Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits
<p>Overview of the multiomics approach used in this study to investigate the molecular path through which an environmental chemical impacts a cardiometabolic trait. Initially, the list of CpG sites that underwent chemical modification as a result of exposure to environmental chemicals were obtained from the EWAS Atlas. Then, colocalization analysis was performed to identify genomic regions that the SNPs underlying a CpG site and a cardiometabolic trait correlate with. Significant CpG–trait pairs from this stage were then subjected to Mendelian randomization to determine if changes in the methylation level at a CpG site have a causal impact on a cardiometabolic trait (<span class="html-italic">p</span> < 5 × 10<sup>−8</sup>). Finally, to obtain functional insight, eQTL data from the eQTLGen consortium were integrated to investigate genes that convey the impact of a CpG site on a trait.</p> "> Figure 2
<p>The mechanism whereby cg23627948 mediates the impact of environmental chemicals on obesity: (<b>A</b>) regional association plots for mQTLs of cg23627948, eQTLs of <span class="html-italic">GNA12</span>, and risk SNPs of obesity overlap; and (<b>B</b>) the cg23627948 site is reported to undergo chemical modification as a result of exposure to environmental factors such as organophosphates and lead (<a href="#epigenomes-08-00029-t003" class="html-table">Table 3</a>). Findings from the MR analysis indicated that higher methylation at cg23627948 leads to lower expression of <span class="html-italic">GNA12</span>; this consequently contributes to higher body fat percentage. Complete statistical details are available in <a href="#epigenomes-08-00029-t004" class="html-table">Table 4</a>. Points on MR plots represent SNPs; the x-value of an SNP is its effect size on the predictor, the horizontal error bar indicates the standard error around the effect size. Similarly, the y-value of the SNP indicates its effect size on the outcome, and the vertical error bar indicates the standard error. The dashed line represents the line of best fit (a line with the intercept of 0 and the slope of B from the MR test).</p> "> Figure 3
<p>Higher methylation at cg21153102 site contributes to diastolic blood pressure (DBP) by changing the expression of <span class="html-italic">GCHFR</span> and <span class="html-italic">CHP1</span>. cg21153102 undergoes chemical modification as a result of exposure to perfluorooctane sulfonate (<a href="#epigenomes-08-00029-t003" class="html-table">Table 3</a>). I noted that as the cg21153102 site becomes methylated it increases the expression of <span class="html-italic">GCHFR</span> but lowers levels of <span class="html-italic">CHP1</span>. This consequently leads to higher DBP, because a higher expression of <span class="html-italic">GCHFR</span> and a lower level of <span class="html-italic">CHP1</span> are associated with higher DBP levels. Complete statistical details are available in <a href="#epigenomes-08-00029-t004" class="html-table">Table 4</a>. Points on MR plots represent SNPs; the x-value of an SNP is its effect size on the predictor, and the horizontal error bar indicates the standard error around the effect size. Similarly, the y-value of the SNP indicates its effect size on the outcome, and the vertical error bar indicates the standard error. The dashed line represents the line of best fit (a line with the intercept of 0 and the slope of B from the MR test).</p> "> Figure 4
