Identification, Classification and Characterization of bZIP Transcription Factor Family Members in Pinus massoniana Lamb.
<p>Sequence alignments of conserved domains of all bZIP family proteins in <span class="html-italic">P. massoniana</span> Lamb.. The dark blue, light red, and light blue backgrounds indicate protein identities of 100%, 75%, and 50%, respectively. The basic region and leucine zipper region are marked with black line boxes. The asterisks indicate the conserved amino acids of bZIP domain.</p> "> Figure 2
<p>Phylogenetic tree of the bZIP TF family of <span class="html-italic">P. massoniana</span> and <span class="html-italic">A. thaliana</span>. The different color branches and surrounding letters represent different groups. The green stars represent AtbZIPs, and the purple stars represent PmbZIPs.</p> "> Figure 3
<p>Motif analysis of the bZIP TFs in <span class="html-italic">P. massoniana</span>. The motif structures were obtained by MEME analysis. Eight conserved motifs of PmbZIP proteins are shown, and the different colors represent different kinds of motifs.</p> "> Figure 4
<p>Subcellular localization analysis of PmbZIP4 and PmbZIP20 protein. Transient expression of GFP (control), PmbZIP4-GFP and PmbZIP20-GFP in <span class="html-italic">N. benthamiana</span> leaves. The scale in the images of GFP and PmbZIP20-GFP is 50 μM, and the scale in the images of PmbZIP4-GFP is 20 μM.</p> "> Figure 5
<p>Transcriptional profiles of <span class="html-italic">PmbZIP</span> family members after inoculation with pine wood nematodes in <span class="html-italic">P. massoniana</span> corresponding to five stages: 0 (CK), 3, 10, 20, and 35 d. A heatmap was generated by the log<sub>2</sub>(FPKM + 1) value, and the color scale represents the relative expression level.</p> "> Figure 6
<p>The expression levels of <span class="html-italic">PmbZIPs</span> in different tissues in <span class="html-italic">P. massoniana</span>. YN: young needles; MN: mature needles; S: stems; R: roots. The relative expression level is indicated as the mean ± standard deviation (SD). Different letters show significant differences at the 0.05 level with the Duncan method.</p> "> Figure 7
<p>The expression levels of <span class="html-italic">PmbZIPs</span> in different treatments. (<b>A</b>) SA; (<b>B</b>) MeJA; (<b>C</b>) ETH; (<b>D</b>) H<sub>2</sub>O<sub>2</sub>. The relative expression level is indicated as the mean ± standard deviation (SD). Different letters show significant differences at the 0.05 level with the Duncan method.</p> "> Figure 7 Cont.
<p>The expression levels of <span class="html-italic">PmbZIPs</span> in different treatments. (<b>A</b>) SA; (<b>B</b>) MeJA; (<b>C</b>) ETH; (<b>D</b>) H<sub>2</sub>O<sub>2</sub>. The relative expression level is indicated as the mean ± standard deviation (SD). Different letters show significant differences at the 0.05 level with the Duncan method.</p> "> Figure 8
<p>Transcriptional activity analysis of PmbZIP proteins. The growth state of the pGBKT7 (control), pGBKT7-PmbZIP3, pGBKT7-PmbZIP4, pGBKT7-PmbZIP8, pGBKT7-PmbZIP20 and pGBKT7-PmbZIP23 on SD/-Trp, SD/-Ade/-His/-Trp and SD/-Ade/-His/-Trp + X-α-gal medium.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of PmbZIP TFs
2.2. Conserved Domain and Phylogenesis Analysis of bZIP TFs
2.3. Examination of PmbZIP Protein Motifs
2.4. Subcellular Localization
2.5. Transcriptional Pattern Analysis
2.6. Plant Materials and Treatments
2.7. Quantitative Reverse Transcription PCR (qRT–PCR) Analysis of PmbZIP Genes
2.8. Transcriptional Activity Assays
3. Results
