Mapping Soil Properties in Tropical Rainforest Regions Using Integrated UAV-Based Hyperspectral Images and LiDAR Points
<p>Workflow of the soil property mapping method in tropical rainforest regions.</p> "> Figure 2
<p>(<b>a</b>) Geographic location of Hainan Province, China; spatial distribution of soil samples in (<b>b</b>) Diaoluo, and (<b>c</b>) Limu mountain.</p> "> Figure 3
<p>Top and side 3D view of LiDAR point cloud of (<b>a</b>) Diaoluo and (<b>b</b>) Limu mountains.</p> "> Figure 4
<p>Comparison of soil properties between samples from Diaoluo and Limu mountains: (<b>a</b>) pH; (<b>b</b>) soil organic carbon (SOC); (<b>c</b>) total nitrogen (TN); and (<b>d</b>) total phosphorus (TP). Dashed lines represent the mean value.</p> "> Figure 4 Cont.
<p>Comparison of soil properties between samples from Diaoluo and Limu mountains: (<b>a</b>) pH; (<b>b</b>) soil organic carbon (SOC); (<b>c</b>) total nitrogen (TN); and (<b>d</b>) total phosphorus (TP). Dashed lines represent the mean value.</p> "> Figure 5
<p>Importance ranking of the 15 selected features for predicting the (<b>a</b>) pH, (<b>b</b>) soil organic carbon (SOC), (<b>c</b>) total nitrogen (TN), and (<b>d</b>) total phosphorus (TP).</p> "> Figure 6
<p>Scatter plots of the measured values against soil property levels predicted by the optimal models: (<b>a</b>) pH predicted by the GBDT model; (<b>b</b>) soil organic carbon (SOC) predicted by the XGBoost model; (<b>c</b>) total nitrogen (TN) predicted by the GBDT model; (<b>d</b>) total phosphorus (TP) predicted by the XGBoost model.</p> "> Figure 7
<p>Spatial distributions of the soil properties, including pH, soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP), in (<b>a</b>) Diaoluo and (<b>b</b>) Limu mountains.</p> "> Figure 7 Cont.
<p>Spatial distributions of the soil properties, including pH, soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP), in (<b>a</b>) Diaoluo and (<b>b</b>) Limu mountains.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Framework
- (1)
- Soil property extraction. Soil samples were collected from the study area, including Diaoluo and Limu mountains. The properties of these soil samples were obtained through chemical analysis. The soil properties from both mountains were integrated to form a whole sample set.
- (2)
- Feature extraction and selection. Hyperspectral imagery and LiDAR data were acquired using UAV. Vegetation indices and texture features were extracted from the preprocessed hyperspectral data, while terrain-related variables were derived from denoised LiDAR data. We introduced the XGBoost algorithm to calculate feature importance, selecting the most relevant predictors for soil properties to ensure efficient and accurate model training. In addition, the performance of the models using different numbers of features were compared.
- (3)
- Model construction and soil property mapping. BOA was applied to optimize model parameters, aiming to better capture the potential relationships between soil properties and features. Six ML models were built for soil property estimation. We also compared the performance of models using both hyperspectral data and LiDAR data or using a single type of data. Ultimately, the optimal model was selected to generate spatial distribution maps of soil properties, providing insights into their spatial variability across the study area.Further supporting materials, including data files and code, are available in the Supplementary Materials.
2.2. Study Area and Sampling Sites
2.3. Sampling Procedure and Laboratory Chemical Analysis
2.4. UAV Data Acquisition
2.5. Hyperspectral Image Preprocessing and Features Extraction
2.6. LiDAR-Based Feature Extraction
2.7. Informative Features Selection
2.8. Regression Modeling of Tropical Rainforest Soil Properties
2.8.1. Bayesian Optimization Algorithm (BOA)
2.8.2. Regression Methods
2.8.3. Model Evaluation
3. Results
3.1. Statistical Description of Soil Properties from Both Study Sites
3.2. Selected Informative Features
3.3. Optimal Hyperparameter and Model Validation
3.4. Mapping the Spatial Distribution of Soil Properties
4. Discussion
4.1. Feature Selection and Importance Analysis
4.2. Performance Analysis of ML Models and BOA Optimization
4.3. The Prospect and Limitations of the Proposed Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roelofsen, H.D.; van Bodegom, P.M.; Kooistra, L.; van Amerongen, J.J.; Witte, J.-P.M. An Evaluation of Remote Sensing Derived Soil pH and Average Spring Groundwater Table for Ecological Assessments. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 149–159. [Google Scholar] [CrossRef]
- Chen, S.; Lin, B.; Li, Y.; Zhou, S. Spatial and Temporal Changes of Soil Properties and Soil Fertility Evaluation in a Large Grain-Production Area of Subtropical Plain, China. Geoderma 2020, 357, 113937. [Google Scholar] [CrossRef]
- Morvan, X.; Saby, N.P.A.; Arrouays, D.; Le Bas, C.; Jones, R.J.A.; Verheijen, F.G.A.; Bellamy, P.H.; Stephens, M.; Kibblewhite, M.G. Soil Monitoring in Europe: A Review of Existing Systems and Requirements for Harmonisation. Sci. Total Environ. 2008, 391, 1–12. [Google Scholar] [CrossRef]
- Forkuor, G.; Hounkpatin, O.K.L.; Welp, G.; Thiel, M. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLoS ONE 2017, 12, e0170478. [Google Scholar] [CrossRef]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef]
- Shi, T.; Cui, L.; Wang, J.; Fei, T.; Chen, Y.; Wu, G. Comparison of Multivariate Methods for Estimating Soil Total Nitrogen with Visible/near-Infrared Spectroscopy. Plant Soil 2013, 366, 363–375. [Google Scholar] [CrossRef]
- Morellos, A.; Pantazi, X.-E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A.M. Machine Learning Based Prediction of Soil Total Nitrogen, Organic Carbon and Moisture Content by Using VIS-NIR Spectroscopy. Biosyst. Eng. 2016, 152, 104–116. [Google Scholar] [CrossRef]
- Gulhane, V.; Rode, S.; Pande, C. Wavelet for Predicting Soil Nutrients Using Remotely Sensed Satellite Images. Int. J. Comput. Appl. 2017, 174, 35–38. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Shi, T.; Chen, X.; Pan, X.; Lei, J.; Wu, T.; Li, Y.; Liu, Q.; Liu, X. Estimation of Soil Organic Carbon in Tropical Rainforest Regions by Combining Uav Hyperspectral and Lidar Data. SSRN 2023. [Google Scholar] [CrossRef]
- Chlus, A.; Townsend, P.A. Characterizing Seasonal Variation in Foliar Biochemistry with Airborne Imaging Spectroscopy. Remote Sens. Environ. 2022, 275, 113023. [Google Scholar] [CrossRef]
