Physical and Mechanical Properties of High-Density Fiberboard Bonded with Bio-Based Adhesives
<p>Density profiles of fiberboards.</p> "> Figure 2
<p>Changes in the appearance of the surface of the produced HDF, depending on the binder used and the resination.</p> "> Figure 3
<p>(<b>a</b>) Modulus of rupture (MOR) and (<b>b</b>) modulus of elasticity (MOE) of tested HDF.</p> "> Figure 3 Cont.
<p>(<b>a</b>) Modulus of rupture (MOR) and (<b>b</b>) modulus of elasticity (MOE) of tested HDF.</p> "> Figure 4
<p>Internal bond (IB) of tested HDF.</p> "> Figure 5
<p>Two representative forms of damage after the IB test (<b>a</b>) in the core layer; (<b>b</b>) near-surface zone.</p> "> Figure 6
<p>Scanning electron microscope images of HDF with, (<b>a</b>) DS12, (<b>b</b>) DS15, (<b>c</b>) DS20, (<b>d</b>) WS12, (<b>e</b>) WS15, (<b>f</b>) WS20, (<b>g</b>) PLA12, (<b>h</b>) PLA15, (<b>i</b>) PLA20, (<b>j</b>) PCL12, (<b>k</b>) PCL15, (<b>l</b>) PCL20, (<b>m</b>) UF12 as a binder (the arrows indicate the binder presence).</p> "> Figure 6 Cont.
<p>Scanning electron microscope images of HDF with, (<b>a</b>) DS12, (<b>b</b>) DS15, (<b>c</b>) DS20, (<b>d</b>) WS12, (<b>e</b>) WS15, (<b>f</b>) WS20, (<b>g</b>) PLA12, (<b>h</b>) PLA15, (<b>i</b>) PLA20, (<b>j</b>) PCL12, (<b>k</b>) PCL15, (<b>l</b>) PCL20, (<b>m</b>) UF12 as a binder (the arrows indicate the binder presence).</p> "> Figure 7
<p>(<b>a</b>) Thickness swelling (TS), (<b>b</b>) water absorption (WA), and (<b>c</b>) surface water absorption (SWA) of tested HDF.</p> "> Figure 8
<p>The contact angle of tested HDF.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Their Characterization
2.2. Fiberboard Manufacturing
2.3. Preparation of the Adhesives
2.4. Physical and Mechanical Properties
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Safety Evaluation of Certain Food Additives: Prepared by the Eighty-Sixth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- UNECE/FAO. Forest Products Annual Market Review 2019–2020; United Nations Publications: Geneva, Switzerland, 2020. [Google Scholar]
- Kristak, L.; Antov, P.; Bekhta, P.; Lubis, M.A.R.; Iswanto, A.H.; Reh, R.; Sedliacik, J.; Savov, V.; Taghiyari, H.R.; Papadopoulos, A.N.; et al. Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: A review. Wood Mater. Sci. Eng. 2022, 1–20. [Google Scholar] [CrossRef]
- Hussin, M.H.; Abd Latif, N.H.; Hamidon, T.S.; Idris, N.N.; Hashim, R.; Appaturi, J.N.; Brosse, N.; Ziegler-Devin, I.; Chrusiel, L.; Fatriasari, W.; et al. Latest advancements in high-performance bio-based wood adhesives: A critical review. J. Mater. Res. Technol. 2022, 21, 3909–3946. [Google Scholar] [CrossRef]
- Global Wood Adhesives and Binders Market Size by Product (Urea-Formaldehyde, Phenol-Formaldehyde, Soy-Based), by Application (Flooring and Plywood, Furniture and Subcomponents, Windows and Doors), by Geographic Scope and Forecast. Available online: https://www.verifiedmarketresearch.com/product/wood-adhesives-and-binders-market/ (accessed on 4 December 2022).
- Boran, S.; Usta, M.; Gümükaya, E. Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin. Int. J. Adhes. Adhes. 2011, 31, 674–678. [Google Scholar] [CrossRef]
- Grigsby, W.J.; Thumm, A.; Carpenter, J.E.P.; Hati, N. Investigating the extent of urea formaldehyde resin cure in medium density fibreboard: Characterisation of extractable resin components. Int. J. Adhes. Adhes. 2014, 50, 50–56. [Google Scholar] [CrossRef]
- Hemmilä, V.; Adamopoulos, S.; Karlsson, O.; Kumar, A. Development of sustainable bio-adhesives for engineered wood panels-A Review. RSC Adv. 2017, 7, 38604–38630. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.W.F.; Crump, D.R. Review: Testing for Formaldehyde Emission from Wood-Based Products—A Review. Indoor Built Env. 1999, 8, 280–286. [Google Scholar] [CrossRef]
- EN 316; Wood Fibre Boards—Definition, Classification and Symbols. European Committee for Standardization: Brussels, Belgium, 2009.