<p>The mechanism whereby cg05280698 exerts the impact of vitamin B12 supplementation on kidney function: (<b>A</b>) regional association plots for mQTLs of cg05280698, eQTLs of <span class="html-italic">HKR1</span> and SNPs for kidney function overlap. The cg05280698 site is reported to become hypermethylated in people who take vitamin B12 supplementation (<a href="#epigenomes-08-00029-t003" class="html-table">Table 3</a>); and (<b>B</b>) MR analysis revealed that as the site becomes methylated, the expression of <span class="html-italic">HKR1</span> decreases and that this leads to higher kidney function. Complete statistical details are available in <a href="#epigenomes-08-00029-t004" class="html-table">Table 4</a>. Points on MR plots represent SNPs; the x-value of an SNP is its effect size on the predictor, and the horizontal error bar indicates the standard error around the effect size. Similarly, the y-value of the SNP indicates its effect size on the outcome, and the vertical error bar indicates the standard error. The dashed line represents the line of best fit (a line with the intercept of 0 and the slope of B from the MR test).</p> "> Figure 5
<p>cg03186999 mediates the impact of air pollution on systolic blood pressure (SBP) by lowering the expression of <span class="html-italic">CTDNEP1</span>: (<b>A</b>) I noted an overlap between mQTLs of cg03186999, SNPs for SBP, and eQTLs for <span class="html-italic">CTDNEP1</span>. The cg03186999 site is reported to be hypomethylated in individuals exposed to air pollution (<a href="#epigenomes-08-00029-t003" class="html-table">Table 3</a>); and (<b>B</b>) the outcome of the MR analysis confirmed that as the cg03186999 site becomes hypomethylated, the expression of <span class="html-italic">CTDNEP1</span> decreases; this leads to higher SBP. Complete statistical details are available in <a href="#epigenomes-08-00029-t004" class="html-table">Table 4</a>. Points on MR plots represent SNPs; the x-value of an SNP is its effect size on the predictor, and the horizontal error bar indicates the standard error around the effect size. Similarly, the y-value of the SNP indicates its effect size on the outcome, and the vertical error bar indicates the standard error. The dashed line represents the line of best fit (a line with the intercept of 0 and the slope of B from the MR test).</p> ">
Abstract
:1. Introduction
2. Results
2.1. cg23627948-GNA12-Obesity
2.2. cg21153102-CHP1/GCHFR-DBP
2.3. cg05280698-HKR1-Kidney Function
2.4. cg03186999-CTDNEP1-SBP
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Data Sources
5.2. Analyses
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. The Public Health Impact of Chemicals: Knowns and Unknowns; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Environmental Chemical Exposures and Human Epigenetics|International Journal of Epidemiology|Oxford Academic. Available online: https://academic.oup.com/ije/article/41/1/79/645872 (accessed on 14 June 2024).
- Naidu, R.; Biswas, B.; Willett, I.R.; Cribb, J.; Kumar Singh, B.; Paul Nathanail, C.; Coulon, F.; Semple, K.T.; Jones, K.C.; Barclay, A.; et al. Chemical Pollution: A Growing Peril and Potential Catastrophic Risk to Humanity. Environ. Int. 2021, 156, 106616. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Bollati, V. Epigenetics and Environmental Chemicals. Curr. Opin. Pediatr. 2009, 21, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Hernandez, A.; Kuo, C.-C.; Rentero-Garrido, P.; Tang, W.-Y.; Redon, J.; Ordovas, J.M.; Navas-Acien, A.; Tellez-Plaza, M. Environmental Chemicals and DNA Methylation in Adults: A Systematic Review of the Epidemiologic Evidence. Clin. Epigenet. 2015, 7, 55. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, J.; Zhang, F.; Zhu, Z.; Qi, T.; Zheng, Z.; Lloyd-Jones, L.R.; Marioni, R.E.; Martin, N.G.; Montgomery, G.W.; et al. Integrative Analysis of Omics Summary Data Reveals Putative Mechanisms Underlying Complex Traits. Nat. Commun. 2018, 9, 918. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zheng, Z.; Zhang, F.; Wu, Y.; Trzaskowski, M.; Maier, R.; Robinson, M.R.; McGrath, J.J.; Visscher, P.M.; Wray, N.R.; et al. Causal Associations between Risk Factors and Common Diseases Inferred from GWAS Summary Data. Nat. Commun. 2018, 9, 224. [Google Scholar] [CrossRef]
