Fluxes of Cadmium, Chromium, and Lead Along with Throughfall and Stemflow Vary Among Different Types of Subtropical Forests
<p>Experimental site location map and sample plot setup.</p> "> Figure 2
<p>Comparison of bark and leaf morphology between <span class="html-italic">Castanopsis carlesii</span> (<b>left</b>) and <span class="html-italic">Cunninghamia lanceolata</span> (<b>right</b>). Photo credit: Wenfeng Jiang.</p> "> Figure 3
<p>Dynamics of heavy metal concentrations in throughfall and stemflow in different types of forests. Values are means with standard error (SE), and asterisks indicate significant differences among forest types at * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001. Chromium: Cr, cadmium: Cd, lead: Pb.</p> "> Figure 4
<p>Heavy metal concentrations in throughfall and stemflow among different seasons and forest types. Values are means with standard error (SE). Different capital letters represent the statistical differences between dry season and rainy season, and different lowercase letters indicate differences between forest types. * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001. <span class="html-italic">ns</span> indicates no statistically significant difference. Chromium: Cr, cadmium: Cd, lead: Pb.</p> "> Figure 5
<p>Dynamics of heavy metal fluxes in throughfall and stemflow in different forest types. Values are means with standard error (SE), and asterisks indicate significant differences among forest types at * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001. Chromium: Cr, cadmium: Cd, lead: Pb.</p> "> Figure 6
<p>Heavy metal fluxes in throughfall and stemflow in different seasons and forest types. Values are means with standard error (SE). Different capital letters represent the statistical differences between dry season and rainy season, and different lowercase letters indicate differences between forest types. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001. <span class="html-italic">ns</span> indicates no statistically significant difference. Chromium: Cr, cadmium: Cd, lead: Pb.</p> "> Figure 7
<p>Heavy metal fluxes in throughfall and stemflow across different types of forests under varying rainfall intensities. CCP: <span class="html-italic">Castanopsis carlesii</span> plantation, CLP: <span class="html-italic">Cunninghamia lanceolata</span> plantation, NF: Castanopsis carlesii natural forest, SF: secondary forest of Castanopsis carlesii secondary forest. Values are means with standard error (SE), and different lowercase letters indicate differences between rainfall intensities. Chromium: Cr, cadmium: Cd, lead: Pb.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Experimental Design
2.3. Meteorological Observation
2.4. Statistical Analysis
3. Results
3.1. Heavy Metal Concentrations
3.2. Fluxes of Heavy Metals
3.3. Factors Affecting the Concentrations and Fluxes of Heavy Metals
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Liu, C.; Wang, Y. Facet-dependent Cr (VI) adsorption and transport on hematite nano-particles. J. Agro Environ. Sci. 2021, 40, 1667–1674. [Google Scholar]
- Long, Y.; Qian, L.; LI, Y.; Zhang, W.; Wei, Z.; Dong, X.; Yang, L.; Wu, W.; Yan, J.; Chen, M. Mechanism of enhanced removal of Cr(VI) by acid and alkali modified biochar-nanoscale zero-valent iron. Chin. J. Environ. Eng. 2022, 16, 1165–1174. [Google Scholar] [CrossRef]
- Bing, H.; Wu, Y.; Zhou, J.; Ming, L.; Sun, S.; Li, X. Atmospheric deposition of lead in remote high mountain of eastern Tibetan Plateau, China. Atmos. Environ. 2014, 99, 425–435. [Google Scholar] [CrossRef]