- Dai, D.; Fan, M. Wood fibres as reinforcements in natural fibre composites: Structure, properties, processing and applications. Nat. Fibre Compos. Mater. Process. Appl. 2014, 2014, 3–65. [Google Scholar] [CrossRef]
- Halvarsson, S.; Edlund, H.; Norgren, M. Manufacture of non-resin wheat straw fibreboards. Ind. Crops Prod. 2009, 29, 437–445. [Google Scholar] [CrossRef]
- Lee, T.C.; Mohd Pu’ad, N.A.S.; Selimin, M.A.; Manap, N.; Abdullah, H.Z.; Idris, M.I. An overview on development of environmental friendly medium density fibreboard. Mater. Today Proc. 2019, 29, 52–57. [Google Scholar] [CrossRef]
- Sedleckỳ, M.; Gašparík, M. Power consumption during edge milling of medium-density fiberboard and edge-Glued panel. BioResources 2017, 12, 7413–7426. [Google Scholar] [CrossRef]
- Prakash, S.; Mercy, J.L.; Goswami, K. A systemic approach for evaluating surface roughness parameters during drilling of medium density fiberboard using Taguchi method. Indian J. Sci. Technol. 2014, 7, 1888–1894. [Google Scholar] [CrossRef]
- Iswanto, A.H.; Aritonang, W.; Azhar, I.; Supriyanto, S.; Fatriasari, W. The physical, mechanical and durability properties of sorghum bagasse particleboard by layering surface treatment. J. Indian Acad. Wood Sci. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Juliana, A.H.; Paridah, M.T.; Rahim, S.; Nor Azowa, I.; Anwar, U.M.K. Properties of particleboard made from kenaf (Hibiscus cannabinus L.) as function of particle geometry. Mater. Des. 2012, 34, 406–411. [Google Scholar] [CrossRef]
- Nicolao, E.S.; Leiva, P.; Chalapud, M.C.; Ruseckaite, R.A.; Ciannamea, E.M.; Stefani, P.M. Flexural and tensile properties of biobased rice husk-jute-soybean protein particleboards. J. Build. Eng. 2020, 30, 101261. [Google Scholar] [CrossRef]
- Ramos, A.; Briga-Sá, A.; Pereira, S.; Correia, M.; Pinto, J.; Bentes, I.; Teixeira, C.A. Thermal performance and life cycle assessment of corn cob particleboards. J. Build. Eng. 2021, 44, 102998. [Google Scholar] [CrossRef]
- Taha, I.; Elkafafy, M.S.; El Mously, H. Potential of utilizing tomato stalk as raw material for particleboards. Ain Shams Eng. J. 2018, 9, 1457–1464. [Google Scholar] [CrossRef] [Green Version]
- Borysiuk, P.; Jenczyk-Tolloczko, I.; Auriga, R.; Kordzikowski, M. Sugar beet pulp as raw material for particleboard production. Ind. Crops Prod. 2019, 141, 111829. [Google Scholar] [CrossRef]
- Khanjanzadeh, H.; Pirayesh, H.; Sepahvand, S. Influence of walnut shell as filler on mechanical and physical properties of MDF improved by nano-SiO2. J. Indian Acad. Wood Sci. 2014, 11, 15–20. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Buyuksari, U.; Avci, E.; Koc, E. Utilization of pine (Pinus pinea L.) cone in manufacture of wood based composite. For. Ecol. Manag. 2009, 259, 65–70. [Google Scholar] [CrossRef]
- Santosa, J.; Pereira, J.; Ferreira, N.; Paiva, N.; Ferra, J.; Magalhães, F.D.; Martins, J.M.; Dulyanska, Y.; Carvalho, L.H. Valorisation of non-timber by-products from maritime pine (Pinus pinaster, Ait) for particleboard production. Ind. Crops Prod. 2021, 168, 113581. [Google Scholar] [CrossRef]
- Efe, F.T. Investigation of some physical and thermal insulation properties of honeycomb-designed panels produced from Calabrian pine bark and cones. Eur. J. Wood Wood Prod. 2022, 80, 705–718. [Google Scholar] [CrossRef]
- Casas-Ledón, Y.; Daza Salgado, K.; Cea, J.; Arteaga-Pérez, L.E.; Fuentealba, C.A. Life cycle assessment of innovative insulation panels based on eucalyptus bark fibers. J. Clean. Prod. 2020, 249, 119356. [Google Scholar] [CrossRef]
- Kowaluk, G.; Szymanowski, K.; Kozlowski, P.; Kukula, W.; Sala, C.; Robles, E.; Czarniak, P. Functional Assessment of Particleboards Made of Apple and Plum Orchard Pruning. Waste Biomass Valorization 2020, 11, 2877–2886. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Lum, W.C.; Boon, J.G.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W.; et al. Particleboard from agricultural biomass and recycled wood waste: A review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
