Monitoring Forest Disturbances and Associated Driving Forces in Guangdong Province Using Long-Term Landsat Time Series Images
<p>Location of the study area and spatial distribution of forests from GlobeLand30 (2020).</p> "> Figure 2
<p>Research technology roadmap.</p> "> Figure 3
<p>Construction process of forest subdivision process model (The red square is an example of an eight-neighborhood).</p> "> Figure 4
<p>Disturbance results for three typical areas ((<b>a</b>–<b>c</b>) were three representative areas).</p> "> Figure 5
<p>Result of centroid analysis in the spatial process of forest subdivision.</p> "> Figure 6
<p>Correlation coefficients between the area of forest disturbance and various factors.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Pre-Processing of Landsat Images
2.3.2. Disturbance Areas
2.3.3. Analysis of Landscape Fragmentation Spatial Process
- (1)
- An eight-neighborhood approach is employed to amalgamate both lost and remaining forest pixels, resulting in the creation of maps depicting lost forest patches and Forest Change Map 1, where background values are set to zero.
- (2)
- The count of distinct patches within the eight-neighborhood of lost forest pixels is recorded. A count of one indicates complete encirclement by other lost forest pixels, whereas a count greater than or equal to two denotes a presence of varying values.
- (3)
- The maximum value within each lost forest patch is analyzed statistically. A value of two is indicative of either a perforation or attrition patch, while a value of three or more suggests a subdivision or shrinkage patch.
- (1)
- Setting the background of Forest Change Map 1 to null to generate Forest Change Map 2. Subsequently, the lost forest pixels in Forest Change Map 2 are set to null, producing Forest Change Map 3.
- (2)
- A focal minimum value statistical analysis is conducted on Forest Change Map 3, alongside a focal maximum value statistical analysis on Forest Change Map 2. The focal maximum value of lost forest pixels is adjusted to one and then to null to exclude disappeared patches.
- (3)
- If the focal minimum value of pixels matches the maximum value and the pixels are part of the same patch with this maximum value, the patch is classified as either perforation or shrinkage. Other configurations are identified as subdivision patches.
2.3.4. Driver Analysis
3. Results
3.1. The Results of Forest Disturbance Detection
3.2. Analysis of Forest Landscape Subdivision Spatial Processes
3.3. Analysis of Driving Factors
3.3.1. Analysis of the Driving Mechanisms Behind the Spatial Distribution Pattern of Forest Disturbance
3.3.2. Analysis of the Spatiotemporal Dynamics Driving Forest Disturbance
4. Discussion
4.1. Forest Disturbance Monitoring Algorithm
4.2. Spatial Processes of Forest Fragmentation
4.3. Drivers of Forest Disturbance
4.4. Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Xie, H.; Ma, J.; Wang, K. Integrated remote sensing and model approach for impact assessment of future climate change on the carbon budget of global forest ecosystems. Glob. Planet. Chang. 2021, 203, 103542. [Google Scholar] [CrossRef]
- Guo, Y.; Peng, C.; Trancoso, R.; Zhu, Q.; Zhou, X. Stand carbon density drivers and changes under future climate scenarios across global forests. For. Ecol. Manag. 2019, 49, 117463. [Google Scholar] [CrossRef]
- Martínez Pastur, G.; Perera, A.H.; Peterson, U.; Iverson, L.R. Ecosystem Services from Forest Landscapes: An Overview. In Ecosystem Services from Forest Landscapes; Springer: Cham, Switzerland, 2018; pp. 1–10. [Google Scholar]
- Pickett, S.T.A.; White, P.S. The Ecology of Natural Disturbance and Patch Dynamics; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Franklin, J.F.; Spies, T.A.; Pelt, R.V.; Carey, A.B.; Thornburgh, D.A.; Berg, D.R.; Lindenmayer, D.B.; Harmon, M.E.; Keeton, W.S.; Shaw, D.C.; et al. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 2002, 155, 399–423. [Google Scholar] [CrossRef]
- Patacca, M.; Lindner, M.; Lucas-Borja, M.E.; Cordonnier, T.; Fidej, G.; Gardiner, B.; Hauf, Y.; Jasinevičius, G.; Labonne, S.; Linkevičius, E.; et al. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Change Biol. 2022, 29, 1359–1376. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 2021, 4, 63–70. [Google Scholar] [CrossRef]
