Land Cover Classification of Remote Sensing Imagery with Hybrid Two-Layer Attention Network Architecture
<p>Research data graphs used for the research data in this paper.</p> "> Figure 2
<p>Example of class labels in the sample library of Heshan District.</p> "> Figure 3
<p>Schematic structure of the HDAM algorithm proposed in this paper.</p> "> Figure 4
<p>Half-sequence grouping spectral embedding schematic.</p> "> Figure 5
<p>DCA block.</p> "> Figure 6
<p>Testing accuracy of various algorithms in Xiangyin County study area: (<b>a</b>) image, (<b>b</b>) SVM, (<b>c</b>) KNN, (<b>d</b>) RF, (<b>e</b>) CNN, (<b>f</b>) RNN, (<b>g</b>) ViT, (<b>h</b>) HDAM-Net, (<b>i</b>) VITCNN.</p> "> Figure 7
<p>Results of different algorithms on the Houston dataset: (<b>a</b>) SVM. (<b>b</b>) KNN. (<b>c</b>) RF. (<b>d</b>) CNN. (<b>e</b>) RNN. (<b>f</b>) ViT. (<b>g</b>) SF. (<b>h</b>) HDAM-Net.</p> "> Figure 8
<p>Results of different algorithms on the Indian Pines dataset, as well as spatial distribution of Indian Pines training and test sets: (<b>a</b>) SVM. (<b>b</b>) KNN. (<b>c</b>) RF. (<b>d</b>) CNN. (<b>e</b>) RNN. (<b>f</b>) ViT. (<b>g</b>) SF. (<b>h</b>) HDAM-Net.</p> "> Figure 9
<p>Results of different algorithms on the Pavia University dataset: (<b>a</b>) SVM. (<b>b</b>) KNN. (<b>c</b>) RF. (<b>d</b>) CNN. (<b>e</b>) RNN. (<b>f</b>) ViT. (<b>g</b>) SF. (<b>h</b>) HDAM-Net.</p> "> Figure 10
<p>Loss curves of the proposed HDAM-Net algorithm during training.</p> "> Figure 11
<p>Spatial feature distribution of Sentinel-2 imagery in Heshan District—(<b>a</b>) 2019, (<b>b</b>) 2021, (<b>c</b>) 2023—for three years.</p> "> Figure 12
<p>Three -year tree migration of trees in Heshan District: (<b>a</b>) 2019–2021, (<b>b</b>) 2021–2023, (<b>c</b>) 2019–2023. Three-year dynamics of forests in Heshan district: (<b>d</b>) 2019–2021, (<b>e</b>) 2021–2023, (<b>f</b>) 2019–2023.</p> ">
Abstract
:1. Introduction
- (1)
- An enhanced feature extraction method, HDAM-Net, for remote sensing images is proposed. This method effectively preserves the richness of information and ensures the consistency of spatial and semantic information during the feature fusion process.
- (2)
- We propose the MSCRC network to enhance the model’s ability to perceive information at various scales. The MSCRC can more effectively capture the features in the original image and minimize the loss of detailed information.
- (3)
- We construct the attention mechanism of DCAM to introduce more powerful context modeling and feature association when dealing with images in sequence data image processing. We efficiently extract channel and spatial dependencies between multiscale encoder features to address the semantic gap problem.
- (4)
- Addressing structural differences involves utilizing a dual-channel parallel architecture to prevent information loss and excessive feature fusion. This architecture can effectively distinguish between feature types that have high similarity.
2. Data on Specific Research Materials
2.1. Regional Overview
2.2. Preprocessing
2.2.1. Multispectral Data Sources
2.2.2. Hyperspectral Data Sources
2.3. HDAM-Net Model
2.3.1. Half-Sequence Grouping Spectral Embedding (HSGSE)
2.3.2. Add the Transformer from MS
2.3.3. Double Cross-Attention Module (DCAM)
2.3.4. Multiscale Cascaded Residual Convolution (MSCRC)
2.4. Evaluation Indicators
- (1)
- : This metric indicates the percentage of correctly classified agricultural predictions relative to the total predictions.