- Pędzik, M.; Janiszewska, D.; Rogoziński, T. Alternative lignocellulosic raw materials in particleboard production: A review. Ind. Crops Prod. 2021, 174, 114162. [Google Scholar] [CrossRef]
- Sulaiman, N.S.; Hashim, R.; Sulaiman, O.; Nasir, M.; Amini, M.H.M.; Hiziroglu, S. Partial replacement of urea-formaldehyde with modified oil palm starch based adhesive to fabricate particleboard. Int. J. Adhes. Adhes. 2018, 84, 1–8. [Google Scholar] [CrossRef]
- Lomelí-Ramírez, M.G.; Barrios-Guzmán, A.J.; García-Enriquez, S.; Rivera-Prado, J.D.J.; Manríquez-González, R. Chemical and Mechanical Evaluation of Bio-composites Based on Thermoplastic Starch and Wood Particles Prepared by Thermal Compression. BioResources 2014, 9, 2960–2974. [Google Scholar] [CrossRef]
- Hikmah, N.; Susanto, D.; Suganda, E. Physical properties of medium density fiberboard from pineapple leaf fiber (PALF) with cassava peel starch and citric acid. AIP Conf. Proc. 2021, 2376, 040012. [Google Scholar] [CrossRef]
- Lubis, M.A.R.; Park, B.D.; Hong, M.K. Tailoring of oxidized starch’s adhesion using crosslinker and adhesion promotor for the recycling of fiberboards. J. Appl. Polym. Sci. 2019, 136, 47966. [Google Scholar] [CrossRef]
- Lubis, M.A.R.; Park, B.D.; Hong, M.K. Tuning of adhesion and disintegration of oxidized starch adhesives for the recycling of medium density fiberboard. BioResources 2020, 15, 5156–5178. [Google Scholar] [CrossRef]
- Domínguez-Robles, J.; Tarrés, Q.; Delgado-Aguilar, M.; Rodríguez, A.; Espinach, F.X.; Mutjé, P. Approaching a new generation of fiberboards taking advantage of self lignin as green adhesive. Int. J. Biol. Macromol. 2018, 108, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Khanjanzadeh, H.; Behrooz, R.; Bahramifar, N.; Pinkl, S.; Gindl-Altmutter, W. Application of surface chemical functionalized cellulose nanocrystals to improve the performance of UF adhesives used in wood based composites—MDF type. Carbohydr. Polym. 2019, 206, 11–20. [Google Scholar] [CrossRef]
- Li, X.; Wang, D.; Ratto, J.A.; Sun, X.S. Production and characterization of high strength, thin-layered, pulp fiberboard using soy protein adhesives. J. Adhes. Sci. Technol. 2013, 27, 2065–2074. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Zhong, Z.; Wang, D.; Ratto, J.A.; Sheng, K.; Sun, X.S. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive. Bioresour. Technol. 2009, 100, 3556–3562. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Susan Sun, X.; Wang, D.; Ratto, J.A. Wet Strength and Water Resistance of Modified Soy Protein Adhesives and Effects of Drying Treatment. J. Polym. Environ. 2003, 11, 137–144. [Google Scholar] [CrossRef]
- Eslah, F.; Jonoobi, M.; Faezipour, M.; Afsharpour, M.; Enayati, A.A. Preparation and development of a chemically modified bio-adhesive derived from soybean flour protein. Int. J. Adhes. Adhes. 2016, 71, 48–54. [Google Scholar] [CrossRef]
- Ji, X.; Li, B.; Yuan, B.; Guo, M. Preparation and characterizations of a chitosan-based medium-density fiberboard adhesive with high bonding strength and water resistance. Carbohydr. Polym. 2017, 176, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liao, D.; Chen, X.; Du, G.; Li, T.; Essawy, H.; Pizzi, A.; Zhou, X. Functionalized Natural Tannins for Preparation of a novel non-isocyanate polyurea-based adhesive. Polym. Test. 2023, 117, 107853. [Google Scholar] [CrossRef]
- Barbosa, A.P.; Mano, E.B.; Andrade, C.T. Tannin-based resins modified to reduce wood adhesive brittleness. For. Prod. J. 2000, 50, 89–92. [Google Scholar]
- Fernandes, F.C.; Kirwan, K.; Wilson, P.R.; Coles, S.R. Sustainable Alternative Composites Using Waste Vegetable Oil Based Resins. J. Polym. Environ. 2019, 27, 2464–2477. [Google Scholar] [CrossRef] [Green Version]
- Akbari, S.; Gupta, A.; Khan, T.A.; Jamari, S.S.; Ani, N.B.C.; Poddar, P. Synthesis and characterization of medium density fiber board by using mixture of natural rubber latex and starch as an adhesive. J. Indian Acad. Wood Sci. 2014, 11, 109–115. [Google Scholar] [CrossRef]