- Sommerfeld, A.; Senf, C.; Buma, B.; D’Amato, A.W.; Després, T.; Díaz-Hormazábal, I.; Fraver, S.; Frelich, L.E.; Gutiérrez, Á.G.; Hart, S.J.; et al. Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun. 2018, 9, 4355. [Google Scholar] [CrossRef] [PubMed]
- Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- DeVries, B.; Decuyper, M.; Verbesselt, J.; Zeileis, A.; Herold, M.; Joseph, S. Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series. Remote Sens. Environ. 2015, 169, 320–334. [Google Scholar] [CrossRef]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest monitoring using Landsat time series data: A review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B.; Pfaff, E.; Braaten, J.; Nelson, P. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 2012, 122, 117–133. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Cohen, W.B.; Kennedy, R.E.; Grodzki, W.; Pflugmacher, D.; Griffiths, P.; Hostert, P. Monitoring coniferous forest biomass change using a Landsat trajectory-based approach. Remote Sens. Environ. 2013, 139, 277–290. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Kennedy, R.E.; Healey, S.P.; Huang, C. Observation of trends in biomass loss as a result of disturbance in the conterminous U.S.: 1986–2004. Ecosystems 2013, 17, 142–157. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, X.; Zhang, X.; Lei, L.; Chai, G.; Yao, Z.; Qiu, S.; Du, J.; Wang, J.; Wang, Z.; et al. Tracking Forest Disturbance in Northeast China’s Cold-Temperate Forests Using a Temporal Sequence of Landsat Data. Remote Sens. 2024, 16, 3238. [Google Scholar] [CrossRef]
- Forman, R.T. Land Mosaics: The Ecology of Landscapes and Regions; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Jaeger, J.G. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Fischer, R.; Taubert, F.; Müller, M.S.; Groeneveld, J.; Lehmann, S.; Wiegand, T.; Huth, A. Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Sci. Adv. 2021, 7, g7012. [Google Scholar] [CrossRef]
- Collins, C.D.; Banks-Leite, C.; Brudvig, L.A.; Foster, B.L.; Cook, W.M.; Damschen, E.I.; Andrade, A.; Austin, M.; Camargo, J.L.; Driscoll, D.A.; et al. Fragmentation affects plant community composition over time. Ecography 2017, 40, 119–130. [Google Scholar] [CrossRef]
- Jiao, J.; Cheng, Y.; Hong, P.; Ma, J.; Yao, L.; Jiang, B.; Xu, X.; Wu, C. Impact of Fragmentation on Carbon Uptake in Subtropical Forest Landscapes in Zhejiang Province, China. Remote Sens. 2024, 16, 2393. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef]
- Bartels, S.F.; Chen, H.Y.; Welder, M.A.; White, J.C. Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest. For. Ecol. Manag. 2016, 361, 134–207. [Google Scholar] [CrossRef]
- Goward, S.N.; Masek, J.G.; Cohen, W.B.; Moisen, G.G.; Collatz, G.J.; Healey, S.P.; Houghton, R.A.; Huang, C.; Kennedy, R.E.; Law, B.; et al. Forest disturbance and North American carbon flux. Eos Trans. Am. Geophys. Union 2008, 89, 105–116. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, G.; Liu, L.; Zhai, M.; Li, J. Ecological and economic analyses of the forest metabolism system: A case study of Guangdong Province, China. Ecol. Indic. 2018, 95, 131–140. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 1990.
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2019.
- Shen, W.; Li, M.; Wei, A. Spatio-temporal variations in plantation forests’ disturbance and recovery of northern Guangdong Province using yearly Landsat time series observations (1986–2015). Chin. Geogr. Sci. 2017, 27, 600–613. [Google Scholar] [CrossRef]
- Young, N.E.; Anderson, R.S.; Chignell, S.M.; Vorster, A.G.; Lawrence, R.; Evangelista, P.H. A survival guide to Landsat preprocessing. Ecology 2017, 98, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Chen, S.; Woodcock, C.E.; Bullock, E.L.; Arévalo, P.; Torchinava, P.; Peng, S.; Olofsson, P. Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis. Remote Sens. Environ. 2021, 265, 112648. [Google Scholar] [CrossRef]
- Sivrikaya, F.; Günlü, A.; Küçük, Ö.; Ürker, O. Forest fire risk mapping with Landsat 8 OLI images: Evaluation of the potential use of vegetation indices. Ecol. Inform. 2024, 79, 102461. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Hong, H.; Changping, S. Spatiotemporal variation and influencing factors of vegetation dynamics based on Geodetector: A case study of the northwestern Yunnan Plateau, China. Ecol. Indic. 2021, 130, 108005. [Google Scholar]