- (2)
- denotes the average precision, which is a more refined evaluation index in agricultural classification. The formula for calculating it is detailed below:
- (3)
- Kappa coefficient: the Kappa value assesses the consistency of an agricultural classification model with its real-world test predictions. The calculation is carried out using the formula detailed below:Indicates conformity with factual data, and is the likelihood that the classifier will predict a consistent result between the classification and the actual situation.
3. Results
3.1. Ablation Study
3.2. Multimethod Comparison
3.2.1. Comparative Analysis of Multispectral Data
- (1)
- For the SVM, the radial basis function (RBF) kernel was used, which was set within a range of 1 × 10−2. This kernel is suitable for small sample datasets and is sensitive to feature selection.
- (2)
- For the KNN, we chose five for n neighbors, uniform for weights, and auto for algorithm. It is simple and easy to implement, but it these settings make it sensitive to high-dimensional data and noise.
- (3)
- For RF, the parameter of n estimators is crucial, which was set to 300 for optimal performance, and the tree depth was set to 30. This makes it suitable for large-scale datasets and insensitive to feature selection.
- (4)
- For the CNN, the architecture includes convolutional kernel size and stride, a batch normalization layer, a ReLU activation function, a max pooling layer, a fully connected layer, and an output layer. It is applicable to image data and is capable of automatic feature extraction.
- (5)
- For the RNN, we chose 128 for the LSTM/GRU layer and 64 for the fully connected layer for sequential data such as time series remote sensing images.
- (6)
- For the VIT, the architecture comprises five encoder blocks—with a patch size set to 64—four attention heads, eight-layer MLPs, and a dropout layer that suppresses 10% of neurons. It is a Transformer-based model designed for large-scale image data.
- (7)
- For the VITCNN, we used the parameter settings outlined in reference [36], combining the strengths of the CNN and ViT for processing complex image data.
- (8)
- For SF, the multiscale convolutional kernel size was set to four, with four attention heads, eight-layer MLPs, and four spectral convolutional layers. This configuration is suitable for hyperspectral data.
3.2.2. Comparative Analysis of Hyperspectral Data
3.3. Analysis of Land Use Change in Forests and Trees in the Study Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MSCRC | Multilayer Residual Cascade Convolutional |
DCAM | Double Cross-Attention Module |
MS | MCA + SAM |
SF | Spectral Formal |
GIS | Geographic Information System |
SVMs | Support Vector Machines |
RNNs | Recurrent Neural Networks |
MSI | Multispectral Instrument |
ViT | Vision Transformer |
CNNs | Convolutional Neural Networks |
VNIR | Visible and Near-Infrared |
SWIRs | Shortwave Infrared Bands |
ROI | Region of Interest |