- Shen, X.; Cao, L.; Coops, N.C.; Fan, H.; Wu, X.; Liu, H.; Wang, G.; Cao, F. Quantifying Vertical Profiles of Biochemical Traits for Forest Plantation Species Using Advanced Remote Sensing Approaches. Remote Sens. Environ. 2020, 250, 112041. [Google Scholar] [CrossRef]
- Santillano Cázares, J.; Roque Díaz, L.G.; Núñez Ramírez, F.; Grijalva Contreras, R.L.; Robles Contreras, F.; Macías Duarte, R.; Escobosa García, I.; Cárdenas Salazar, V. Soil Fertility Affects the Growth, Nutrition and Yield of Cotton Cultivated in Two Irrigation Systems and Different Nitrogen Rates. Terra Latinoam. 2019, 37, 7–14. [Google Scholar] [CrossRef]
- John, R.; Dalling, J.W.; Harms, K.E.; Yavitt, J.B.; Stallard, R.F.; Mirabello, M.; Hubbell, S.P.; Valencia, R.; Navarrete, H.; Vallejo, M.; et al. Soil Nutrients Influence Spatial Distributions of Tropical Tree Species. Proc. Natl. Acad. Sci. USA 2007, 104, 864–869. [Google Scholar] [CrossRef]
- Khaleghi, B.; Khamis, A.; Karray, F.O.; Razavi, S.N. Multisensor Data Fusion: A Review of the State-of-the-Art. Inf. Fusion 2013, 14, 28–44. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Chen, Q.; Lindsell, J.A.; Coomes, D.A.; Frate, F.D.; Guerriero, L.; Pirotti, F.; Valentini, R. Above Ground Biomass Estimation in an African Tropical Forest with Lidar and Hyperspectral Data. Isprs J. Photogramm. Remote Sens. 2014, 89, 49–58. [Google Scholar] [CrossRef]
- Shen, Z.; Miao, J.; Wang, J.; Zhao, D.; Tang, A.; Zhen, J. Evaluating Feature Selection Methods and Machine Learning Algorithms for Mapping Mangrove Forests Using Optical and Synthetic Aperture Radar Data. Remote Sens. 2023, 15, 5621. [Google Scholar] [CrossRef]
- Xi, Z.; Xu, H.; Xing, Y.; Gong, W.; Chen, G.; Yang, S. Forest Canopy Height Mapping by Synergizing ICESat-2, Sentinel-1, Sentinel-2 and Topographic Information Based on Machine Learning Methods. Remote Sens. 2022, 14, 364. [Google Scholar] [CrossRef]
- Campbell, M.J.; Dennison, P.E.; Kerr, K.L.; Brewer, S.C.; Anderegg, W.R.L. Scaled Biomass Estimation in Woodland Ecosystems: Testing the Individual and Combined Capacities of Satellite Multispectral and Lidar Data. Remote Sens. Environ. 2021, 262, 112511. [Google Scholar] [CrossRef]
- Qin, S.; Nie, S.; Guan, Y.; Zhang, D.; Wang, C.; Zhang, X. Forest Emissions Reduction Assessment Using Airborne LiDAR for Biomass Estimation. Resour. Conserv. Recycl. 2022, 181, 106224. [Google Scholar] [CrossRef]
- Wu, X.; Shen, X.; Zhang, Z.; Cao, F.; She, G.; Cao, L. An Advanced Framework for Multi-Scale Forest Structural Parameter Estimations Based on UAS-LiDAR and Sentinel-2 Satellite Imagery in Forest Plantations of Northern China. Remote Sens. 2022, 14, 3023. [Google Scholar] [CrossRef]
- Gao, L.; Chai, G.; Zhang, X. Above-Ground Biomass Estimation of Plantation with Different Tree Species Using Airborne LiDAR and Hyperspectral Data. Remote Sens. 2022, 14, 2568. [Google Scholar] [CrossRef]
- Majasalmi, T.; Rautiainen, M. The Impact of Tree Canopy Structure on Understory Variation in a Boreal Forest. For. Ecol. Manag. 2020, 466, 118100. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, H.; Luo, G.; Chen, C.; Bao, A.; Liu, T.; Chen, X. Adaptive Estimation of Multi-Regional Soil Salinization Using Extreme Gradient Boosting with Bayesian TPE Optimization. Int. J. Remote Sens. 2022, 43, 778–811. [Google Scholar] [CrossRef]
- Peng, J.; Biswas, A.; Jiang, Q.; Zhao, R.; Hu, J.; Hu, B.; Shi, Z. Estimating Soil Salinity from Remote Sensing and Terrain Data in Southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Shi, T.; Guo, L.; Chen, Y.; Wang, W.; Shi, Z.; Li, Q.; Wu, G. Proximal and Remote Sensing Techniques for Mapping of Soil Contamination with Heavy Metals. Appl. Spectrosc. Rev. 2018, 53, 783–805. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-Resolution Digital Mapping of Soil Organic Carbon and Soil Total Nitrogen Using DEM Derivatives, Sentinel-1 and Sentinel-2 Data Based on Machine Learning Algorithms. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, B.; Shen, H.; Ouyang, L. Mapping Stocks of Soil Total Nitrogen Using Remote Sensing Data: A Comparison of Random Forest Models with Different Predictors. Comput. Electron. Agric. 2019, 160, 23–30. [Google Scholar] [CrossRef]
- Jiang, H.; Rusuli, Y.; Amuti, T.; He, Q. Quantitative Assessment of Soil Salinity Using Multi-Source Remote Sensing Data Based on the Support Vector Machine and Artificial Neural Network. Int. J. Remote Sens. 2019, 40, 284–306. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S.; Zhu, Z.; Ma, H.; He, T. Soil Moisture Content Retrieval from Landsat 8 Data Using Ensemble Learning. ISPRS J. Photogramm. Remote Sens. 2022, 185, 32–47. [Google Scholar] [CrossRef]
- Swapna, B.; Manivannan, S.; Kamalahasan, M. Prognostic of Soil Nutrients and Soil Fertility Index Using Machine Learning Classifier Techniques. Int. J. E-Collab. 2022, 18, 14. [Google Scholar] [CrossRef]
- Jeong, G.; Oeverdieck, H.; Park, S.J.; Huwe, B.; Ließ, M. Spatial Soil Nutrients Prediction Using Three Supervised Learning Methods for Assessment of Land Potentials in Complex Terrain. CATENA 2017, 154, 73–84. [Google Scholar] [CrossRef]
- Putatunda, S.; Rama, K. A Comparative Analysis of Hyperopt as Against Other Approaches for Hyper-Parameter Optimization of XGBoost. In Proceedings of the 2018 International Conference on Signal Processing and Machine Learning, Shanghai, China, 28 November 2018; pp. 6–10. [Google Scholar]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 2016, 104, 148–175. [Google Scholar] [CrossRef]
- Wang, L.; Hu, P.; Zheng, H.; Liu, Y.; Cao, X.; Hellwich, O.; Liu, T.; Luo, G.; Bao, A.; Chen, X. Integrative Modeling of Heterogeneous Soil Salinity Using Sparse Ground Samples and Remote Sensing Images. Geoderma 2023, 430, 116321. [Google Scholar] [CrossRef]
- Xu, S.; Zhao, Y.; Wang, M.; Shi, X. Comparison of Multivariate Methods for Estimating Selected Soil Properties from Intact Soil Cores of Paddy Fields by Vis–NIR Spectroscopy. Geoderma 2018, 310, 29–43. [Google Scholar] [CrossRef]
- Das, P.; Paul, S.; Bhattacharya, S.S.; Nath, P. Smartphone-Based Spectrometric Analyzer for Accurate Estimation of pH Value in Soil. IEEE Sens. J. 2021, 21, 2839–2845. [Google Scholar] [CrossRef]
- Support for Matrice 600 Pro. Available online: https://www.dji.com/support/product/matrice600-pro (accessed on 5 December 2024).