- Paul, K.C.; Chuang, Y.-H.; Cockburn, M.; Bronstein, J.M.; Horvath, S.; Ritz, B. Organophosphate Pesticide Exposure and Differential Genome-Wide DNA Methylation. Sci. Total Environ. 2018, 645, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hivert, M.-F.; Cardenas, A.; Zhong, J.; Rifas-Shiman, S.L.; Agha, G.; Colicino, E.; Just, A.C.; Amarasiriwardena, C.; Lin, X.; et al. Exposure to Low Levels of Lead in Utero and Umbilical Cord Blood DNA Methylation in Project Viva: An Epigenome-Wide Association Study. Environ. Health Perspect. 2017, 125, 087019. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.K.; Shrestha, S.; Lillycrop, K.A.; Joglekar, C.V.; Pan, H.; Holbrook, J.D.; Fall, C.H.; Yajnik, C.S.; Chandak, G.R. Vitamin B12 Supplementation Influences Methylation of Genes Associated with Type 2 Diabetes and Its Intermediate Traits. Epigenomics 2018, 10, 71–90. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, J.K.; Chen, J.; Pommier, G.C.; Cogan, J.Z.; Replogle, J.M.; Adriaens, C.; Ramadoss, G.N.; Shi, Q.; Hung, K.L.; Samelson, A.J.; et al. Genome-Wide Programmable Transcriptional Memory by CRISPR-Based Epigenome Editing. Cell 2021, 184, 2503–2519.e17. [Google Scholar] [CrossRef]
- Yang, Y.M.; Kuen, D.-S.; Chung, Y.; Kurose, H.; Kim, S.G. Gα12/13 Signaling in Metabolic Diseases. Exp. Mol. Med. 2020, 52, 896–910. [Google Scholar] [CrossRef]
- Kim, T.H.; Yang, Y.M.; Han, C.Y.; Koo, J.H.; Oh, H.; Kim, S.S.; You, B.H.; Choi, Y.H.; Park, T.-S.; Lee, C.H.; et al. Gα12 Ablation Exacerbates Liver Steatosis and Obesity by Suppressing USP22/SIRT1-Regulated Mitochondrial Respiration. J. Clin. Investig. 2018, 128, 5587–5602. [Google Scholar] [CrossRef] [PubMed]
- Denis-Henriot, D.; de Mazancourt, P.; Morot, M.; Giudicelli, Y. Mutant Alpha-Subunit of the G Protein G12 Activates Proliferation and Inhibits Differentiation of 3T3-F442A Preadipocytes. Endocrinology 1998, 139, 2892–2899. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Eliot, M.N.; Papandonatos, G.D.; Kelsey, K.T.; Fore, R.; Langevin, S.; Buckley, J.; Chen, A.; Lanphear, B.P.; Cecil, K.M.; et al. Gestational Perfluoroalkyl Substance Exposure and DNA Methylation at Birth and 12 Years of Age: A Longitudinal Epigenome-Wide Association Study. Environ. Health Perspect. 2022, 130, 37005. [Google Scholar] [CrossRef] [PubMed]
- Hoorn, E.J.; Walsh, S.B.; McCormick, J.A.; Zietse, R.; Unwin, R.J.; Ellison, D.H. Pathogenesis of Calcineurin Inhibitor-Induced Hypertension. J. Nephrol. 2012, 25, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Siffert, W.; Düsing, R. Sodium-Proton Exchange and Primary Hypertension. An Update. Hypertension 1995, 26, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Rezvan, A.; Salerno, J.C.; Husain, A.; Kwon, K.; Jo, H.; Harrison, D.G.; Chen, W. GTP Cyclohydrolase I Phosphorylation and Interaction with GTP Cyclohydrolase Feedback Regulatory Protein Provide Novel Regulation of Endothelial Tetrahydrobiopterin and Nitric Oxide. Circ. Res. 2010, 106, 328–336. [Google Scholar] [CrossRef]
- Lindholm, M.E.; Marabita, F.; Gomez-Cabrero, D.; Rundqvist, H.; Ekström, T.J.; Tegnér, J.; Sundberg, C.J. An Integrative Analysis Reveals Coordinated Reprogramming of the Epigenome and the Transcriptome in Human Skeletal Muscle after Training. Epigenetics 2014, 9, 1557–1569. [Google Scholar] [CrossRef]