- Tian, D.; Chang, C.; Wang, C.; Ru, Z.; Song, H.; Hou, S. Review of Species Sensitivity Distributions for Heavy Metals and Organic Contaminants. Asian J. Ecotoxicol. 2015, 10, 38–49. [Google Scholar]
- Li, S.; Gu, Y.; Liu, G.; Wang, Q.; Zhang, G. Pollution characteristics and health risk assessment od heavy metals in PM2.5 in Jinan city. Sichuan Env. 2023, 42, 96–103. [Google Scholar] [CrossRef]
- Li, H.; Zhao, G.; Wen, C.; Fan, Y.; Yi, F.; Liu, Y.; Mei, Z.; Tang, X. Health Risk Assessment of Typical Heavy Metal (Metalloid) Contaminated Farmland Soils in Part of Northeast Jiangxi. Asian J. Ecotoxicol. 2023, 18, 255–265. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, K. Mechanism of heavy metal injury and resistance of plant. Chin. J. Appl. Environ. Biol. 2001, 7, 92–99. [Google Scholar]
- Bi, B.; Liu, Y.; Chen, Q.; Zhou, Z.; Zhang, X.; Sun, H. contents of Iron, Zinc, Copper and manganese in the leaves of 10 evergreen tree species. J. Northwest For. Univ. 2012, 27, 88–92. [Google Scholar]
- Yao, L.; Liao, X.; Zhang, H.; Ling, C.; Yu, Z. Progress and Trend of Atmospheric Heavy Metal Pollution in China. Environ. Sci. Manage. 2012, 37, 41–44. [Google Scholar]
- Drapper, D.; Tomlinson, R.; Williams, P. Pollutant concentration sin road runoff: Southeast Queensland case study. J. Environ. Eng. 2000, 126, 313–320. [Google Scholar] [CrossRef]
- Al-Khashman, O.A. Determination of metal accumulation in deposited street dusts in Amman, Jordan. Environ. Geochem. Health 2007, 29, 1–10. [Google Scholar] [CrossRef]
- Matsuura, Y.; Sanada, M.; Takahashi, M.; Sakai, Y.; Tanaka, N. Long-term monitoring study on rain, throughfall, and stemflow chemistry in evergreen coniforous forests in Hokkaido, Northern Japan. Water Air Soil Pollut. 2001, 130, 1661–1666. [Google Scholar] [CrossRef]
- Levia, D.F.; Van Stan, J.T.; Siegert, C.M.; Inamdar, S.P.; Mitchell, M.J.; Mage, S.M.; McHale, P.J. Atmospheric deposition and corresponding variability of stemflow chemistry across temporal scales in a mid-Atlantic broadleaved deciduous forest. Atmos. Environ. 2011, 45, 3046–3054. [Google Scholar] [CrossRef]
- Hu, W.; Xu, C.; Xiong, D.; Wu, F.; Ni, X.; Yue, K. Effects of two forest types on the dynamics of four base cations along with rainfall partitioning in middle subtropical forests. Chin. J. Appl. Environ. Biol. 2022, 28, 1578–1585. [Google Scholar] [CrossRef]
- Van Stan, J.T.; Gutman, E.; Friesen, J. Precipitation Partitioning by Vegetation: A Global Synthesis. EGUGA 2020, 25–27. [Google Scholar]
- Magliano, P.N.; Whitworth-Hulse, J.I.; Baldi, G. Interception, throughfall and stemflow partition in drylands: Global synthesis and meta-analysis. J. Hydrol. 2019, 568, 638–645. [Google Scholar] [CrossRef]
- Bao, W.; Bao, W.; Ding, D.; Binghui, H. Effects of forest vegetation on water chemistry of precipitation. Ecol. Environ. Sci. 2004, 13, 112–115. [Google Scholar] [CrossRef]
- Bing, H.; Zhou, J.; Wu, Y.; Luo, X.; Xiang, Z.; Sun, H.; Wang, J.; Zhu, H. Barrier effects of remote high mountain on atmospheric metal transport in the eastern Tibetan Plateau. Sci. Total Environ. 2018, 628–629, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Gu, J. A review on heavy metals in atmospheric suspended particles of China cities and Its Implication for future references. Earth Environ. 2019, 47, 385–396. [Google Scholar]