- Vasques, G.M.; Grunwald, S.; Sickman, J.O. Comparison of Multivariate Methods for Inferential Modeling of Soil Carbon Using Visible/near-Infrared Spectra. Geoderma 2008, 146, 14–25. [Google Scholar] [CrossRef]
- Tillack, A.; Clasen, A.; Kleinschmit, B.; Förster, M. Estimation of the Seasonal Leaf Area Index in an Alluvial Forest Using High-Resolution Satellite-Based Vegetation Indices. Remote Sens. Environ. 2014, 141, 52–63. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Gong, Y.; Fang, S.; Duan, B.; Yuan, N.; Peng, Y.; Wu, X.; Zhu, R. Combining Spectral and Texture Features of UAV Images for the Remote Estimation of Rice LAI throughout the Entire Growing Season. Remote Sens. 2021, 13, 3001. [Google Scholar] [CrossRef]
- Emadi, M.; Taghizadeh-Mehrjardi, R.; Cherati, A.; Danesh, M.; Mosavi, A.; Scholten, T. Predicting and Mapping of Soil Organic Carbon Using Machine Learning Algorithms in Northern Iran. Remote Sens. 2020, 12, 2234. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: San Francisco, CA, USA, 2012; Volume 25. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Lin, M.; Zhu, X.; Hua, T.; Tang, X.; Tu, G.; Chen, X. Detection of Ionospheric Scintillation Based on XGBoost Model Improved by SMOTE-ENN Technique. Remote Sens. 2021, 13, 2577. [Google Scholar] [CrossRef]
- Dam Nguyen, D.; Roussis, P.C.; Thai Pham, B.; Ferentinou, M.; Mamou, A.; Quang Vu, D.; Thi Bui, Q.-A.; Kien Trong, D.; Asteris, P.G. Bagging and Multilayer Perceptron Hybrid Intelligence Models Predicting the Swelling Potential of Soil. Transp. Geotech. 2022, 36, 100797. [Google Scholar] [CrossRef]
- Chen, S.; Xu, H.; Xu, D.; Ji, W.; Li, S.; Yang, M.; Hu, B.; Zhou, Y.; Wang, N.; Arrouays, D.; et al. Evaluating Validation Strategies on the Performance of Soil Property Prediction from Regional to Continental Spectral Data. Geoderma 2021, 400, 115159. [Google Scholar] [CrossRef]
- Jain, A.; Zongker, D. Feature Selection: Evaluation, Application, and Small Sample Performance. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 153–158. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.; Zhong, H.; Li, Y.; Wang, L. Prediction of Undrained Shear Strength Using Extreme Gradient Boosting and Random Forest Based on Bayesian Optimization. Geosci. Front. 2021, 12, 469–477. [Google Scholar] [CrossRef]
- Huang, X.; Liu, W.; Guo, Q.; Tan, J. Prediction Method for the Dynamic Response of Expressway Lateritic Soil Subgrades on the Basis of Bayesian Optimization CatBoost. Soil Dyn. Earthq. Eng. 2024, 186, 108943. [Google Scholar] [CrossRef]
- Gao, S.; Zhong, R.; Yan, K.; Ma, X.; Chen, X.; Pu, J.; Gao, S.; Qi, J.; Yin, G.; Myneni, R.B. Evaluating the Saturation Effect of Vegetation Indices in Forests Using 3D Radiative Transfer Simulations and Satellite Observations. Remote Sens. Environ. 2023, 295, 113665. [Google Scholar] [CrossRef]
- Lee, S.; Bae, J.H.; Hong, J.; Yang, D.; Panagos, P.; Borrelli, P.; Yang, J.E.; Kim, J.; Lim, K.J. Estimation of Rainfall Erosivity Factor in Italy and Switzerland Using Bayesian Optimization Based Machine Learning Models. CATENA 2022, 211, 105957. [Google Scholar] [CrossRef]
- Tajik, S.; Ayoubi, S.; Zeraatpisheh, M. Digital Mapping of Soil Organic Carbon Using Ensemble Learning Model in Mollisols of Hyrcanian Forests, Northern Iran. Geoderma Reg. 2020, 20, e00256. [Google Scholar] [CrossRef]
- R, S.; Ayachit, S.S.; Patil, V.; Singh, A. Competitive Analysis of the Top Gradient Boosting Machine Learning Algorithms. In Proceedings of the 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida, India, 18–19 December 2020; pp. 191–196. [Google Scholar]
- Jain, A.; Patel, H.; Nagalapatti, L.; Gupta, N.; Mehta, S.; Guttula, S.; Mujumdar, S.; Afzal, S.; Sharma Mittal, R.; Munigala, V. Overview and Importance of Data Quality for Machine Learning Tasks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 6–10 July 2020; pp. 3561–3562. [Google Scholar]
- Sierra, C.A.; Trumbore, S.E.; Davidson, E.A.; Vicca, S.; Janssens, I. Sensitivity of Decomposition Rates of Soil Organic Matter with Respect to Simultaneous Changes in Temperature and Moisture. J. Adv. Model. Earth Syst. 2015, 7, 335–356. [Google Scholar] [CrossRef]
Variable Name | Formula | Variable Name | Formula |
---|---|---|---|
anthocyanin reflectance index 1 | structure insensitive pigment index | ||
anthocyanin reflectance index 2 | sum greenness index | SGI is the average reflectance in the 500–600 nanometer portion of the spectrum. | |
carotenoid reflectance index 1 | transformed chlorophyll absorption reflectance index | ||
carotenoid reflectance index 2 | transformed difference vegetation index | ||
difference vegetation index | triangular greenness index | ||
enhanced vegetation index | triangular vegetation index | ||
global environment monitoring index | visible atmospheric pressure index | ||
green atmosphere resistance index | vogelmann red edge index 1 | ||
green chlorophyll cndex | vogelmann red edge index 2 | ||