3.1. Identification of bZIP TF Sequences in P. massoniana
3.2. Conserved Domain Analysis of PmbZIP Proteins
3.3. Phylogenetic Analysis of the bZIP TFs
3.4. Motif Analysis of PmbZIP Proteins
3.5. Subcellular Localization Analysis
3.6. Transcriptional Profile Analysis of PmbZIP Genes
3.7. Expression Patterns of Selected PmbZIPs in Various Parts of the Plant
3.8. Expression Patterns of Selected PmbZIPs in Response to Different Treatments
3.9. Transcriptional Activity Assays of PmbZIPs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schwechheimer, C.; Bevan, M. The regulation of transcription factor activity in plants. Trends Plant Sci. 1998, 3, 378–383. [Google Scholar] [CrossRef]
- Singh, K.B.; Foley, R.C.; Onate-Sanchez, L. Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol. 2002, 5, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Takasaki, H.; Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. NAC transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 2012, 1819, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Su, X.J.; Xia, Y.Y.; Jiang, W.B.; Shen, G.A.; Pang, Y.Z. GbMYBR1 from Ginkgo biloba represses phenylpropanoid biosynthesis and trichome development in Arabidopsis. Planta 2020, 252, 68. [Google Scholar] [CrossRef] [PubMed]
- Eulgem, T.; Somssich, I.E. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 2007, 10, 366–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thirugnanasambantham, K.; Durairaj, S.; Saravanan, S.; Karikalan, K.; Muralidaran, S.; Islam, V.I.H. Role of ethylene response transcription factor (ERF) and its regulation in response to stress encountered by plants. Plant Mol. Biol. Rep. 2014, 33, 347–357. [Google Scholar] [CrossRef]
- Dröge-Laser, W.; Snoek, B.L.; Snel, B.; Weiste, C. The Arabidopsis bZIP transcription factor family-an update. Curr. Opin. Plant Biol. 2018, 45, 36–49. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zhu, J.; Yuan, W.Y.; Wang, Y.; Hu, P.P.; Jiao, C.Y.; Xia, H.M.; Wang, D.D.; Cai, Q.W.; Li, J.; et al. Genome-wide characterization of bZIP transcription factors and their expression patterns in response to drought and salinity stress in Jatropha curcas. Int. J. Biol. Macromol. 2021, 181, 1207–1223. [Google Scholar] [CrossRef]
- Wang, J.Z.; Zhou, J.X.; Zhang, B.L.; Vanitha, J.; Ramachandran, S.; Jiang, S.Y. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J. Integr. Plant Biol. 2011, 53, 212–231. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, R.R.; Guo, C.L.; Hou, H.M.; Wang, X.P.; Gao, H. Evolutionary and expression analyses of the apple basic leucine zipper transcription factor family. Front. Plant Sci. 2016, 7, 376. [Google Scholar] [CrossRef]
- Wei, K.F.; Chen, J.; Wang, Y.M.; Chen, Y.H.; Chen, S.X.; Lin, Y.N.; Pan, S.; Zhong, X.J.; Xie, D.X. Genome-wide analysis of bZIP-encoding genes in maize. DNA Res. 2012, 19, 463–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Gao, W.L.; Li, H.T.; Wang, Y.K.; Li, D.K.; Xue, C.L.; Liu, Z.G.; Liu, M.J.; Zhao, J. Genome-wide analysis of the bZIP gene family in Chinese jujube (Ziziphus jujuba Mill.). BMC Genom. 2020, 21, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Chen, N.N.; Chen, F.; Cai, B.; Dal Santo, S.; Tornielli, G.B.; Pezzotti, M.; Cheng, Z.M. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genom. 2014, 15, 281–298. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Y.; Meng, D.; Li, M.J.; Cheng, L.L. Genome-wide identification and expression analysis of the bZIP gene family in apple (Malus domestica). Tree Genet. Genomes 2016, 12, 82. [Google Scholar] [CrossRef]