- Hu, H.; Jin, Q.; Kavan, P. A Study of Heavy Metal Pollution in China: Current Status, Pollution-Control Policies and Countermeasures. Sustainability 2014, 6, 5820–5838. [Google Scholar] [CrossRef]
- He, B.; Yun, Z.; Shi, J.; Jiang, G. Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity. Chin. Sci. Bull. 2012, 58, 134–140. [Google Scholar] [CrossRef]
- Chiwa, M.; Onozawa, Y.; Otsuki, K. Hydrochemical characteristics of throughfall and stemflow in a Moso-bamboo (Phyllostachys pubescens) forest. Hydrol. Process. 2010, 24, 2924–2933. [Google Scholar] [CrossRef]
- Avila, A.; Rodrigo, A. Trace metal fluxes in bulk deposition, throughfall and stemflow at two evergreen oak stands in NE Spain subject to different exposure to the industrial environment. Atmos. Environ. 2004, 38, 171–180. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, F.; Peng, Y.; Wu, Q.; Heděnec, P.; An, N.; Yue, K. Changes in rainfall pH after passing through the forest canopy: Increase in throughfall but decrease in stemflow. J. Hydrol. 2023, 624, 129955. [Google Scholar] [CrossRef]
- Yue, K.; De Frenne, P.; Fornara, D.A.; Van Meerbeek, K.; Li, W.; Peng, X.; Ni, X.; Peng, Y.; Wu, F.; Yang, Y.; et al. Global patterns and drivers of rainfall partitioning by trees and shrubs. Glob. Change Biol. 2021, 27, 3350–3357. [Google Scholar] [CrossRef]
- Xu, Q.; Wu, F.; Peng, Y.; Heděnec, P.; Ni, X.; Tan, S.; Huang, Y.; Yue, K. Effects of Forest Transformation on the Fluxes of Potassium, Calcium, Sodium, and Magnesium Along with Rainfall Partitioning. Pol. J. Environ. Stud. 2023, 32, 4341–4351. [Google Scholar] [CrossRef]
- Zhang, X.; Lyu, J.; Han, Y.; Sun, N.; Sun, W.; Li, J.; Liu, C.; Yin, S. Effects of the leaf functional traits of coniferous and broadleaved trees in subtropical monsoon regions on PM2.5 dry deposition velocities. Environ. Pollut. 2020, 265, 114845. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Z.; Cao, Y.; Liu, L.; Hu, F.; Lu, X. Canopy modification of base cations deposition in a subtropical broadleaved forest: Spatial characteristics, canopy budgets and acid neutralizing capacity. For. Ecol. Manag. 2021, 482, 118863. [Google Scholar] [CrossRef]
- Yu, X.; Wang, S.; Deng, S.; Zhang, X. Nutrient characteristics of stemflow and throughfall in evergreen broad-leaved forest and Cunninghamia lanceolata plantation forest. Chin. J. Ecol. 2003, 6, 7–11. [Google Scholar] [CrossRef]
- Scheer, M.B. Mineral nutrient fluxes in rainfall and throughfall in a lowland Atlantic rainforest in southern Brazil. J. Res. 2017, 16, 76–81. [Google Scholar] [CrossRef]
- Dawoe, E.K.; Barnes, V.R.; Oppong, S.K. Spatio-temporal dynamics of gross rainfall partitioning and nutrient fluxes in shaded-cocoa (Theobroma cocoa) systems in a tropical semi-deciduous forest. Agrofor. Syst. 2017, 92, 397–413. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, F.; Yang, Y.; Ni, X.; Xu, C.; Xiong, D.; Liao, S.; Yuan, J.; Tan, S.; Yue, K. Dynamics of phosphorus along with stemflow and throughfall in middle subtropical cunninghamia lan ceolata plantations and castanopsis carlesii secondary forests. J. Soil Water Conserv. 2021, 35, 129–134. [Google Scholar] [CrossRef]
- Zhang, W. Classification and quality assessment of individual Tree in Castanopsis carlesii broad-leaved forest in mid-subtropical zone. J. Fujian For. Sci. Technol. 2024, 51, 18–21+88. [Google Scholar]
- Cheng, L.; Xiao, J.; Qin, M.; Wang, B.; Huang, K.; Chen, X. Wood quality analysis and excellent germplasm screening of Cunninghamia lanceolata. J. Fujian For. Sci. Technol. 2023, 50, 9–13+21. [Google Scholar]