green difference vegetation index | water band index | ||
green leaf index | energy | ||
green normalized vegetation index | entropy | ||
green optimized soil-adjusted vegetation index | correlation | ||
green vegetation index | inverse difference moment | ||
greenness adjusted vegetation index | inertia | ||
infrared percentage vegetation index | cluster shade | ||
leaf area index | cluster prominence | ||
modified chlorophyll absorption ratio index | haralick correlation | ||
modified chlorophyll absorption ratio index–modified | mean | ||
modified non-linear index | variance | ||
modified red edge normalized difference vegetation index | dissimilarity | ||
modified red edge ratio index | sum average | ||
modified simple ratio | sum variance | ||
modified soil-adjusted vegetation index 2 | sum entropy | ||
modified triangular vegetation index | difference of entropies | ||
modified triangular vegetation index 2 | difference of variances | ||
non-linear index | information measures of correlation IC1 | ||
normalized difference mud index | information measures of correlation IC2 | ||
normalized vegetation index | short run emphasis | ||
optimized soil-adjusted vegetation index | long run emphasis | ||
photochemical reflectance index | gray-level nonuniformity | ||
plant attenuation index | run length nonuniformity | ||
red edge normalized vegetation index | run percentage | ||
red edge position index | the wavelength of the max reflectance derivative in the vegetation red edge region of the spectrum ranges from 690 to 740 nm. | low gray-level run emphasis | |
red-green ratio index | high gray-level run emphasis | ||
renormalized vegetation index | short run low gray-level emphasis | ||
ratio index | short run high gray-level emphasis | ||
soil-adjusted vegetation index | long run low gray-level emphasis |
Variable Name | Formula | Variable Name | Formula |
---|---|---|---|
mean absolute deviation of intensity | height cubic mean | ||
coefficient of intensity variation | height percentile interquartile range | ||
kurtosis of intensity | height skewness | ||
median absolute deviation median | height standard deviation | ||
maximum intensity value | height variance | ||
minimum intensity value | first percentile cumulative height | in a given statistical unit, the normalized LiDAR point cloud is sorted by height, and the cumulative height of all points is calculated. The cumulative height at which x% of points within each statistical unit are located represents the cumulative height percentile of that unit. | |
mean intensity value | fifth percentile cumulative height | ||
median intensity value | 10th percentile cumulative height | ||
skewness of intensity | 20th percentile cumulative height | ||
intensity standard deviation | 25th percentile cumulative height | ||
intensity variance | 30th percentile cumulative height | ||
intensity percentile quartile spacing | 40th percentile cumulative height | ||
first percentile cumulative intensity | in a specific statistical unit, the internally normalized LiDAR point cloud is sorted by intensity, and the cumulative intensity of all points is calculated. The cumulative intensity at which x% of points within each statistical unit are located represents the cumulative intensity percentile of that unit. | 50th percentile cumulative height | |
fifth percentile cumulative intensity | 60th percentile cumulative height | ||
10th percentile cumulative intensity | 70th percentile cumulative height | ||
25th percentile cumulative intensity | 75th percentile cumulative height | ||
30th percentile cumulative intensity | 80th percentile cumulative height | ||
40th percentile cumulative intensity | 90th percentile cumulative height | ||
50th percentile cumulative intensity | 95th percentile cumulative height | ||
60th percentile cumulative intensity | 99th percentile cumulative height | ||
70th percentile cumulative intensity | height density variable of the 0th slice | slicing the point cloud data into ten equal-height layers from low to high, the proportion of returns in each layer represents the corresponding density variable. | |
75th percentile cumulative intensity | height density variable of the first slice | ||
80th percentile cumulative intensity | height density variable of the second slice | ||
90th percentile cumulative intensity | height density variable of the third slice | ||
95th percentile cumulative intensity | height density variable of the fourth slice | ||
99th percentile cumulative intensity | height density variable of the fifth slice | ||
first intensity percentiles | in a specific statistical unit, the internally normalized LiDAR point cloud is sorted by intensity, and then the intensity of x% of points within each statistical unit is calculated. This represents the intensity percentile of that unit. | height density variable of the sixth slice | |
fifth intensity percentiles | height density variable of the seventh slice | ||
10th intensity percentiles | height density variable of the eighth slice | ||
