GCLM_Entro | |
Mean | GCLM_Mean | |
Variance | GCLM_StdDev | |
Correlation | GCLM_Corr | |
Object Proportions | ||
Bare Soil | Percentage classed as bare soil | Rel_soil |
Shadow | Percentage classed as woody | Rel_shad |
Model | RMSE | MAE | R2 | relRMSE |
---|---|---|---|---|
Generalized Exponential Regression | 44.55 | 36.44 | 0.32 | 21% |
Generalized Linear Regression | 41.81 | 35.07 | 0.39 | 20% |
Random Forest | 30.00 | 21.64 | 0.69 | 14% |
SVM | 39.08 | 29.76 | 0.42 | 19% |
Afromontane | Zanzibar-Inhambane | Somalia-Masai | Zambezian | Lake Victoria | |
---|---|---|---|---|---|
Area (km2) | 43,500 | 77,100 | 238,965 | 502,052 | 40,300 |
Count * | 5 | 6 | 19 | 41 | 4 |
Minimum | 17.3 | 15.1 | 9.8 | 11.6 | 17.8 |
Maximum | 27.7 | 30.4 | 22.4 | 34.3 | 25.9 |
Mean | 20.9 | 21.5 | 16.7 | 25.2 | 22.3 |
SD | 4.9 | 5.6 | 4.1 | 4.6 | 3.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hojas Gascón, L.; Ceccherini, G.; García Haro, F.J.; Avitabile, V.; Eva, H. The Potential of High Resolution (5 m) RapidEye Optical Data to Estimate Above Ground Biomass at the National Level over Tanzania. Forests 2019, 10, 107. https://doi.org/10.3390/f10020107
Hojas Gascón L, Ceccherini G, García Haro FJ, Avitabile V, Eva H. The Potential of High Resolution (5 m) RapidEye Optical Data to Estimate Above Ground Biomass at the National Level over Tanzania. Forests. 2019; 10(2):107. https://doi.org/10.3390/f10020107
Chicago/Turabian StyleHojas Gascón, Lorena, Guido Ceccherini, Francisco Javier García Haro, Valerio Avitabile, and Hugh Eva. 2019. "The Potential of High Resolution (5 m) RapidEye Optical Data to Estimate Above Ground Biomass at the National Level over Tanzania" Forests 10, no. 2: 107. https://doi.org/10.3390/f10020107
APA StyleHojas Gascón, L., Ceccherini, G., García Haro, F. J., Avitabile, V., & Eva, H. (2019). The Potential of High Resolution (5 m) RapidEye Optical Data to Estimate Above Ground Biomass at the National Level over Tanzania. Forests, 10(2), 107. https://doi.org/10.3390/f10020107