- Liu, H.; Doke, T.; Guo, D.; Sheng, X.; Ma, Z.; Park, J.; Vy, H.M.T.; Nadkarni, G.N.; Abedini, A.; Miao, Z.; et al. Epigenomic and Transcriptomic Analyses Define Core Cell Types, Genes and Targetable Mechanisms for Kidney Disease. Nat. Genet. 2022, 54, 950–962. [Google Scholar] [CrossRef]
- Wang, C.; Cardenas, A.; Hutchinson, J.N.; Just, A.; Heiss, J.; Hou, L.; Zheng, Y.; Coull, B.A.; Kosheleva, A.; Koutrakis, P.; et al. Short- and Intermediate-Term Exposure to Ambient Fine Particulate Elements and Leukocyte Epigenome-Wide DNA Methylation in Older Men: The Normative Aging Study. Environ. Int. 2022, 158, 106955. [Google Scholar] [CrossRef]
- Rallabandi, H.R.; Choi, H.; Cha, H.; Kim, Y.J. Research Trends in C-Terminal Domain Nuclear Envelope Phosphatase 1. Life 2023, 13, 1338. [Google Scholar] [CrossRef]
- Fujiwara, A.; Ozawa, M.; Sumida, K.; Hirawa, N.; Yatsu, K.; Ichihara, N.; Haze, T.; Komiya, S.; Ohki, Y.; Kobayashi, Y.; et al. LPIN1 Is a New Target Gene for Essential Hypertension. J. Hypertens. 2022, 40, 536–543. [Google Scholar] [CrossRef]
- Han, S.; Bahmanyar, S.; Zhang, P.; Grishin, N.; Oegema, K.; Crooke, R.; Graham, M.; Reue, K.; Dixon, J.E.; Goodman, J.M. Nuclear Envelope Phosphatase 1-Regulatory Subunit 1 (Formerly TMEM188) Is the Metazoan Spo7p Ortholog and Functions in the Lipin Activation Pathway. J. Biol. Chem. 2012, 287, 3123–3137. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.R.; O’Donnell, A.H.; Rollins, R.A.; Peckham, H.E.; Lee, C.; Milekic, M.H.; Chanrion, B.; Fu, Y.; Su, T.; Hibshoosh, H.; et al. Chromatin and Sequence Features That Define the Fine and Gross Structure of Genomic Methylation Patterns. Genome Res. 2010, 20, 972–980. [Google Scholar] [CrossRef]
- Hatton, A.A.; Cheng, F.-F.; Lin, T.; Shen, R.-J.; Chen, J.; Zheng, Z.; Qu, J.; Lyu, F.; Harris, S.E.; Cox, S.R.; et al. Genetic Control of DNA Methylation Is Largely Shared across European and East Asian Populations. Nat. Commun. 2024, 15, 2713. [Google Scholar] [CrossRef]
- Ishigaki, K.; Akiyama, M.; Kanai, M.; Takahashi, A.; Kawakami, E.; Sugishita, H.; Sakaue, S.; Matoba, N.; Low, S.-K.; Okada, Y.; et al. Large-Scale Genome-Wide Association Study in a Japanese Population Identifies Novel Susceptibility Loci across Different Diseases. Nat. Genet. 2020, 52, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Chen, T.-T.; Feng, Y.-C.A.; Yu, M.; Lin, S.-C.; Longchamps, R.J.; Wang, S.-H.; Hsu, Y.-H.; Yang, H.-I.; Kuo, P.-H.; et al. Analysis across Taiwan Biobank, Biobank Japan, and UK Biobank Identifies Hundreds of Novel Loci for 36 Quantitative Traits. Cell Genom. 2023, 3, 100436. [Google Scholar] [CrossRef]
- Li, M.; Zou, D.; Li, Z.; Gao, R.; Sang, J.; Zhang, Y.; Li, R.; Xia, L.; Zhang, T.; Niu, G.; et al. EWAS Atlas: A Curated Knowledgebase of Epigenome-Wide Association Studies. Nucleic Acids Res. 2019, 47, D983–D988. [Google Scholar] [CrossRef]
- McRae, A.F.; Marioni, R.E.; Shah, S.; Yang, J.; Powell, J.E.; Harris, S.E.; Gibson, J.; Henders, A.K.; Bowdler, L.; Painter, J.N.; et al. Identification of 55,000 Replicated DNA Methylation QTL. Sci. Rep. 2018, 8, 17605. [Google Scholar] [CrossRef] [PubMed]
- Hannon, E.; Dempster, E.; Viana, J.; Burrage, J.; Smith, A.R.; Macdonald, R.; St Clair, D.; Mustard, C.; Breen, G.; Therman, S.; et al. An Integrated Genetic-Epigenetic Analysis of Schizophrenia: Evidence for Co-Localization of Genetic Associations and Differential DNA Methylation. Genome Biol. 2016, 17, 176. [Google Scholar] [CrossRef]