- Xu, M.; Lin, C.; Xu, W.; Pan, X.; Ye, X.; Li, T.; Wu, N.; Sun, R. Growth differences at seedlings stage and early selection of Castanopsis carlesii from different provenances. Guangxi For. Sci. 2024, 53, 469–473. [Google Scholar] [CrossRef]
- Wang, W.; Huang, J.; Chen, F.; Xing, D.; Lu, Z.; Huangg, C.; Yang, Z.; Chen, G. Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopsis carlesii forests. Chin. J. Appl. Ecol. 2014, 25, 318–324. [Google Scholar] [CrossRef]
- Ma, S.; Yang, Y.; Xie, J.; Guo, J. The water retention characteristic of litter in six old growth natural forests compared with a Cunninghamia lanceolata plantation in substropical zone. J. Subtrop. Resour. Environ. 2010, 5, 31–38. [Google Scholar]
- Jiang, M.; Lv, M.; Xu, C.; Xie, J.; Yang, Y. Study on the canopy interception of secondary forest of Castanopsis carlesii and Chinese fir plantation in subtropical China. J. Soil Water Conserv. 2017, 31, 116–121+126. [Google Scholar]
- Yang, Y.; Wang, L.; Yang, Z.; Xu, C.; Xie, J.; Chen, G.; Lin, C.; Guo, J.; Liu, X.; Xiong, D.; et al. Large Ecosystem Service Benefits of Assisted Natural Regeneration. J. Geophys. Res. Biogeosci. 2018, 123, 676–687. [Google Scholar] [CrossRef]
- Liu, X.; Lin, T.-C.; Yang, Z.; Vadeboncoeur, M.A.; Lin, C.; Xiong, D.; Lin, W.; Chen, G.; Xie, J.; Li, Y.; et al. Increased litter in subtropical forests boosts soil respiration in natural forests but not plantations of Castanopsis carlesii. Plant Soil. 2017, 418, 141–151. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, F.; Yang, Y.; Ni, X.; Liao, S.; Xu, C.; Tan, S.; Yuan, J.; Yue, K. Dynamics of manganese, copper, and zinc along with rainfall partitioning in humid subtropical forests. Acta Sci. Circumstantiae 2021, 41, 4710–4719. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, D.; Lu, J.; Wang, C.; Li, J. Study on temporal and spatial characteristics of precipitation redistribution and heavy metal elements at pinus densata forest in sejila mountain. Sci. Silvae Sin. 2022, 42, 115–123. [Google Scholar]
- GB/T 11832-2002; Tipping Bucket Raingauge. China Zhijian Publishing House: Beijing, China, 2002.
- DB14/T 1730-2018; Intelligent Temperat Sensor-GeneralTechnical Requirements. China Zhijian Publishing House: Beijing, China, 2018.
- ISO 11885:2007; Water quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry. International Organization for Standardization: Geneva, Switzerland, 2007.
- Xiao, Q.; McPherson, E.G. Rainfall interception of three trees in Oakland, California. Urban Ecosyst. 2011, 14, 755–769. [Google Scholar] [CrossRef]
- Tan, S.; Zhao, H.; Yang, W.; Tan, B.; Yue, K.; Zhang, Y.; Wu, F.; Ni, X. Forest Canopy Can Efficiently Filter Trace Metals in Deposited Precipitation in a Subalpine Spruce Plantation. Forests 2019, 10, 318. [Google Scholar] [CrossRef]
- Jochheim, H.; Lüttschwager, D.; Riek, W. Stem distance as an explanatory variable for the spatial distribution and chemical conditions of stand precipitation and soil solution under beech (Fagus sylvatica L.) trees. J. Hydrol. 2022, 608, 127629. [Google Scholar] [CrossRef]
- Fišák, J.; Skřivan, P.; Tesař, M.; Fottová, D.; Dobešová, I.; Navrátil, T. Forest vegetation affecting the deposition of atmospheric elements to soils. Biologia 2006, 61, S255–S260. [Google Scholar] [CrossRef]
- Tonello, K.C.; Rosa, A.G.; Pereira, L.C.; Matus, G.N.; Guandique, M.E.G.; Navarrete, A.A. Rainfall partitioning in the Cerrado and its influence on net rainfall nutrient fluxes. Agric. For. Meteorol. 2021, 303, 108372. [Google Scholar] [CrossRef]