NCALM | NSF-Funded Center for Airborne Laser Mapping |
Aviris | Airborne Visual Infrared Imaging Spectrometer |
HSGSE | Half-Sequence Grouping Spectral Embedding |
MCA | Multihead Channel Attention |
OA | Overall Accuracy |
SAM | Spatial Attention Module |
AA | Average Accuracy |
References
- Li, J.; Pei, Y.; Zhao, S.; Xiao, R.; Sang, X.; Zhang, C. A review of remote sensing for environmental monitoring in China. Remote Sens. 2020, 12, 1130. [Google Scholar] [CrossRef]
- Macarringue, L.S.; Bolfe, É.L.; Pereira, P.R.M. Developments in land use and land cover classification techniques in remote sensing: A review. J. Geogr. Inf. Syst. 2022, 14, 1–28. [Google Scholar] [CrossRef]
- Afaq, Y.; Manocha, A. Analysis on change detection techniques for remote sensing applications: A review. Ecol. Inform. 2021, 63, 101310. [Google Scholar] [CrossRef]
- Van Westen, C. Remote sensing for natural disaster management. Int. Arch. Photogramm. Remote Sens. 2000, 33, 1609–1617. [Google Scholar]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Du, Z.; Peng, D.; Hao, P.; Zhang, Y.; Gong, P. An overview of the applications of earth observation satellite data: Impacts and future trends. Remote Sens. 2022, 14, 1863. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Q.; Li, Y.; Liu, S.; Wang, Z.; Zhu, L.; Wang, Z. An overview of satellite remote sensing technology used in China’s environmental protection. Earth Sci. Inform. 2017, 10, 137–148. [Google Scholar] [CrossRef]
- Jhawar, M.; Tyagi, N.; Dasgupta, V. Urban planning using remote sensing. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 1, 42–57. [Google Scholar]
- Mehmood, M.; Shahzad, A.; Zafar, B.; Shabbir, A.; Ali, N. Remote sensing image classification: A comprehensive review and applications. Math. Probl. Eng. 2022, 2022, 5880959. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Saxena, R.; Mukherjee, S. Application of remote sensing technology for land use/land cover change analysis. J. Indian Soc. Remote Sens. 1999, 27, 123–128. [Google Scholar] [CrossRef]
- Zeferino, L.B.; de Souza, L.F.T.; do Amaral, C.H.; Fernandes Filho, E.I.; de Oliveira, T.S. Does environmental data increase the accuracy of land use and land cover classification? Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102128. [Google Scholar] [CrossRef]
- Jansen, L.J.; Di Gregorio, A. Land-use data collection using the “land cover classification system”: Results from a case study in Kenya. Land Use Policy 2003, 20, 131–148. [Google Scholar] [CrossRef]
- Hiscock, O.H.; Back, Y.; Kleidorfer, M.; Urich, C. A GIS-based land cover classification approach suitable for fine-scale urban water management. Water Resour. Manag. 2021, 35, 1339–1352. [Google Scholar] [CrossRef]
- Lateef, F.; Ruichek, Y. Survey on semantic segmentation using deep learning techniques. Neurocomputing 2019, 338, 321–348. [Google Scholar] [CrossRef]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Martinez-Gonzalez, P.; Garcia-Rodriguez, J. A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 2018, 70, 41–65. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2013, 39, 261–283. [Google Scholar] [CrossRef]