- Yang, S.Q.; Xu, K.; Chen, S.J.; Li, T.F.; Xia, H.; Chen, L.; Liu, H.Y.; Luo, L.J. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice. BMC Plant Biol. 2019, 19, 260–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.Y.; Cao, H.F.; Zhang, Q.Q.; Wang, H.Z.; Xin, W.; Xu, E.J.; Zhang, S.Q.; Yu, R.X.; Yu, D.X.; Hu, Y.X. Control of auxin-induced callus formation by bZIP59-LBD complex in Arabidopsis regeneration. Nat. Plants 2018, 4, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Van Leene, J.; Blomme, J.; Kulkarni, S.R.; Cannoot, B.; De Winne, N.; Eeckhout, D.; Persiau, G.; Van De Slijke, E.; Vercruysse, L.; Bossche, R.V.; et al. Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development. J. Exp. Bot. 2016, 67, 5825–5840. [Google Scholar] [CrossRef] [PubMed]
- Inaba, S.; Kurata, R.; Kobayashi, M.; Yamagishi, Y.; Mori, I.; Ogata, Y.; Fukao, Y. Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots. Plant J. 2015, 84, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Howell, S.H. Endoplasmic reticulum stress responses in plants. Annu. Rev. Plant Biol. 2013, 64, 477–499. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.P.; Fobert, P.R. Arabidopsis clade I TGA factors regulate apoplastic defences against the bacterial pathogen Pseudomonas syringae through endoplasmic reticulum-based processes. PloS ONE 2013, 8, e77378. [Google Scholar] [CrossRef]
- Akagi, T.; Katayama-ikegami, A.; Kobayashi, S.; Sato, A.; Kono, A.; Yonemori, K. Seasonal abscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon fruit. Plant Physiol. 2012, 158, 1089–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.Q.; Zheng, S.; Liu, Z.J.; Wang, L.G.; Bi, Y.R. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings. J. Plant Physiol. 2011, 168, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Fricke, J.; Hillebrand, A.; Twyman, R.M.; Pruefer, D.; Gronover, C.S. Abscisic acid-dependent regulation of small rubber particle protein gene expression in Taraxacum brevicorniculatum is mediated by TbbZIP1. Plant Cell Physiol. 2013, 54, 448–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, C.C.; Duan, H.L.; Ding, G.J.; Luo, X.Y.; Fu, Y.H.; Lou, Q. Physiological and biochemical dynamics of Pinus massoniana Lamb. seedlings under extreme drought stress and during recovery. Forests 2022, 13, 65–78. [Google Scholar] [CrossRef]
- Keeling, C.I.; Bohlmann, J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 2006, 170, 657–675. [Google Scholar] [CrossRef]
- Xiao, Y.C.; Ye, L.; Zhao, M.X.; Yan, C.Q.; Wang, W.; Huang, Q.S.; Liang, K.; Meng, B.H.; Ke, X. Two new sesquiterpene glycosides isolated from the fresh needles of Pinus massoniana Lamb. Nat. Prod. Res. 2017, 31, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Bohlmann, J. Pine terpenoid defences in the mountain pine beetle epidemic and in other conifer pest interactions: Specialized enemies are eating holes into a diverse, dynamic and durable defence system. Tree Physiol. 2012, 32, 943–945. [Google Scholar] [CrossRef]
- Yu, Y.; Qian, Y.C.; Jiang, M.Y.; Xu, J.; Yang, J.T.; Zhang, T.Y.; Gou, L.P.; Pi, E.X. Regulation mechanisms of plant basic leucine zippers to various abiotic stresses. Front. Plant Sci. 2020, 11, 1258. [Google Scholar] [CrossRef]