- Juliet, O.I.; Dilim, I.C.; Okpara, O.C.; Ejike, O.M. Natural Rubber Based Adhesive Modified with Starch and Reinforcer. AASCIT J. Chem. 2018, 4, 1–6. [Google Scholar]
- Indrayani, Y.; Setyawati, D.; Munawar, S.S.; Umemura, K.; Yoshimura, T. Evaluation of Termite Resistance of Medium Density Fiberboard (MDF) Manufacture from Agricultural Fiber Bonded with Citric Acid. Procedia Environ. Sci. 2015, 28, 778–782. [Google Scholar] [CrossRef] [Green Version]
- Widyorini, R.; Umemura, K.; Kusumaningtyas, A.R.; Prayitno, T.A. Effect of starch addition on properties of citric acid-bonded particleboard made from bamboo. BioResources 2017, 12, 8068–8077. [Google Scholar] [CrossRef]
- NatureWorks. Available online: https://www.natureworksllc.com/News-and-Events/Press-Releases/2022/2022-11-09-NatureWorks-Selects-General-Contractor-for-Ingeo-Manufacturing-Facility (accessed on 4 December 2022).
- Song, X.; Guo, Z.; Wu, J.; Zhang, Y.; Cai, Z.; Wang, X. Fabrication and characterization of soybean straw and polylactide acid-based hybrid bio-board. J. Adhes. Sci. Technol. 2022, 1–18. [Google Scholar] [CrossRef]
- Ye, X.; Julson, J.; Kuo, M.; Myers, D. Biocomposite hardboard from renewable biomass bonded with soybean-based adhesive. Trans. Am. Soc. Agric. Eng. 2005, 48, 1629–1635. [Google Scholar] [CrossRef]
- Rajeshkumar, G.; Seshadri, S.A.; Devnani, G.L.; Sanjay, M.R.; Siengchin, S.; Maran, J.P.; Al-Dhabi, N.A.; Karuppiah, P.; Mariadhas, V.A.; Sivarajasekar, N.; et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites—A comprehensive review. J. Clean. Prod. 2021, 310, 127483. [Google Scholar] [CrossRef]
- Wang, B.; Qi, Z.; Chen, X.; Sun, C.; Yao, W.; Zheng, H.; Liu, M.; Li, W.; Qin, A.; Tan, H.; et al. Preparation and mechanism of lightweight wood fiber/poly(lactic acid) composites. Int. J. Biol. Macromol. 2022, 217, 792–802. [Google Scholar] [CrossRef]
- Peltola, H.; Pääkkönen, E.; Jetsu, P.; Heinemann, S. Wood based PLA and PP composites: Effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties. Compos. Part A Appl. Sci. Manuf. 2014, 61, 13–22. [Google Scholar] [CrossRef]
- Faludi, G.; Dora, G.; Renner, K.; Móczó, J.; Pukánszky, B. Improving interfacial adhesion in pla/wood biocomposites. Compos. Sci. Technol. 2013, 89, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Csizmadia, R.; Faludi, G.; Renner, K.; Móczó, J.; Pukánszky, B. PLA/wood biocomposites: Improving composite strength by chemical treatment of the fibers. Compos. Part A Appl. Sci. Manuf. 2013, 53, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Gumowska, A.; Robles, E.; Kowaluk, G. Evaluation of functional features of lignocellulosic particle composites containing biopolymer binders. Materials 2021, 14, 7718. [Google Scholar] [CrossRef] [PubMed]
- Gumowska, A.; Robles, E.; Bikoro, A.; Wronka, A.; Kowaluk, G. Selected Properties of Bio-Based Layered Hybrid Composites with Biopolymer Blends for Structural Applications. Polymers 2022, 14, 4393. [Google Scholar] [CrossRef] [PubMed]
- Méndez, P.A.; Méndez, Á.M.; Martínez, L.N.; Vargas, B.; López, B.L. Cassava and banana starch modified with maleic anhydride-poly (ethylene glycol) methyl ether (Ma-mPEG): A comparative study of their physicochemical properties as coatings. Int. J. Biol. Macromol. 2022, 205, 1–14. [Google Scholar] [CrossRef] [PubMed]
- EN 310; Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 319; Particleboards and Fibreboards. Determination of Tensile Strength Perpendicular to the Plane of the Board. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 317; Particleboards and Fibreboards. Determination of Swelling in Thickness after Immersion in Water. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 382-2; Fibreboards—Determination of Surface Absorption—Part 2: Test Method for Hardboards. European Committee for Standardization: Brussels, Belgium, 1993.