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. 2013, 1, 90–95. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis: A Beginner’s Guide—I. Introduction and Application; Blackwell Publishing Ltd.: Oxford, UK, 1990; Volume 45, pp. 375–382. [Google Scholar]
- Shin, D.H.; Park, R.H.; Yang, S.; Jung, J.H. Block-based noise estimation using adaptive Gaussian filtering. IEEE Trans. Consum. Electron. 2005, 51, 218–226. [Google Scholar] [CrossRef]
- Torre, V.; Poggio, T.A. On edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 147–163. [Google Scholar] [CrossRef]
- Yokoya, N.; Grohnfeldt, C.; Chanussot, J. Hyperspectral and multispectral data fusion: A comparative review of the recent literature. IEEE Geosci. Remote Sens. Mag. 2017, 5, 29–56. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Li, J.; Cui, R.; Li, B.; Li, Y.; Mei, S.; Du, Q. Dual 1D-2D spatial-spectral cnn for hyperspectral image super-resolution. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3113–3116. [Google Scholar]
- Maulik, U.; Chakraborty, D. Remote Sensing Image Classification: A survey of support-vector-machine-based advanced techniques. IEEE Geosci. Remote Sens. Mag. 2017, 5, 33–52. [Google Scholar] [CrossRef]
- Guo, B.; Damper, R.I.; Gunn, S.R.; Nelson, J.D. A fast separability-based feature-selection method for high-dimensional remotely sensed image classification. Pattern Recognit. 2008, 41, 1653–1662. [Google Scholar] [CrossRef]
- Li, W.; Guo, Q.; Elkan, C. One-class remote sensing classification from positive and unlabeled background data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 730–746. [Google Scholar] [CrossRef]
- Hang, R.; Liu, Q.; Hong, D.; Ghamisi, P. Cascaded recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5384–5394. [Google Scholar] [CrossRef]
- Wang, B.; Lei, Y.; Li, N.; Yan, T. Deep separable convolutional network for remaining useful life prediction of machinery. Mech. Syst. Signal Process. 2019, 134, 106330. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Fan, X.; Li, X.; Yan, C.; Fan, J.; Yu, L.; Wang, N.; Chen, L. MARC-Net: Terrain Classification in Parallel Network Architectures Containing Multiple Attention Mechanisms and Multi-Scale Residual Cascades. Forests 2023, 14, 1060. [Google Scholar] [CrossRef]
- Fan, X.; Li, X.; Yan, C.; Fan, J.; Chen, L.; Wang, N. Converging Channel Attention Mechanisms with Multilayer Perceptron Parallel Networks for Land Cover Classification. Remote Sens. 2023, 15, 3924. [Google Scholar] [CrossRef]
Wave Band | Resolution | Center Wavelength | Descriptive |
---|---|---|---|
B1 | 60 m | 443 nm | ultramarine |
B2 | 10 m | 490 nm | blue |
B3 | 10 m | 560 nm | greener |
B4 | 10 m | 665 nm | red |
B5 | 20 m | 705 nm | VNIR |
B6 | 20 m | 740 nm | VNIR |
B7 | 20 m | 783 nm | VNIR |
B8 | 10 m | 842 nm | VNIR |
B8A | 20 m | 865 nm | VNIR |