25th intensity percentiles | height density variable of the ninth slice | ||
30th intensity percentiles | fifth percentile height | in a specific statistical unit, the internally normalized LiDAR point cloud is sorted by height, and then the height of x% of points within each statistical unit is calculated. This represents the height percentile of that unit. | |
40th intensity percentiles | 10th percentile height | ||
50th intensity percentiles | 20th percentile height | ||
60th intensity percentiles | 25th percentile height | ||
70th intensity percentiles | 30th percentile height | ||
75th intensity percentiles | 40th percentile height | ||
80th intensity percentiles | 50th percentile height | ||
90th intensity percentiles | 60th percentile height | ||
95th intensity percentiles | 70th percentile height | ||
99th intensity percentiles | 75th percentile height | ||
height mean absolute deviation | 80th percentile height | ||
height canopy relief ratio | 90th percentile height | ||
cumulative height percentile interquartile range | 95th percentile height | ||
height coefficient of variation | 99th percentile height | ||
height kurtosis | gap ratio variable | ||
median of the height median absolute deviation | height mean | ||
height maximum | height quadratic mean | ||
height minimum |
Model | Hyperparameters | Definition | Defined Parameters |
---|---|---|---|
PLSR | n_components | the number of components | 2–20 |
RF | n_estimators | the number of trees | 1–100 |
min_samples_split | the minimum number of samples in an internal node | 1–10 | |
criterion | the function to measure the quality of a split | mae, mse | |
AdaBoost | lr | learning rate | 0.001–1 |
n_estimators | the number of components | 30–250 | |
loss | the loss function | linear, square, and exponential | |
GBDT | lr | learning rate | 0.001–1 |
n_estimators | the number of components | 30–300 | |
max_depth | the depth of the tree | 3–20 | |
loss | the loss function | ls, lad, huber, and quantile | |
XGBoost | lr | learning rate | 0.001–1 |
n_estimators | the number of components | 30–300 | |
max_depth | the depth of the tree | 3–20 | |
min_child_weight | the minimum sum of weights of all observations | 2–10 | |
MLP | alpha | strength of the regularization term | 0.0001–1 |
hidden_layer_sizes | the number of neurons in the hidden layer | 50–300 | |
activation | activation function for the hidden layer | identity, logistic, tanh, and relu | |
solver | the solver for weight optimization | lbfgs, sgd, and adam |
Soil Properties | Sample Number | Min | Max | Mean | SD | CV (%) |
---|---|---|---|---|---|---|
pH value | 148 | 3.90 | 7.41 | 4.69 | 0.52 | 11.08 |
SOC (%) | 148 | 1.74 | 8.13 | 3.84 | 1.09 | 28.40 |
TN (%) | 148 | 0.06 | 0.54 | 0.17 | 0.06 | 38.13 |
TP (ppm) | 148 | 20.00 | 380.00 | 182.13 | 76.04 | 41.75 |
Soil Property | Model | R2 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NoF | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |||
Features | |||||||||||||||||||||||
pH | PLSR | HF | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.03 | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.08 | 0.08 | 0.08 | 0.09 | 0.09 | |
LiDAR | 0.11 | 0.13 | 0.14 | 0.14 | 0.15 | 0.15 | 0.16 | 0.16 | 0.15 | 0.17 | 0.17 | 0.16 | 0.17 | 0.18 | 0.19 | 0.18 | 0.21 | 0.21 | 0.21 | 0.22 | |||
LiDAR + HF | 0.11 | 0.13 | 0.14 | 0.14 | 0.15 | 0.16 | 0.17 | 0.17 | 0.18 | 0.17 | 0.19 | 0.20 | 0.17 | 0.19 | 0.20 | 0.20 | 0.20 | 0.20 | 0.21 | 0.21 | |||
RF | HF | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.10 | 0.10 | 0.11 | 0.12 | 0.13 | 0.13 | 0.14 | 0.15 | 0.16 | 0.16 | 0.17 | 0.18 | 0.18 | 0.21 | 0.19 | ||
LiDAR | 0.11 | 0.14 | 0.14 | 0.15 | 0.14 | 0.15 | 0.15 | 0.13 | 0.16 | 0.17 | 0.18 | 0.19 | 0.21 | 0.24 | 0.24 | 0.25 | 0.24 | 0.24 | 0.24 | 0.25 | |||
LiDAR + HF | 0.10 | 0.17 | 0.23 | 0.21 | 0.18 | 0.18 | 0.22 | 0.25 | 0.20 | 0.19 | 0.21 | 0.24 | 0.25 | 0.28 | 0.27 | 0.32 | 0.29 | 0.27 | 0.26 | 0.29 | |||
AdaBoost | HF | 0.12 | 0.14 | 0.16 | 0.15 | 0.13 | 0.14 | 0.17 | 0.16 | 0.16 | 0.17 | 0.17 | 0.22 | 0.25 | 0.24 | 0.26 | 0.26 | 0.25 | 0.27 | 0.27 | 0.27 | ||
LiDAR | 0.18 | 0.19 | 0.21 | 0.23 | 0.21 | 0.21 | 0.19 | 0.25 | 0.29 | 0.25 | 0.24 | 0.31 | 0.27 | 0.33 | 0.37 | 0.41 | 0.38 | 0.37 | 0.40 | 0.43 | |||
LiDAR + HF | 0.18 | 0.19 | 0.23 | 0.29 | 0.28 | 0.31 | 0.34 | 0.19 | 0.34 | 0.34 | 0.28 | 0.29 | 0.33 | 0.39 | 0.42 | 0.43 | 0.36 | 0.43 | 0.48 | 0.39 | |||
GBDT | HF | 0.07 | 0.13 | 0.13 | 0.13 | 0.13 | 0.14 | 0.18 | 0.15 | 0.17 | 0.17 | 0.21 | 0.22 | 0.24 | 0.21 | 0.23 | 0.23 | 0.24 | 0.24 | 0.25 | 0.25 | ||
LiDAR | 0.14 | 0.15 | 0.18 | 0.19 | 0.22 | 0.21 | 0.32 | 0.35 | 0.36 | 0.32 | 0.35 | 0.42 | 0.37 | 0.39 | 0.42 | 0.41 | 0.42 | 0.43 | 0.42 | 0.43 | |||
LiDAR + HF | 0.15 | 0.15 | 0.17 | 0.21 | 0.22 | 0.27 | 0.31 | 0.37 | 0.35 | 0.36 | 0.44 | 0.47 | 0.47 | 0.48 | 0.49 | 0.49 | 0.44 | 0.49 | 0.49 | 0.50 | |||