- Wu, F.; Sun, X.B.; Zou, B.Z.; Zhu, P.H.; Lin, N.Q.; Lin, J.Q.; Ji, K.S. Transcriptional analysis of Masson pine (Pinus massoniana) under high CO2 stress. Genes 2019, 10, 804. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Yang, Z.H. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.H.; Ma, Y.Y.; Zhu, L.Z.; Chen, Y.; Li, R.; Ji, K.S. Selection of suitable reference genes in Pinus massoniana Lamb. under different abiotic stresses for qPCR normalization. Forests 2019, 10, 632–649. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (T) (-Delta Delta C). Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Chao, J.T.; Li, X.X.; Li, G.B.; Song, D.A.; Guo, Y.F.; Wu, X.R.; Liu, G.S. Systematic analysis of the bZIP family in tobacco and functional characterization of NtbZIP62 involvement in salt stress. Agronomy 2021, 11, 148–164. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, C.; Li, Z.Y.; Sun, J.H.; Wang, D.; Xu, L.T.; Li, X.X.; Guo, Y.F. Identification and analysis of bZIP family genes in potato and their potential roles in stress responses. Front. Plant Sci. 2021, 12, 637343–637359. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Lakra, N.; Nutan, K.K.; Singla-Pareek, S.L.; Pareek, A. A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice 2019, 12, 58–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nijhawan, A.; Jain, M.; Tyagi, A.K.; Khurana, J.P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 2008, 146, 333–350. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.X.; Yarra, R. Genome-wide identification and expression analysis of bZIP transcription factors in oil palm (Elaeis guineensis Jacq.) under abiotic stress. Protoplasma 2021, 259, 469–483. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, D.X.; Jia, L.D.; Huang, X.H.; Ma, G.Q.; Wang, S.X.; Zhu, M.C.; Zhang, A.X.; Guan, M.W.; Lu, K.; et al. Genome-wide identification and structural analysis of bZIP transcription factor genes in Brassica napus. Genes 2017, 8, 288–311. [Google Scholar] [CrossRef]
- Hussain, S.; Tai, B.W.; Hussain, A.; Jahan, I.; Yang, B.L.; Xing, F.G. Genome-wide identification and expression analysis of the basic leucine zipper (bZIP) transcription factor gene family in Fusarium graminearum. Genes 2022, 13, 607–627. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Chen, S.; Yao, W.J.; Cheng, Z.H.; Zhou, B.R.; Jiang, T.B. Genome-wide analysis and expression profile of the bZIP gene family in poplar. BMC Plant Biol. 2021, 21, 122–137. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.Y.; Wu, Z.Y.; Cheng, Z.Z.; Zhang, S.; Liu, H.; Huang, Q.M. Genome-wide identification, evolutionary patterns, and expression analysis of bZIP gene family in olive (Olea europaea L.). Genes 2020, 11, 510–531. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Yang, H.B.; Yan, Y.; Wei, Y.X.; Tie, W.W.; Ding, Z.H.; Zuo, J.; Peng, M.; Li, K.M. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci. Rep. 2016, 6, 22783–22794. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.T.; Mao, B.G.; Ou, S.J.; Wang, W.; Liu, L.C.; Wu, Y.B.; Chu, C.C.; Wang, X.P. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol. Biol. 2014, 84, 19–36. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.Y.; Fang, Z.M.; Zhang, D.L.; Liu, L.; Lee, M.R.; Li, Z.; Li, J.J.; Sung, C.K. Advances in research of pathogenic mechanism of pine wilt disease. Afr. J. Microbiol. Res. 2010, 4, 437–442. [Google Scholar]
- Ying, S.; Zhang, D.F.; Fu, J.; Shi, Y.S.; Song, Y.C.; Wang, T.Y.; Li, Y. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 2012, 235, 253–266. [Google Scholar] [CrossRef]
- Lovisetto, A.; Guzzo, F.; Tadiello, A.; Confortin, E.; Pavanello, A.; Botton, A.; Casadoro, G. Characterization of a bZIP gene highly expressed during ripening of the peach fruit. Plant Physiol. Biochem. 2013, 70, 462–470. [Google Scholar] [CrossRef]
- Weiste, C.; Pedrotti, L.; Selvanayagam, J.; Muralidhara, P.; Fröschel, C.; Novák, O.; Ljung, K.; Hanson, J.; Dröge-Laser, W. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth. PLoS Genet. 2017, 13, e1006607. [Google Scholar] [CrossRef] [Green Version]