B9 | 60 m | 940 nm | SWIR |
B10 | 60 m | 1375 nm | SWIR |
B11 | 20 m | 1610 nm | SWIR |
B12 | 20 m | 2190 nm | SWIR |
C N. | Class Name | Training | Testing |
---|---|---|---|
1 | Healthy Grass | 198 | 1053 |
2 | Stressed Grass | 190 | 1064 |
3 | Synthetic Grass | 192 | 505 |
4 | Tree | 188 | 1056 |
5 | Soil | 186 | 1056 |
6 | Water | 182 | 143 |
7 | Residential | 196 | 1072 |
8 | Commercial | 191 | 1053 |
9 | Road | 193 | 1059 |
10 | Highway | 191 | 1036 |
11 | Railway | 181 | 1054 |
12 | Parking Lot 1 | 192 | 1041 |
13 | Parking Lot 2 | 184 | 285 |
14 | Tennis Court | 181 | 247 |
15 | Running Track | 187 | 473 |
Total | 2832 | 12,197 |
C N. | Class Name | Training | Testing |
---|---|---|---|
1 | Corn Notill | 50 | 1384 |
2 | Corn Mintill | 50 | 784 |
3 | Corn | 50 | 184 |
4 | Grass Pasture | 50 | 447 |
5 | Grass Trees | 50 | 697 |
6 | Hay Windrowed | 50 | 439 |
7 | Soybean Notill | 50 | 918 |
8 | Soybean Mintill | 50 | 2418 |
9 | Soybean Clean | 50 | 564 |
10 | Wheat | 50 | 162 |
11 | Woods | 50 | 1244 |
12 | Buildings Grass Trees Drives | 50 | 330 |
13 | Stones Steel Towers | 50 | 45 |
14 | Alfalfa | 15 | 39 |
15 | Grass Pasture Mowed | 15 | 11 |
16 | Oats | 15 | 5 |
Total | 695 | 9671 |
C N. | Class Name | Training | Testing |
---|---|---|---|
1 | Asphalt | 548 | 6304 |
2 | Meadows | 540 | 18,146 |
3 | Gravel | 392 | 1815 |
4 | Trees | 524 | 2912 |
5 | Metal Sheets | 265 | 1113 |
6 | Bare Soil | 532 | 4572 |
7 | Bitumen | 375 | 981 |
8 | Bricks | 514 | 3364 |
9 | Shadows | 231 | 795 |
Total | 3921 | 40,002 |
Different Methods | Different Module | Metric | Time (s) ↓ | ||||||
---|---|---|---|---|---|---|---|---|---|
HGSE | MSCC | DSC | MS | leakyRelu | OA (%) ↑ | AA (%) ↑ | Kappa ↑ | ||
ViT | ✓ | × | × | × | × | 97.35 | 97.24 | 0.9684 | 1276.98 |
HDAM-Net | ✓ | ✓ | × | × | × | 98.29 | 98.28 | 0.9796 | 1447.75 |
HDAM-Net | ✓ | ✓ | ✓ | × | × | 98.99 | 98.67 | 0.9879 | 1551.63 |
HDAM-Net | ✓ | ✓ | ✓ | ✓ | × | 99.28 | 99.15 | 0.9914 | 1693.33 |
HDAM-Net | ✓ | ✓ | ✓ | ✓ | ✓ | 99.42 | 99.25 | 0.9931 | 1706.91 |
Train | C N. | Metrics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | OA (%) ↑ | AA (%) ↑ | Kappa ↑ | Time (s) ↓ | |
10% | 99.49 | 99.62 | 100.00 | 96.64 | 93.53 | 99.60 | 99.66 | 98.56 | 98.37 | 0.9829 | 1599.21 |
20% | 99.36 | 98.68 | 100.00 | 99.52 | 97.26 | 99.20 | 99.83 | 99.15 | 99.13 | 0.9899 | 1462.91 |
30% | 99.66 | 99.06 | 100.00 | 97.12 | 96.51 | 99.20 | 100.00 | 98.81 | 98.80 | 0.9558 | 1415.57 |
40% | 99.04 | 99.95 | 100.00 | 97.42 | 94.77 | 99.20 | 99.75 | 98.78 | 98.59 | 0.9855 | 1620.73 |
50% | 98.98 | 98.91 | 100.00 | 98.99 | 97.81 | 99.28 | 99.80 | 99.09 | 99.11 | 0.9892 | 1489.16 |
60% | 99.66 | 99.96 | 99.91 | 99.32 | 99.25 | 99.80 | 99.83 | 99.70 | 99.68 | 0.9964 | 2091.09 |
70% | 99.81 | 99.67 | 100.00 | 99.55 | 96.01 | 99.88 | 99.76 | 99.42 | 99.25 | 0.9931 | 1433.95 |
80% | 99.30 | 99.85 | 100.00 | 98.89 | 97.82 | 99.95 | 99.87 | 99.43 | 99.39 | 0.9933 | 1952.07 |