- Kumar Gautam, M.; Lee, K.-S.; Song, B.Y. Deposition pattern and throughfall fluxes in secondary cool temperate forest, South Korea. Atmos. Environ. 2017, 161, 71–81. [Google Scholar] [CrossRef]
- Yuan, C.; Yue, X.; Zhang, Y.; Zhang, Y.; Hu, Y.; Tang, Q.; Guo, L.; Wang, S.; Duan, X.; Xiang, W.; et al. Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern. Sci. China Earth Sci. 2024, 67, 1529–1544. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Z.; Zhang, Q.; Wang, C.; Zhang, Z. Redistribution of nitrogen deposition and its influencing factors during the growing season in two temperate forests Northeast China. Acta Ecol. Sin. 2017, 37, 3344–3354. [Google Scholar]
- Zhang, S.; De Frenne, P.; Landuyt, D.; Verheyen, K. Impact of tree species diversity on throughfall deposition in a young temperate forest plantation. Sci. Total Environ. 2022, 842, 156947. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, H.Y.H.; Xiao, Z.; Wan, D.; Liu, F.; Guo, Y.; Qiao, X.; Jiang, M. Species Richness Promotes Productivity through Tree Crown Spatial Complementarity in a Species-Rich Natural Forest. Forests 2022, 13, 1604. [Google Scholar] [CrossRef]
- Williams, L.J.; Paquette, A.; Cavender-Bares, J.; Messier, C.; Reich, P.B. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 2017, 1, 63. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Zahedi Amiri, G.; Attarod, P.; Salehi, A.; Brunner, I.; Schleppi, P.; Thimonier, A. Seasonal variations of throughfall chemistry in pure and mixed stands of Oriental beech (Fagus orientalis Lipsky) in Hyrcanian forests (Iran). Ann. For. Sci. 2015, 73, 371–380. [Google Scholar] [CrossRef]
- Siegert, C.M.; Levia, D.F.; Leathers, D.J.; Van Stan, J.T.; Mitchell, M.J. Do storm synoptic patterns affect biogeochemical fluxes from temperate deciduous forest canopies? Biogeochemistry 2017, 132, 273–292. [Google Scholar] [CrossRef]
- Levia, D.F.; Frost, E.E. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J. Hydrol. 2003, 274, 1–29. [Google Scholar] [CrossRef]
- Pinos, J.; Llorens, P.; Latron, J. High-resolution temporal dynamics of intra-storm isotopic composition of stemflow and throughfall in a Mediterranean Scots pine forest. Hydrol. Process. 2022, 36, e14641. [Google Scholar] [CrossRef]
- Markovića, J.; Jovića, M.; Smičiklas, I.; Šljivić-Ivanović, M.; Onjia, A.; Trivunacb, K.; Popovićc, A. Cadmium retention and distribution in contaminated soil: Effects and interactions of soil properties, contamination level, aging time and in situ immobilization agents. Ecotoxicol. Environ. Saf. 2019, 174, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Van Stan, J.T.; Stubbins, A. Tree-DOM: Dissolved organic matter in throughfall and stemflow. Limnol. Oceanogr. Lett. 2018, 3, 199–214. [Google Scholar] [CrossRef]
Composition of Rainfall | Forest Type | Cr | Cd | Pb | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SE | CV | p Value | Mean ± SE | CV | p Value | Mean ± SE | CV | p Value | ||
Throughfall | CCP | 0.35 ± 0.02 | 0.71 | 0.264 | 0.03 ± 0.00 | 1.35 | 0.101 | 15.8 ± 2.63 | 1.73 | 0.018 |
CLP | 0.39 ± 0.02 | 0.64 | 0.03 ± 0.01 | 1.29 | 7.73 ± 1.57 | 2.12 | ||||
NF | 0.42 ± 0.03 | 0.77 | 0.04 ± 0.00 | 1.40 | 15.4 ± 2.59 | 1.74 | ||||
SF | 0.38 ± 0.02 | 0.67 | 0.04 ± 0.00 | 1.23 | 18.2 ± 2.86 | 1.63 | ||||
Stemflow | CCP | 0.37 ± 0.03 | 0.79 | <0.001 | 0.03 ± 0.00 | 1.28 | <0.001 | 2.38 ± 0.29 | 1.21 | <0.001 |
CLP | 0.74 ± 0.05 | 0.62 | 0.12 ± 0.01 | 0.79 | 13.4 ± 0.68 | 1.24 | ||||