XGBoost | HF | 0.04 | 0.04 | 0.04 | 0.05 | 0.06 | 0.06 | 0.09 | 0.07 | 0.09 | 0.10 | 0.13 | 0.14 | 0.14 | 0.14 | 0.15 | 0.15 | 0.14 | 0.14 | 0.15 | 0.16 | ||
LiDAR | 0.15 | 0.17 | 0.22 | 0.25 | 0.27 | 0.27 | 0.28 | 0.28 | 0.29 | 0.28 | 0.29 | 0.27 | 0.26 | 0.27 | 0.31 | 0.28 | 0.29 | 0.31 | 0.32 | 0.32 | |||
LiDAR + HF | 0.17 | 0.17 | 0.22 | 0.24 | 0.28 | 0.27 | 0.28 | 0.28 | 0.29 | 0.32 | 0.33 | 0.37 | 0.37 | 0.36 | 0.36 | 0.36 | 0.37 | 0.37 | 0.37 | 0.38 | |||
MLP | HF | 0.03 | 0.06 | 0.07 | 0.07 | 0.09 | 0.11 | 0.12 | 0.13 | 0.14 | 0.16 | 0.17 | 0.19 | 0.20 | 0.19 | 0.19 | 0.19 | 0.18 | 0.19 | 0.19 | 0.20 | ||
LiDAR | 0.14 | 0.21 | 0.25 | 0.26 | 0.24 | 0.26 | 0.30 | 0.27 | 0.29 | 0.33 | 0.34 | 0.34 | 0.35 | 0.35 | 0.36 | 0.36 | 0.35 | 0.35 | 0.36 | 0.36 | |||
LiDAR + HF | 0.14 | 0.21 | 0.27 | 0.33 | 0.35 | 0.35 | 0.36 | 0.37 | 0.37 | 0.38 | 0.39 | 0.41 | 0.44 | 0.43 | 0.43 | 0.44 | 0.45 | 0.44 | 0.45 | 0.45 | |||
SOC | PLSR | HF | 0.04 | 0.07 | 0.08 | 0.09 | 0.10 | 0.10 | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 | 0.12 | 0.12 | 0.13 | 0.13 | 0.13 | 0.14 | 0.14 | 0.14 | 0.14 | |
LiDAR | 0.12 | 0.14 | 0.14 | 0.16 | 0.16 | 0.17 | 0.17 | 0.15 | 0.18 | 0.18 | 0.20 | 0.20 | 0.21 | 0.21 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | |||
LiDAR + HF | 0.12 | 0.14 | 0.15 | 0.16 | 0.16 | 0.17 | 0.16 | 0.17 | 0.19 | 0.20 | 0.20 | 0.21 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.23 | 0.23 | |||
RF | HF | 0.05 | 0.06 | 0.06 | 0.07 | 0.10 | 0.09 | 0.12 | 0.07 | 0.08 | 0.15 | 0.16 | 0.13 | 0.15 | 0.15 | 0.15 | 0.15 | 0.16 | 0.16 | 0.16 | 0.17 | ||
LiDAR | 0.16 | 0.20 | 0.23 | 0.23 | 0.24 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.27 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | |||
LiDAR + HF | 0.16 | 0.20 | 0.23 | 0.23 | 0.25 | 0.25 | 0.26 | 0.26 | 0.27 | 0.26 | 0.27 | 0.28 | 0.28 | 0.29 | 0.29 | 0.30 | 0.30 | 0.31 | 0.31 | 0.31 | |||
AdaBoost | HF | 0.07 | 0.11 | 0.08 | 0.09 | 0.09 | 0.10 | 0.09 | 0.10 | 0.10 | 0.11 | 0.11 | 0.12 | 0.12 | 0.12 | 0.14 | 0.14 | 0.14 | 0.13 | 0.14 | 0.16 | ||
LiDAR | 0.21 | 0.28 | 0.29 | 0.30 | 0.30 | 0.31 | 0.32 | 0.30 | 0.33 | 0.36 | 0.37 | 0.38 | 0.38 | 0.39 | 0.39 | 0.41 | 0.41 | 0.40 | 0.38 | 0.42 | |||
LiDAR + HF | 0.23 | 0.29 | 0.32 | 0.31 | 0.32 | 0.34 | 0.33 | 0.39 | 0.38 | 0.39 | 0.41 | 0.40 | 0.40 | 0.43 | 0.43 | 0.41 | 0.42 | 0.44 | 0.43 | 0.44 | |||
GBDT | HF | 0.11 | 0.13 | 0.13 | 0.14 | 0.14 | 0.12 | 0.13 | 0.14 | 0.15 | 0.17 | 0.15 | 0.18 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.16 | 0.17 | 0.17 | ||
LiDAR | 0.31 | 0.31 | 0.34 | 0.34 | 0.34 | 0.35 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.40 | 0.47 | 0.44 | 0.46 | 0.45 | 0.48 | 0.48 | 0.46 | |||
LiDAR + HF | 0.24 | 0.25 | 0.28 | 0.32 | 0.33 | 0.37 | 0.37 | 0.37 | 0.40 | 0.44 | 0.45 | 0.45 | 0.45 | 0.44 | 0.44 | 0.44 | 0.45 | 0.45 | 0.45 | 0.45 | |||
XGBoost | HF | 0.15 | 0.18 | 0.19 | 0.20 | 0.22 | 0.22 | 0.23 | 0.23 | 0.23 | 0.22 | 0.23 | 0.23 | 0.24 | 0.24 | 0.25 | 0.25 | 0.26 | 0.25 | 0.25 | 0.25 | ||
LiDAR | 0.26 | 0.29 | 0.31 | 0.35 | 0.37 | 0.36 | 0.37 | 0.37 | 0.39 | 0.39 | 0.38 | 0.39 | 0.41 | 0.37 | 0.39 | 0.39 | 0.40 | 0.42 | 0.41 | 0.41 | |||
LiDAR + HF | 0.23 | 0.31 | 0.34 | 0.36 | 0.37 | 0.38 | 0.39 | 0.37 | 0.42 | 0.46 | 0.46 | 0.42 | 0.44 | 0.43 | 0.46 | 0.45 | 0.47 | 0.47 | 0.46 | 0.47 | |||
MLP | HF | 0.09 | 0.11 | 0.11 | 0.13 | 0.12 | 0.13 | 0.11 | 0.14 | 0.13 | 0.14 | 0.15 | 0.14 | 0.15 | 0.15 | 0.15 | 0.16 | 0.15 | 0.16 | 0.16 | 0.16 | ||
LiDAR | 0.21 | 0.29 | 0.33 | 0.30 | 0.31 | 0.35 | 0.36 | 0.37 | 0.37 | 0.38 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.40 | 0.39 | 0.40 | |||
LiDAR + HF | 0.27 | 0.29 | 0.33 | 0.34 | 0.39 | 0.37 | 0.38 | 0.37 | 0.38 | 0.39 | 0.39 | 0.39 | 0.40 | 0.42 | 0.41 | 0.41 | 0.43 | 0.41 | 0.41 | 0.42 | |||
TN | PLSR | HF | 0.13 | 0.15 | 0.18 | 0.18 | 0.20 | 0.21 | 0.22 | 0.22 | 0.22 | 0.23 | 0.23 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.25 | 0.25 | 0.25 | 0.25 | |
LiDAR | 0.21 | 0.25 | 0.26 | 0.26 | 0.27 | 0.28 | 0.28 | 0.29 | 0.29 | 0.29 | 0.31 | 0.32 | 0.31 | 0.31 | 0.31 | 0.31 | 0.32 | 0.32 | 0.32 | 0.32 | |||
LiDAR + HF | 0.19 | 0.24 | 0.27 | 0.28 | 0.29 | 0.28 | 0.29 | 0.29 | 0.30 | 0.29 | 0.33 | 0.34 | 0.34 | 0.33 | 0.34 | 0.32 | 0.32 | 0.33 | 0.33 | 0.34 | |||
RF | HF | 0.21 | 0.22 | 0.22 | 0.22 | 0.22 | 0.23 | 0.23 | 0.22 | 0.23 | 0.24 | 0.26 | 0.27 | 0.27 | 0.27 | 0.29 | 0.29 | 0.28 | 0.26 | 0.29 | 0.29 | ||
LiDAR | 0.40 | 0.45 | 0.48 | 0.49 | 0.51 | 0.49 | 0.50 | 0.51 | 0.51 | 0.53 | 0.53 | 0.53 | 0.54 | 0.54 | 0.54 | 0.56 | 0.57 | 0.57 | 0.59 | 0.57 | |||
LiDAR + HF | 0.51 | 0.55 | 0.56 | 0.56 | 0.56 | 0.54 | 0.57 | 0.57 | 0.56 | 0.56 | 0.56 | 0.56 | 0.56 | 0.57 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | |||
AdaBoost | HF | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | 0.10 | 0.10 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 | 0.12 | 0.12 | ||
LiDAR | 0.26 | 0.26 | 0.29 | 0.29 | 0.28 | 0.32 | 0.34 | 0.33 | 0.32 | 0.30 | 0.31 | 0.33 | 0.33 | 0.33 | 0.33 | 0.35 | 0.33 | 0.33 | 0.35 | 0.32 | |||