90% | 99.74 | 99.87 | 99.94 | 97.92 | 98.17 | 99.78 | 99.88 | 99.35 | 99.33 | 0.9922 | 1706.91 |
C N. | Various Algorithms | |||||||
---|---|---|---|---|---|---|---|---|
SVM | KNN | RF | CNN | RNN | ViT | ViTCNN | HDAM-Net | |
1 | 95.18 | 90.12 | 95.52 | 81.13 | 94.60 | 97.24 | 98.37 | 99.81 |
2 | 97.69 | 99.62 | 99.56 | 95.31 | 99.27 | 98.74 | 99.78 | 99.67 |
3 | 96.26 | 96.77 | 97.45 | 86.17 | 98.03 | 99.63 | 99.92 | 100.00 |
4 | 84.66 | 89.93 | 90.33 | 77.39 | 92.94 | 93.18 | 96.84 | 99.55 |
5 | 76.11 | 91.87 | 88.88 | 49.18 | 97.75 | 91.32 | 93.17 | 96.01 |
6 | 94.33 | 98.02 | 96.31 | 78.05 | 96.38 | 98.35 | 98.64 | 99.88 |
7 | 97.34 | 99.55 | 98.00 | 90.36 | 99.47 | 99.19 | 99.81 | 99.76 |
OA (%) ↑ | 92.47 | 95.13 | 95.52 | 82.26 | 96.27 | 96.92 | 98.32 | 99.42 |
AA (%) ↑ | 91.66 | 95.13 | 95.16 | 79.66 | 96.07 | 96.81 | 98.08 | 99.25 |
Kappa ↑ | 0.9102 | 0.9419 | 0.9466 | 0.7883 | 0.9555 | 0.9633 | 0.9800 | 0.9931 |
Evaluation | Different Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|
SVM | KNN | RF | CNN | RNN | ViT | SF | Our | ||
Houston | OA (%) ↑ | 73.63 | 79.42 | 77.59 | 84.15 | 78.07 | 75.82 | 77.31 | 86.69 |
AA (%) ↑ | 74.42 | 80.76 | 80.41 | 85.53 | 80.19 | 78.15 | 79.56 | 83.19 | |
Kappa ↑ | 0.7141 | 0.7769 | 0.7625 | 0.8280 | 0.7625 | 0.7383 | 0.7541 | 0.8505 | |
Indian | OA (%) ↑ | 55.32 | 60.56 | 69.66 | 71.74 | 53.27 | 50.64 | 75.38 | 77.54 |
AA (%) ↑ | 49.08 | 71.40 | 76.77 | 78.03 | 53.10 | 56.12 | 81.20 | 75.19 | |
Kappa ↑ | 0.4916 | 0.5564 | 0.6576 | 0.6787 | 0.4673 | 0.4486 | 0.7192 | 0.7281 | |
Pavia | OA (%) ↑ | 71.97 | 70.83 | 69.28 | 81.93 | 78.35 | 68.83 | 74.95 | 83.37 |
AA (%) ↑ | 76.65 | 79.92 | 80.01 | 86.21 | 84.05 | 77.69 | 83.30 | 81.31 | |
Kappa ↑ | 0.6320 | 0.6323 | 0.6196 | 0.7628 | 0.7223 | 0.6018 | 0.6797 | 0.8000 |
C N. | Class Name | Heshan | |
---|---|---|---|
Training | Testing | ||
1 | Buildup | 1396 | 599 |
2 | Water | 1663 | 713 |
3 | Tree | 599 | 257 |
4 | Pond | 256 | 111 |
5 | WetLand | 1609 | 690 |
6 | Vegetable | 791 | 340 |
7 | Forests | 1102 | 473 |
Total | 7416 | 3183 |
C N. | Various Algorithms | |||||||
---|---|---|---|---|---|---|---|---|
SVM | RF | CNN | RNN | ViT | SF | ViTCNN | HDAM-Net | |
1 | 75.95 | 86.97 | 61.03 | 70.55 | 96.06 | 95.72 | 96.91 | 98.85 |
2 | 97.19 | 98.03 | 90.55 | 92.54 | 92.06 | 95.42 | 97.41 | 96.09 |
3 | 69.64 | 73.92 | 60.76 | 64.27 | 95.65 | 98.83 | 99.33 | 99.33 |
4 | 61.26 | 69.36 | 42.18 | 59.37 | 94.92 | 98.82 | 99.60 | 100.00 |
5 | 83.47 | 85.94 | 61.28 | 76.88 | 95.64 | 98.25 | 98.44 | 99.62 |
6 | 49.41 | 80.58 | 37.67 | 68.14 | 87.48 | 88.24 | 92.16 | 98.35 |
7 | 83.72 | 89.00 | 68.96 | 83.66 | 95.73 | 97.09 | 97.73 | 99.27 |
OA (%) ↑ | 79.64 | 87.18 | 65.72 | 77.66 | 94.04 | 95.97 | 97.26 | 98.49 |
AA (%) ↑ | 74.38 | 83.41 | 60.35 | 73.63 | 93.94 | 96.06 | 97.37 | 98.79 |
Kappa ↑ | 75.12 | 84.41 | 58.25 | 72.88 | 92.79 | 95.12 | 96.69 | 98.17 |
C N. | Various Algorithms | |||||||
---|---|---|---|---|---|---|---|---|
SVM | RF | CNN | RNN | ViT | SF | ViTCNN | HDAM-Net | |