- Gangappa, S.N.; Botto, J.F. The multifaceted roles of HY5 in plant growth and development. Mol. Plant 2016, 9, 1353–1365. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.S.; Cao, K.M.; Wang, X.P. AtbZIP16 and AtbZIP68, two new members of GBFs, can interact with other G group bZIPs in Arabidopsis thaliana. BMB Rep. 2008, 41, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Maier, A.T.; Stehling-Sun, S.; Offenburger, S.; Lohmann, J.U. The bZIP transcription factor PERIANTHIA: A multifunctional hub for meristem control. Front. Plant Sci. 2011, 2, 79–95. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.C.; Qiu, W.M.; Jin, K.M.; Yu, M.; Han, X.J.; He, X.Y.; Wu, L.H.; Wu, C.; Zhuo, R.Y. Identification and analysis of bZIP family genes in Sedum plumbizincicola and their potential roles in response to cadmium stress. Front. Plant Sci. 2022, 13, 859386. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.X.; Silva, H.; Klessig, D.F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 1993, 262, 1883–1886. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Drago, I.; Behera, S.; Zottini, M.; Pizzo, P.; Schroeder, J.I.; Pozzan, T.; Lo Schiavo, F. H2O2 in plant peroxisomes: An in vivo analysis uncovers a Ca(2+)-dependent scavenging system. Plant J. 2010, 62, 760–772. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.F.; He, J.X. BZR1 Interacts with HY5 to mediate brassinosteroid-and light-regulated cotyledon opening in Arabidopsis in darkness. Mol. Plant 2016, 9, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Gatz, C. From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol. Plant Microbe Interact. 2013, 26, 151–159. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, M.D.; Dong, D.; Hu, N.W.; Chao, Y.H.; Zeng, H.M. Construction of a cDNA library and self-activation assay of KdSAHH gene in deciduous yeast. J. Grassl. 2021, 29, 2135–2140. [Google Scholar]
Motif | Length | Motif Sequence |
---|---|---|
1 | 22 | LSNRESARRSRERKKAYLQELE |
2 | 50 | HYDELFRMKSVAAKADVFHLVSGMWKTPAERCFMWMG GFRPSELLKILVP |
3 | 21 | AKVAQLRAENTQLRKELTLLS |
4 | 44 | GAAAFDMEYARWLEEQHRQISDLRAALQAHVTDNEL RILVEGGM |
5 | 34 | VPPPPPYFASQVASGPTPHPYMWGGQPLMPPYGT |
6 | 29 | NVANYMGQMAMAMGKLGMLENFVHQADNL |
7 | 11 | KVIDERRQKRM |
8 | 29 | YTHGCTHTHTCNPPGPDNSHTHTCYHSLT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhu, P.; Agassin, R.H.; Yao, S.; Wang, D.; Huang, Z.; Zhang, C.; Hao, Q.; Ji, K. Identification, Classification and Characterization of bZIP Transcription Factor Family Members in Pinus massoniana Lamb. Forests 2023, 14, 155. https://doi.org/10.3390/f14010155
Zhang M, Zhu P, Agassin RH, Yao S, Wang D, Huang Z, Zhang C, Hao Q, Ji K. Identification, Classification and Characterization of bZIP Transcription Factor Family Members in Pinus massoniana Lamb. Forests. 2023; 14(1):155. https://doi.org/10.3390/f14010155
Chicago/Turabian StyleZhang, Mengyang, Peihuang Zhu, Romaric Hippolyte Agassin, Sheng Yao, Dengbao Wang, Zichen Huang, Chi Zhang, Qingqing Hao, and Kongshu Ji. 2023. "Identification, Classification and Characterization of bZIP Transcription Factor Family Members in Pinus massoniana Lamb." Forests 14, no. 1: 155. https://doi.org/10.3390/f14010155
APA StyleZhang, M., Zhu, P., Agassin, R. H., Yao, S., Wang, D., Huang, Z., Zhang, C., Hao, Q., & Ji, K. (2023). Identification, Classification and Characterization of bZIP Transcription Factor Family Members in Pinus massoniana Lamb. Forests, 14(1), 155. https://doi.org/10.3390/f14010155