- Guo, H.; Cao, C.; Xu, M.; Yang, X.; Chen, Y.; Wang, K.; Duerler, R.S.; Li, J.; Gao, X. Spatiotemporal Distribution Pattern and Driving Factors Analysis of GPP in Beijing-Tianjin-Hebei Region by Long-Term MODIS Data. Remote Sens. 2023, 15, 622. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr algorithm on google earth engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Z.; Xu, X.; Fan, H.; Tong, X.; Liu, J. Forest disturbances and the attribution derived from yearly Landsat time series over1990–2020 in the Hengduan Mountains Region of Southwest China. For. Ecosyst. 2021, 8, 73. [Google Scholar] [CrossRef]
- Yin, Q.D.; Liu, C.X.; Tian, Y. Detecting dynamics of vegetation disturbance in forest natural reserve using Landsat imagery and LandTrendr algorithm: The case of Chaisong and Taibaishan Natural Reserves in Shaanxi, China. Acta Ecol. Sin. 2020, 40, 7343–7352. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Crouzeilles, R.; Curran, M.; Ferreira, M.; Lindenmayer, D.B.; Grelle, C.E.; Rey Benayas, J.M. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 2016, 7, 11666. [Google Scholar]
- Xu, J.Y.; Zhang, Z.X.; Zhao, X.L.; Liu, B.; Yi, L. Spatial-Temporal characteristics and driving forces of urban sprawl for major cities of the Pearl River Delta region in recent 40 years. Acta Sci. Nat. Univ. Pekin. 2015, 51, 1119–1131. [Google Scholar]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
Process | Parameters | Parameter Values |
---|---|---|
Number of maximum segments | 6 | |
Vertex parameter | 0.9 | |
Time series segmentation | Recovery threshold | 0.25 |
Max p value of the fit | 0.05 | |
Optimal model scale | 0.75 | |
Thresholds for 1-year vegetation cover loss | 10 | |
Filters | Thresholds for 30-year vegetation cover loss | 3 |
Thresholds for percentage of vegetation growth | 5 | |
Pre-disturbance coverage threshold | 20 | |
Mapping | Minimum mapping in pixels | 11 |
Quantities | Area (ha) | |||||
Period | 1990–1999 | 2000–2009 | 2010–2019 | 1990–1999 | 2000–2009 | 2010–2019 |
Perforation | 209,342 | 161,083 | 124,450 | 46,797.27 | 38,620.87 | 80,730.07 |
Attrition | 291,179 | 54,295 | 109,387 | 93,291.20 | 16,910.69 | 15,855.75 |
Subdivision | 7416 | 16,535 | 25,629 | 12,959.95 | 20,285.33 | 21,367.49 |
Shrinkage | 142,662 | 369,427 | 414,993 | 49,450.71 | 111,663.07 | 116,592.53 |
Quantities (%) | Area (%) | |||||
Period | 1990–1999 | 2000–2009 | 2010–2019 | 1990–1999 | 2000–2009 | 2010–2019 |
Perforation | 32.18% | 26.79% | 18.45% | 23.11% | 20.60% | 34.42% |
Attrition | 44.76% | 9.03% | 16.22% | 46.07% | 9.02% | 6.76% |
Subdivision | 1.14% | 2.75% | 3.80% | 6.40% | 10.82% | 9.11% |
Shrinkage | 21.93% | 61.44% | 61.53% | 24.42% | 59.56% | 49.71% |
q | EL | PD | PCG | DTC |
---|---|---|---|---|
EL | 0.0317 | |||
PD | 0.6442 | 0.6372 | ||
PCG | 0.3187 | 0.7499 | 0.2932 | |
DTC | 0.1682 | 0.8279 | 0.4965 | 0.1390 |
q | EL | PD | PCG | DTC |
---|---|---|---|---|
EL | 0.0330 | |||
PD | 0.1480 | 0.1156 | ||
PCG | 0.2952 | 0.6914 | 0.2575 | |
DTC | 0.2942 | 0.5087 | 0.4564 | 0.2565 |
q | EL | PD | PCG | DTC |
---|---|---|---|---|
EL | 0.0267 | - | - | - |
PD | 0.5355 | 0.5221 | - | - |
PCG | 0.5470 | 0.7651 | 0.5287 | - |
DTC | 0.3309 | 0.6837 | 0.7479 | 0.3135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, L.; Chang, Z.; Luo, X.; Chen, S.; Jiang, J.; Lei, L. Monitoring Forest Disturbances and Associated Driving Forces in Guangdong Province Using Long-Term Landsat Time Series Images. Forests 2025, 16, 189. https://doi.org/10.3390/f16010189
Qiu L, Chang Z, Luo X, Chen S, Jiang J, Lei L. Monitoring Forest Disturbances and Associated Driving Forces in Guangdong Province Using Long-Term Landsat Time Series Images. Forests. 2025; 16(1):189. https://doi.org/10.3390/f16010189
Chicago/Turabian StyleQiu, Lin, Zhongbing Chang, Xiaomei Luo, Songjia Chen, Jun Jiang, and Li Lei. 2025. "Monitoring Forest Disturbances and Associated Driving Forces in Guangdong Province Using Long-Term Landsat Time Series Images" Forests 16, no. 1: 189. https://doi.org/10.3390/f16010189
APA StyleQiu, L., Chang, Z., Luo, X., Chen, S., Jiang, J., & Lei, L. (2025). Monitoring Forest Disturbances and Associated Driving Forces in Guangdong Province Using Long-Term Landsat Time Series Images. Forests, 16(1), 189. https://doi.org/10.3390/f16010189