1 | 81.96 | 88.14 | 52.14 | 85.53 | 96.20 | 98.20 | 97.34 | 99.14 |
2 | 97.61 | 98.73 | 93.86 | 95.00 | 95.73 | 96.15 | 98.61 | 98.37 |
3 | 69.64 | 78.21 | 67.44 | 82.47 | 96.99 | 99.16 | 99.33 | 99.33 |
4 | 71.17 | 72.07 | 58.98 | 79.29 | 98.43 | 99.60 | 100.00 | 100.00 |
5 | 79.42 | 87.39 | 76.38 | 83.34 | 95.52 | 96.89 | 98.69 | 98.57 |
6 | 61.76 | 88.82 | 64.22 | 79.51 | 83.43 | 90.01 | 92.66 | 92.41 |
7 | 71.88 | 86.89 | 66.69 | 89.92 | 93.46 | 93.28 | 97.36 | 98.63 |
OA (%) ↑ | 79.89 | 88.88 | 71.68 | 86.73 | 94.32 | 95.98 | 97.68 | 98.10 |
AA (%) ↑ | 76.21 | 85.75 | 68.54 | 85.01 | 94.26 | 96.19 | 97.72 | 98.07 |
Kappa ↑ | 75.42 | 86.48 | 65.48 | 83.91 | 93.12 | 95.13 | 97.19 | 97.70 |
C N. | Various Algorithms | |||||||
---|---|---|---|---|---|---|---|---|
SVM | RF | CNN | RNN | ViT | SF | ViTCNN | HDAM-Net | |
1 | 81.13 | 86.97 | 54.87 | 87.24 | 97.27 | 96.48 | 98.92 | 99.42 |
2 | 97.89 | 97.19 | 95.55 | 89.77 | 93.74 | 96.03 | 97.83 | 98.37 |
3 | 61.86 | 75.48 | 44.90 | 74.62 | 97.82 | 98.49 | 96.49 | 100.00 |
4 | 79.27 | 83.78 | 64.06 | 85.93 | 100.00 | 100.00 | 100.00 | 100.00 |
5 | 76.23 | 87.97 | 77.31 | 86.01 | 97.57 | 98.44 | 98.69 | 99.50 |
6 | 65.00 | 87.64 | 55.62 | 76.35 | 91.78 | 95.82 | 98.73 | 98.98 |
7 | 77.80 | 90.27 | 63.33 | 78.31 | 93.46 | 97.64 | 98.54 | 99.27 |
OA (%) ↑ | 79.99 | 89.00 | 69.71 | 83.99 | 95.54 | 97.20 | 98.40 | 99.20 |
AA (%) ↑ | 77.03 | 87.05 | 65.10 | 82.61 | 95.95 | 97.56 | 98.46 | 99.37 |
Kappa ↑ | 75.61 | 86.64 | 62.90 | 80.58 | 94.60 | 96.61 | 98.06 | 99.04 |
C N. | Area (km2) | Area Change Rate (%) | ||||
---|---|---|---|---|---|---|
2019 | 2021 | 2023 | 2019–2021 | 2021–2023 | 2019–2023 | |
Building | 1096.88 | 802.98 | 929.29 | −26.79 | 15.73 | −15.28 |
Water | 1260.18 | 1416.03 | 1245.96 | 12.37 | −12.01 | −1.13 |
Tree | 304.67 | 280.44 | 434.35 | −7.95 | 54.88 | 42.56 |
Pond | 265.42 | 116.57 | 148.78 | −56.08 | 27.63 | −43.95 |
Wetland | 731.10 | 923.62 | 754.51 | 26.33 | −18.31 | 3.20 |
Vegetable | 396.17 | 480.24 | 358.44 | 21.22 | −25.36 | −9.52 |
Forests | 859.59 | 894.13 | 1042.68 | 4.02 | 16.61 | 21.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Li, X.; Fan, J. Land Cover Classification of Remote Sensing Imagery with Hybrid Two-Layer Attention Network Architecture. Forests 2024, 15, 1504. https://doi.org/10.3390/f15091504
Fan X, Li X, Fan J. Land Cover Classification of Remote Sensing Imagery with Hybrid Two-Layer Attention Network Architecture. Forests. 2024; 15(9):1504. https://doi.org/10.3390/f15091504
Chicago/Turabian StyleFan, Xiangsuo, Xuyang Li, and Jinlong Fan. 2024. "Land Cover Classification of Remote Sensing Imagery with Hybrid Two-Layer Attention Network Architecture" Forests 15, no. 9: 1504. https://doi.org/10.3390/f15091504
APA StyleFan, X., Li, X., & Fan, J. (2024). Land Cover Classification of Remote Sensing Imagery with Hybrid Two-Layer Attention Network Architecture. Forests, 15(9), 1504. https://doi.org/10.3390/f15091504