LiDAR + HF | 0.38 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.47 | 0.49 | 0.50 | 0.48 | 0.51 | 0.50 | 0.51 | 0.51 | 0.49 | 0.52 | 0.50 | 0.53 | 0.52 | |||
GBDT | HF | 0.14 | 0.14 | 0.16 | 0.13 | 0.14 | 0.16 | 0.17 | 0.18 | 0.18 | 0.18 | 0.19 | 0.21 | 0.21 | 0.20 | 0.21 | 0.20 | 0.25 | 0.20 | 0.22 | 0.22 | ||
LiDAR | 0.40 | 0.37 | 0.37 | 0.37 | 0.37 | 0.38 | 0.39 | 0.42 | 0.41 | 0.45 | 0.44 | 0.41 | 0.43 | 0.43 | 0.43 | 0.47 | 0.44 | 0.46 | 0.44 | 0.45 | |||
LiDAR + HF | 0.40 | 0.48 | 0.51 | 0.48 | 0.51 | 0.52 | 0.55 | 0.56 | 0.56 | 0.57 | 0.57 | 0.56 | 0.59 | 0.59 | 0.60 | 0.60 | 0.59 | 0.60 | 0.60 | 0.60 | |||
XGBoost | HF | 0.09 | 0.06 | 0.06 | 0.12 | 0.11 | 0.12 | 0.11 | 0.11 | 0.11 | 0.15 | 0.08 | 0.07 | 0.06 | 0.08 | 0.11 | 0.10 | 0.11 | 0.13 | 0.13 | 0.14 | ||
LiDAR | 0.25 | 0.35 | 0.33 | 0.33 | 0.33 | 0.39 | 0.37 | 0.43 | 0.44 | 0.47 | 0.46 | 0.46 | 0.50 | 0.50 | 0.50 | 0.49 | 0.50 | 0.49 | 0.49 | 0.49 | |||
LiDAR + HF | 0.25 | 0.38 | 0.36 | 0.43 | 0.43 | 0.48 | 0.48 | 0.45 | 0.46 | 0.50 | 0.51 | 0.48 | 0.52 | 0.56 | 0.55 | 0.55 | 0.55 | 0.52 | 0.56 | 0.56 | |||
MLP | HF | 0.16 | 0.18 | 0.18 | 0.18 | 0.18 | 0.19 | 0.19 | 0.21 | 0.21 | 0.20 | 0.21 | 0.21 | 0.22 | 0.22 | 0.22 | 0.22 | 0.21 | 0.22 | 0.23 | 0.22 | ||
LiDAR | 0.28 | 0.37 | 0.43 | 0.44 | 0.46 | 0.47 | 0.46 | 0.47 | 0.48 | 0.48 | 0.48 | 0.48 | 0.49 | 0.49 | 0.49 | 0.49 | 0.50 | 0.50 | 0.50 | 0.50 | |||
LiDAR + HF | 0.28 | 0.37 | 0.43 | 0.40 | 0.45 | 0.47 | 0.45 | 0.49 | 0.47 | 0.50 | 0.52 | 0.46 | 0.48 | 0.52 | 0.53 | 0.53 | 0.53 | 0.53 | 0.54 | 0.53 | |||
TP | PLSR | HF | 0.10 | 0.15 | 0.15 | 0.16 | 0.16 | 0.16 | 0.17 | 0.17 | 0.17 | 0.17 | 0.16 | 0.16 | 0.16 | 0.15 | 0.15 | 0.16 | 0.17 | 0.17 | 0.17 | 0.18 | |
LiDAR | 0.16 | 0.26 | 0.24 | 0.25 | 0.25 | 0.24 | 0.26 | 0.26 | 0.27 | 0.26 | 0.25 | 0.25 | 0.26 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | |||
LiDAR + HF | 0.16 | 0.26 | 0.24 | 0.26 | 0.25 | 0.22 | 0.25 | 0.26 | 0.22 | 0.27 | 0.27 | 0.29 | 0.29 | 0.28 | 0.29 | 0.29 | 0.29 | 0.30 | 0.30 | 0.30 | |||
RF | HF | 0.11 | 0.15 | 0.15 | 0.16 | 0.16 | 0.16 | 0.16 | 0.15 | 0.15 | 0.16 | 0.16 | 0.16 | 0.17 | 0.17 | 0.17 | 0.17 | 0.18 | 0.16 | 0.18 | 0.18 | ||
LiDAR | 0.17 | 0.22 | 0.24 | 0.21 | 0.28 | 0.28 | 0.27 | 0.24 | 0.29 | 0.24 | 0.27 | 0.29 | 0.28 | 0.28 | 0.29 | 0.32 | 0.32 | 0.32 | 0.32 | 0.33 | |||
LiDAR + HF | 0.18 | 0.20 | 0.21 | 0.26 | 0.26 | 0.23 | 0.26 | 0.29 | 0.31 | 0.33 | 0.33 | 0.35 | 0.33 | 0.37 | 0.37 | 0.37 | 0.38 | 0.38 | 0.39 | 0.39 | |||
AdaBoost | HF | 0.11 | 0.11 | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 | 0.14 | 0.14 | 0.14 | 0.14 | 0.15 | 0.15 | 0.16 | 0.17 | 0.17 | 0.17 | 0.18 | 0.18 | 0.18 | ||
LiDAR | 0.24 | 0.25 | 0.24 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.25 | 0.27 | 0.28 | 0.29 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.34 | 0.33 | |||
LiDAR + HF | 0.20 | 0.22 | 0.23 | 0.26 | 0.31 | 0.34 | 0.32 | 0.30 | 0.32 | 0.36 | 0.34 | 0.32 | 0.35 | 0.34 | 0.34 | 0.34 | 0.35 | 0.35 | 0.35 | 0.35 | |||
GBDT | HF | 0.11 | 0.13 | 0.15 | 0.15 | 0.14 | 0.16 | 0.17 | 0.16 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.19 | 0.20 | 0.20 | 0.19 | 0.21 | 0.21 | 0.20 | ||
LiDAR | 0.19 | 0.21 | 0.23 | 0.25 | 0.26 | 0.26 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.29 | 0.30 | 0.32 | 0.33 | 0.32 | 0.33 | 0.33 | 0.33 | 0.33 | |||
LiDAR + HF | 0.23 | 0.23 | 0.24 | 0.25 | 0.24 | 0.26 | 0.29 | 0.30 | 0.34 | 0.34 | 0.35 | 0.36 | 0.38 | 0.36 | 0.37 | 0.37 | 0.37 | 0.38 | 0.38 | 0.38 | |||
XGBoost | HF | 0.11 | 0.12 | 0.15 | 0.15 | 0.16 | 0.16 | 0.17 | 0.18 | 0.21 | 0.18 | 0.21 | 0.22 | 0.22 | 0.21 | 0.23 | 0.23 | 0.23 | 0.23 | 0.24 | 0.23 | ||
LiDAR | 0.27 | 0.32 | 0.32 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.34 | 0.32 | 0.34 | 0.33 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.35 | 0.34 | 0.35 | |||
LiDAR + HF | 0.28 | 0.30 | 0.29 | 0.35 | 0.36 | 0.36 | 0.36 | 0.37 | 0.39 | 0.39 | 0.39 | 0.38 | 0.38 | 0.38 | 0.39 | 0.39 | 0.39 | 0.39 | 0.37 | 0.40 | |||
MLP | HF | 0.11 | 0.12 | 0.14 | 0.15 | 0.15 | 0.16 | 0.16 | 0.17 | 0.18 | 0.18 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.18 | 0.18 | 0.19 | ||
LiDAR | 0.16 | 0.21 | 0.24 | 0.27 | 0.28 | 0.29 | 0.29 | 0.30 | 0.31 | 0.31 | 0.32 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.32 | 0.33 | 0.33 | |||
LiDAR + HF | 0.16 | 0.23 | 0.27 | 0.27 | 0.25 | 0.29 | 0.29 | 0.30 | 0.31 | 0.31 | 0.29 | 0.33 | 0.33 | 0.36 | 0.36 | 0.36 | 0.36 | 0.35 | 0.36 | 0.36 |
Soil Property | Model | Hyperparameters | R2 | Increasing | RMSE | RPD | Time Cost | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
pH | PLSR | n_components | |||||||||
default | 2 | 0.11 | 81.82% | 0.47 | 1.07 | ||||||
BOA | 5 | 0.20 | 0.45 | 1.13 | 123 s | ||||||
RF | n_estimators | min_samples_split | criterion | ||||||||
default | 100 | 2 | mse | 0.37 | −27.03% | 0.42 | 1.20 | ||||
BOA | 152 | 5 | mae | 0.27 | 0.41 | 1.33 | 316 s | ||||
AdaBoost | Lr | n_estimators | loss | ||||||||
default | 1 | 50 | linear | 0.06 | 600.00% | 0.52 | 0.98 | ||||