NF | 0.51 ± 0.04 | 0.70 | 0.1 ± 0.01 | 1.06 | 3.37 ± 0.33 | 0.97 | ||||
SF | 0.42 ± 0.55 | 0.92 | 0.04 ± 0.00 | 1.19 | 2.94 ± 0.68 | 2.30 |
Influence Factors | Throughfall | Stemflow | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr Conc | Cd Conc | Pb Conc | Cr Flux | Cd Flux | Pb Flux | Cr Conc | Cd Conc | Pb Conc | Cr Flux | Cd Flux | Pb Flux | |
Atmospheric wind speed (m s−1) | 1.096 ** | 0.423 *** | 11.218 | −0.045 | 0.061 *** | 4.439 *** | 1.754 *** | 0.724 *** | 7.157 *** | 0.002 | 0.001 | 0.050 |
Understory wind speed (m s−1) | 0.104 | 0.079 ** | 3.289 *** | −0.051 | 0.009 * | 1.067 * | 0.631 *** | 0.257 *** | 2.114 ** | −0.003 | 0.001 | −0.040 |
Atmospheric temperature (°C) | 0.243 *** | 0.008 | 0.858 *** | 0.001 | −0.005 *** | 0.061 | 0.330 *** | 0.027 ** | 0.097 | 0.001 * | −0.001 * | −0.021 ** |
Understory temperature (°C) | 0.243 *** | 0.007 | 0.796 *** | −0.001 | −0.005 *** | 0.029 | 0.322 *** | 0.027 ** | 0.125 | 0.001 * | −0.001 * | −0.020 ** |
Atmospheric relative moisture (%) | 0.235 *** | −0.015 | −0.236 | 0.031 * | −0.007 *** | −0.492 * | 0.309 *** | 0.003 | −0.601 * | 0.004 ** | −0.001 | −0.024 |
Understory relative moisture (%) | 0.278 *** | 0.012 | 1.000 *** | 0.015 * | −0.005 *** | 0.175 | 0.327 *** | 0.019 | −0.162 | 0.002 *** | −0.001 * | −0.025 *** |
pH of rainfall | −0.009 | −0.066 *** | −2.485 *** | −0.050 *** | 0.012 *** | −0.868 *** | −0.489 *** | 0.019 | 1.596 *** | −0.008 *** | 0.001 | 0.054 ** |
pH of throughfall/stemflow | −0.646 *** | −0.121 *** | −3.404 *** | −0.058 * | 0.011 * | −0.714 | −0.712 *** | −0.082 ** | −0.542 | −0.001 | 0.001 | 0.034 |
Rainfall intensity (mm h−1) | −1.198 *** | −0.023 *** | −0.568 *** | 0.009 | −0.004 *** | −0.262 *** | 0.100 *** | −0.015 | −0.485 *** | 0.002 *** | −0.001 * | −0.022 *** |
Rainfall duration (h) | 0.020 | −0.023 *** | −0.123 | 0.005 * | 0.002 *** | 0.096 ** | −0.099 *** | 0.001 | 0.139 ** | −0.001 | 0.001 ** | 0.012 *** |
Tree high (m) | −0.001 | 0.003 | 0.208 | −0.004 | 0.001 | 0.056 | −0.315 | −0.039 | −0.026 | 0.001 | −0.001 | −0.003 |
DHB (cm) | 0.001 | 0.001 | 0.058 | −0.003 | 0.001 | −0.032 | −0.004 | −0.021 | −0.077 | 0.001 | −0.001 | −0.006 |
Stand density (stem ha−1) | −0.009 | 0.001 | 0.151 | −0.001 | 0.001 | 0.100 | −0.077 | −0.026 | −0.383 | −0.001 | −0.001 | −0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; He, J.; Peng, Y.; Wu, Q.; Yang, Q.; Heděnec, P.; Huang, Y.; Wu, F.; Yue, K. Fluxes of Cadmium, Chromium, and Lead Along with Throughfall and Stemflow Vary Among Different Types of Subtropical Forests. Forests 2025, 16, 152. https://doi.org/10.3390/f16010152
Jiang W, He J, Peng Y, Wu Q, Yang Q, Heděnec P, Huang Y, Wu F, Yue K. Fluxes of Cadmium, Chromium, and Lead Along with Throughfall and Stemflow Vary Among Different Types of Subtropical Forests. Forests. 2025; 16(1):152. https://doi.org/10.3390/f16010152
Chicago/Turabian StyleJiang, Wenfeng, Jinghui He, Yan Peng, Qiqian Wu, Qiao Yang, Petr Heděnec, Yanbo Huang, Fuzhong Wu, and Kai Yue. 2025. "Fluxes of Cadmium, Chromium, and Lead Along with Throughfall and Stemflow Vary Among Different Types of Subtropical Forests" Forests 16, no. 1: 152. https://doi.org/10.3390/f16010152
APA StyleJiang, W., He, J., Peng, Y., Wu, Q., Yang, Q., Heděnec, P., Huang, Y., Wu, F., & Yue, K. (2025). Fluxes of Cadmium, Chromium, and Lead Along with Throughfall and Stemflow Vary Among Different Types of Subtropical Forests. Forests, 16(1), 152. https://doi.org/10.3390/f16010152