- Võsa, U.; Claringbould, A.; Westra, H.-J.; Bonder, M.J.; Deelen, P.; Zeng, B.; Kirsten, H.; Saha, A.; Kreuzhuber, R.; Yazar, S.; et al. Large-Scale Cis- and Trans-eQTL Analyses Identify Thousands of Genetic Loci and Polygenic Scores That Regulate Blood Gene Expression. Nat. Genet. 2021, 53, 1300–1310. [Google Scholar] [CrossRef]
Trait (Source) | CpG Site | Lead SNP (A1 Allele) | Association * | Colocalization Results | |||
---|---|---|---|---|---|---|---|
B | p | B | PSMR | PHEIDI | |||
Body fat percentage (UKBB) | cg23627948 | rs798549(C) | 0.01 | 1.3 × 10−8 | 0.01 | 1.4 × 10−8 | 0.04 |
1.41 | <2 × 10−200 | ||||||
DBP (UKBB) | cg21153102 | rs4924526(A) | 0.17 | 2.5 × 10−23 | 0.18 | 8.0 × 10−22 | 0.3 |
0.99 | <2 × 10−200 | ||||||
Kidney function (PMID: 31152163) | cg05280698 | rs320881(G) | 0.003 | 2.9 × 10−21 | 0.01 | 4.0 × 10−17 | 0.04 |
0.59 | 2.1 × 10−75 | ||||||
SBP (UKBB) | cg03186999 | rs402514(T) | −0.28 | 5.1 × 10−19 | −0.45 | 4.6 × 10−16 | 0.01 |
0.62 | 8.0 × 10−86 |
Trait (Source) | CpG Site | Lead SNP (A1 Allele) | Association * | Colocalization Results | |||
---|---|---|---|---|---|---|---|
B | p | B | PSMR | PHEIDI | |||
Body fat percentage (UKBB) | cg23627948 | rs798549(C) | 0.01 | 1.3 × 10−8 | 0.06 | 1.61 × 10−8 | 0.3 |
0.15 | <2 × 10−200 | ||||||
DBP (UKBB) | cg21153102 | rs11070317(C) | 0.18 | 1.7 × 10−24 | 2.06 | 6.1 × 10−23 | 0.3 |
0.09 | 5.2 × 10−294 | ||||||
Kidney function (PMID: 31152163) | cg05280698 | rs73025481(A) | 0.004 | 2.3 × 10−23 | 0.04 | 2.5 × 10−16 | 0.02 |
0.08 | 3.2 × 10−47 | ||||||
SBP (UKBB) | cg03186999 | rs222851(A) | −0.27 | 8.6 × 10−19 | −11.22 | 4.3 × 10−14 | 0.03 |
0.02 | 1.7 × 10−47 |
Trait | CpG Site | Correlation | Sample Size | p-Value | PMID |
---|---|---|---|---|---|
Prenatal lead exposure | cg23627948 | − | 268 | 7.8 × 10−5 | 28858830 |
Organophosphate exposure | cg23627948 | + | 580 | 2.2 × 10−7 | 30248838 |
Prenatal perfluorooctane sulfonate (PFOS) exposure | cg21153102 | + | 266 | 1.0 × 10−5 | 35266797 |
Vitamin B12 supplement | cg05280698 | + | 12 | 5.0 × 10−7 | 29135286 |
Air pollution (Pb) | cg03186999 | − | 695 | 2.0 × 10−10 | 34717175 |
Air pollution (Na) | cg03186999 | − | 695 | 2.8 × 10−13 | 34717175 |
Predictor | Outcome | B | SE | p | NSNPs |
---|---|---|---|---|---|
cg23627948 → GNA12 → Obesity | |||||
cg23627948 | Body fat percentage | 0.01 | 0.001 | 1.0 × 10−8 | 17 |
cg23627948 | GNA12 | −0.10 | 0.007 | 4.4 × 10−47 | 7 |
GNA12 | Body fat percentage | −0.03 | 0.004 | 4.5 × 10−12 | 20 |
cg21153102 → GCHFR/CHP1 → DBP | |||||
cg21153102 | DBP | 0.18 | 0.02 | 1.8 × 10−23 | 12 |
cg21153102 | CHP1 | −0.15 | 0.009 | 1.7 × 10−53 | 12 |
cg21153102 | GCHFR | 0.05 | 0.008 | 1.9 × 10−11 | 7 |
CHP1 | DBP | −0.57 | 0.08 | 9.8 × 10−13 | 6 |
GCHFR | DBP | 0.39 | 0.06 | 4.1 × 10−10 | 9 |
cg05280698 → HKR1 → Kidney function | |||||
cg05280698 | Kidney Function | 0.01 | 0.001 | 2.3 × 10−9 | 3 |
cg05280698 | HKR1 | −0.42 | 0.02 | 5.4 × 10−87 | 3 |
HKR1 | Kidney Function | −0.01 | 0.001 | 5.1 × 10−11 | 17 |
cg03186999 → CTDNEP1 → SBP | |||||
cg03186999 | SBP | −0.44 | 0.05 | 7.2 × 10−16 | 3 |
cg03186999 | CTDNEP1 | 0.26 | 0.02 | 2.4 × 10−46 | 3 |
CTDNEP1 | SBP | −1.05 | 0.1 | 1.0 × 10−19 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikpay, M. Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits. Epigenomes 2024, 8, 29. https://doi.org/10.3390/epigenomes8030029
Nikpay M. Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits. Epigenomes. 2024; 8(3):29. https://doi.org/10.3390/epigenomes8030029
Chicago/Turabian StyleNikpay, Majid. 2024. "Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits" Epigenomes 8, no. 3: 29. https://doi.org/10.3390/epigenomes8030029
APA StyleNikpay, M. (2024). Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits. Epigenomes, 8(3), 29. https://doi.org/10.3390/epigenomes8030029