BOA | 0.001 | 30 | exponential | 0.42 | 0.38 | 1.33 | 222 s | ||||
GBDT | Lr | n_estimators | max_depth | loss | |||||||
default | 0.1 | 100 | 3 | ls | 0.08 | 512.50% | 1.50 | 0.59 | |||
BOA | 0.035 | 90 | 18 | huber | 0.49 | 0.36 | 1.41 | 314 s | |||
XGBoost | Lr | n_estimators | max_depth | min_child_weight | |||||||
default | 0.1 | 100 | 3 | 1 | 0.30 | 20.00% | 0.42 | 1.21 | |||
BOA | 0.005 | 244 | 3 | 4 | 0.36 | 0.40 | 1.26 | 190 s | |||
MLP | alpha | hidden_layer_sizes | activation | solver | |||||||
default | 0.0001 | 100 | relu | adam | 0.33 | 30.30% | 0.41 | 1.23 | |||
BOA | 0.002 | 246 | logistic | sgd | 0.43 | 0.38 | 1.35 | 233 s | |||
SOC | PLSR | n_components | |||||||||
default | 2 | 0.22 | 0.00% | 0.77 | 1.15 | ||||||
BOA | 2 | 0.22 | 0.77 | 1.15 | 119 s | ||||||
RF | n_estimators | min_samples_split | criterion | ||||||||
default | 100 | 2 | mse | 0.28 | 3.57% | 0.74 | 1.19 | ||||
BOA | 133 | 1 | mae | 0.29 | 0.74 | 1.20 | 196 s | ||||
AdaBoost | Lr | n_estimators | loss | ||||||||
default | 1 | 50 | linear | 0.28 | 53.57% | 0.74 | 1.19 | ||||
BOA | 0.002 | 81 | exponential | 0.43 | 0.66 | 1.34 | 218 s | ||||
GBDT | Lr | n_estimators | max_depth | loss | |||||||
default | 0.1 | 100 | 3 | ls | 0.21 | 109.52% | 0.78 | 1.14 | |||
BOA | 0.291 | 125 | 7 | lad | 0.44 | 0.66 | 1.37 | 314 s | |||
XGBoost | Lr | n_estimators | max_depth | min_child_weight | |||||||
default | 0.1 | 100 | 3 | 1 | 0.15 | 206.67% | 0.80 | 1.10 | |||
BOA | 0.021 | 184 | 3 | 6 | 0.46 | 0.63 | 1.43 | 189 s | |||
MLP | alpha | hidden_layer_sizes | activation | solver | |||||||
default | 0.0001 | 100 | relu | adam | 0.09 | 355.56% | 0.92 | 1.07 | |||
BOA | 0.1 | 178 | logistic | lbfgs | 0.41 | 0.74 | 1.33 | 233 s | |||
TN | PLSR | n_components | |||||||||
default | 2 | 0.34 | 0.00% | 0.04 | 1.24 | ||||||
BOA | 7 | 0.34 | 0.04 | 1.24 | 109 s | ||||||
RF | n_estimators | min_samples_split | criterion | ||||||||
default | 100 | 2 | mse | 0.54 | 7.41% | 0.04 | 1.49 | ||||
BOA | 70 | 1 | mae | 0.58 | 0.04 | 1.55 | 197 s | ||||
AdaBoost | Lr | n_estimators | loss | ||||||||
default | 1 | 50 | linear | 0.50 | 2.00% | 0.04 | 1.44 | ||||
BOA | 0.013 | 104 | exponential | 0.51 | 0.04 | 1.43 | 218 s | ||||
GBDT | Lr | n_estimators | max_depth | loss | |||||||
default | 0.1 | 100 | 3 | ls | 0.44 | 36.36% | 0.04 | 1.35 | |||
BOA | 0.033 | 147 | 7 | lad | 0.60 | 0.04 | 1.60 | 212 s | |||
XGBoost | Lr | n_estimators | max_depth | min_child_weight | |||||||
default | 0.1 | 100 | 3 | 1 | 0.58 | −5.17% | 0.04 | 1.56 | |||
BOA | 0.029 | 115 | 20 | 10 | 0.55 | 0.04 | 1.50 | 251 s | |||
MLP | alpha | hidden_layer_sizes | activation | solver | |||||||
default | 0.0001 | 100 | relu | adam | 0.47 | 12.77% | 0.04 | 1.39 | |||
BOA | 0.0001 | 149 | logistic | lbfgs | 0.53 | 0.04 | 1.46 | 233 s | |||
TP | PLSR | n_components | |||||||||
default | 2 | 0.29 | 0.00% | 71.07 | 1.20 | ||||||
BOA | 2 | 0.29 | 71.07 | 1.20 | 104 s | ||||||
RF | n_estimators | min_samples_split | criterion | ||||||||
default | 100 | 2 | mse | 0.30 | 23.33% | 59.58 | 1.20 | ||||
BOA | 172 | 6 | mse | 0.37 | 56.73 | 1.27 | 281 s | ||||
AdaBoost | Lr | n_estimators | loss | ||||||||
default | 1 | 50 | linear | 0.25 | 36.00% | 74.51 | 1.17 | ||||
BOA | 0.171 | 113 | exponential | 0.34 | 59.41 | 1.25 | 180 s | ||||
GBDT | Lr | n_estimators | max_depth | loss | |||||||
default | 0.1 | 100 | 3 | ls | 0.28 | 32.14% | 73.12 | 1.18 | |||
BOA | 0.147 | 84 | 3 | ls | 0.37 | 56.73 | 1.27 | 321 s | |||
XGBoost | Lr | n_estimators | max_depth | min_child_weight | |||||||
default | 0.1 | 100 | 3 | 1 | 0.20 | 95.00% | 76.11 | 1.13 | |||
BOA | 0.028 | 158 | 3 | 5 | 0.39 | 51.42 | 1.28 | 181 s | |||
MLP | alpha | hidden_layer_sizes | activation | solver | |||||||
default | 0.0001 | 100 | relu | adam | 0.25 | 44.00% | 74.43 | 1.17 | |||
BOA | 0.014 | 85 | logistic | sgd | 0.36 | 57.96 | 1.26 | 233 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Shi, T.; Li, Q.; Yang, C.; Wang, Z.; Chen, Z.; Pan, X. Mapping Soil Properties in Tropical Rainforest Regions Using Integrated UAV-Based Hyperspectral Images and LiDAR Points. Forests 2024, 15, 2222. https://doi.org/10.3390/f15122222
Chen Y, Shi T, Li Q, Yang C, Wang Z, Chen Z, Pan X. Mapping Soil Properties in Tropical Rainforest Regions Using Integrated UAV-Based Hyperspectral Images and LiDAR Points. Forests. 2024; 15(12):2222. https://doi.org/10.3390/f15122222
Chicago/Turabian StyleChen, Yiqing, Tiezhu Shi, Qipei Li, Chao Yang, Zhensheng Wang, Zongzhu Chen, and Xiaoyan Pan. 2024. "Mapping Soil Properties in Tropical Rainforest Regions Using Integrated UAV-Based Hyperspectral Images and LiDAR Points" Forests 15, no. 12: 2222. https://doi.org/10.3390/f15122222
APA StyleChen, Y., Shi, T., Li, Q., Yang, C., Wang, Z., Chen, Z., & Pan, X. (2024). Mapping Soil Properties in Tropical Rainforest Regions Using Integrated UAV-Based Hyperspectral Images and LiDAR Points. Forests, 15(12), 2222. https://doi.org/10.3390/f15122222