- Garcia, R.A.; Cloutier, A.; Riedl, B. Dimensional stability of MDF panels produced from fibres treated with maleated polypropylene wax. Wood Sci. Technol. 2005, 39, 630–650. [Google Scholar] [CrossRef]
- Segovia, F.; Blanchet, P.; Essoua, G.G.E. Potential of the crude glycerol and citric acid mixture as a binder in medium-density fiberboard manufacturing. Eur. J. Wood Wood Prod. 2021, 79, 1141–1151. [Google Scholar] [CrossRef]
- Wong, E.D.; Zhang, M.; Wang, Q.; Han, G.; Kawai, S. Formation of the density profile and its effects on the properties of fiberboard. J. Wood Sci. 2000, 46, 202–209. [Google Scholar] [CrossRef]
- Baskaran, M.; Hashim, R.; Said, N.; Raffi, S.M.; Kunasundari, B.; Sudesh, K.; Sulaiman, O.; Arai, T.; Kosugi, A.; Mori, Y.; et al. Properties of binderless particleboard from oil palm trunk with addition of polyhydroxyalkanoates. Compos. Part B Eng. 2012, 43, 1109–1116. [Google Scholar] [CrossRef]
- Nyambo, C.; Mohanty, A.K.; Misra, M. Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules 2010, 11, 1654–1660. [Google Scholar] [CrossRef]
- Sivakumar, A.A.; Canales, C.; Roco-Videla, Á.; Chávez, M. Development of Thermoplastic Cassava Starch Composites with Banana Leaf Fibre. Sustainability 2022, 14, 12732. [Google Scholar] [CrossRef]
- Wronka, A.; Rdest, A.; Kowaluk, G. Influence of starch content on selected properties of hardboard. Ann. Wars. Univ. Life Sci.-SGGW For. Wood Technol. 2020, 109, 48–52. [Google Scholar] [CrossRef]
- Jirkovec, R.; Erben, J.; Sajdl, P.; Chaloupek, J.; Chvojka, J. The effect of material and process parameters on the surface energy of polycaprolactone fibre layers. Mater. Des. 2021, 205, 109748. [Google Scholar] [CrossRef]
- Jothi Prakash, C.G.; Prasanth, R. Approaches to design a surface with tunable wettability: A review on surface properties. J. Mater. Sci. 2021, 56, 108–135. [Google Scholar] [CrossRef]
Variants of Binders and Resination | Shortcut of HDF |
---|---|
UF 12% | UF12 |
Powder TPS 12%—dry starch | DS12 |
Powder TPS 15%—dry starch | DS15 |
Powder TPS 20%—dry starch | DS20 |
Drops of TPS 12%—wet starch | WS12 |
Drops of TPS 15%—wet starch | WS15 |
Drops of TPS 20%—wet starch | WS20 |
PLA12% | PLA12 |
PLA15% | PLA15 |
PLA20% | PLA20 |
PCL12% | PCL12 |
PCL15% | PCL15 |
PCL20% | PCL20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumowska, A.; Kowaluk, G. Physical and Mechanical Properties of High-Density Fiberboard Bonded with Bio-Based Adhesives. Forests 2023, 14, 84. https://doi.org/10.3390/f14010084
Gumowska A, Kowaluk G. Physical and Mechanical Properties of High-Density Fiberboard Bonded with Bio-Based Adhesives. Forests. 2023; 14(1):84. https://doi.org/10.3390/f14010084
Chicago/Turabian StyleGumowska, Aneta, and Grzegorz Kowaluk. 2023. "Physical and Mechanical Properties of High-Density Fiberboard Bonded with Bio-Based Adhesives" Forests 14, no. 1: 84. https://doi.org/10.3390/f14010084
APA StyleGumowska, A., & Kowaluk, G. (2023). Physical and Mechanical Properties of High-Density Fiberboard Bonded with Bio-Based Adhesives. Forests, 14(1), 84. https://doi.org/10.3390/f14010084