Lightweight Multi-Scale Feature Fusion Network for Salient Object Detection in Optical Remote Sensing Images
<p>Comparison of performance and efficiency.</p> "> Figure 2
<p>The overall framework of MFFNet is founded on U-Net architecture. The UniFormer-L encoder captures four-level features, which are subsequently forwarded to the MIF modules. In the decoder, four MIF modules integrate multi-stage and multi-scale information, while the SGF module leverages top-level semantic features to guide the synthesis of lower-level information.</p> "> Figure 3
<p>Illustration of the structure of MIF.</p> "> Figure 4
<p>Illustration of the structure of SGF.</p> "> Figure 5
<p>PR curves and F-measure curves on the EORSSD and ORSSD datasets.</p> "> Figure 6
<p>Visual comparisons with 13 ORSI-SOD models.</p> ">
Abstract
:1. Introduction
- (1)
- Multi-Scale Feature Fusion Network (MFFNet): The MFFNet adopts the lightweight encoder UniFormer-L [31] to extract global dependencies and local features of salient objects, fully leveraging the benefits of convolutional and self-attention mechanisms. This network not only improves the accuracy of ORSI-SOD but also maintains a lightweight model. For images of size 288 × 288, the number of parameters is 12.14M, with FLOPs at 2.75G.
- (2)
- Multi-stage Information Fusion (MIF) Module: We propose the MIF module, which is used to fuse multi-scale features from stages 1 to 4, generating attention maps in both the spatial and channel levels. The MIF module enhances the model’s capability to integrate salient information across different stages and scales, thereby improving its perception and understanding of salient objects in challenging scenarios.
- (3)
- Semantic Guidance Fusion (SGF) Module: We introduce the SGF module to handle the problem of semantic dilution, ensuring that high-level features rich in semantic information are used to guide the fusion of multi-stage features during upsampling and refinement for saliency prediction. The SGF module better preserves the integrity of object structures and significantly reduces over-prediction in foreground regions, thereby improving the accuracy of SOD.
2. Related Work
2.1. Traditional SOD Methods
2.2. Deep Learning-Based SOD Methods
2.3. Lightweight SOD Methods
3. Proposed Method
3.1. Network Overview
3.2. Multi-Stage Information Fusion (MIF) Module
3.3. Semantic Guidance Fusion (SGF) Module
3.4. Loss Function
4. Experiments
4.1. Experiment Details
4.1.1. Datasets
- (1)
- The ORSSD dataset [13] contains 800 ORSI along with their corresponding per-pixel labels. These images are primarily captured by aircraft and satellites and were selected and compiled by the authors based on existing databases and Google Earth imagery. The dataset encompasses a diverse range of scenes, such as islands, boats, cars, roads, rivers, and airplanes. Within this dataset, 600 images were assigned for training the model, and 200 images were reserved for testing its performance.
- (2)
- The EORSSD dataset [17] enlarges the ORSSD dataset by including more images, featuring 2000 ORSI paired with their respective pixel-level ground truth (GT). In contrast to its predecessor, EORSSD poses increased difficulties in the object detection of tiny objects, the interpretation of more intricate scenes, and the mitigation of various image interferences. This dataset is organized into two subsets: 1400 images were assigned for the training phase, and 600 images were earmarked for the testing phase.
4.1.2. Parameter Settings
4.1.3. Evaluation Metrics
4.2. Performance Comparison
4.2.1. Quantitative Comparison
4.2.2. Visual Comparison
4.2.3. Computational Performance
4.3. Ablation Studies
4.3.1. Effectiveness of MIF and SGF
4.3.2. Effectiveness of Using Multistage Features in MIF
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Lai, Q.; Fu, H.; Shen, J.; Ling, H.; Yang, R. Salient object detection in the deep learning era: An in-depth survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3239–3259. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Lu, K.; Zheng, G.; Ye, J.; Cao, Z.; Li, B.; Lu, G. Siamese object tracking for unmanned aerial vehicle: A review and comprehensive analysis. Artif. Intell. Rev. 2023, 56, 1417–1477. [Google Scholar] [CrossRef]
- Li, G.; Liu, Z.; Shi, R.; Wei, W. Constrained fixation point based segmentation via deep neural network. Neurocomputing 2019, 368, 180–187. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, Z.; Lin, W.; Lin, C.W. Saliency detection in the compressed domain for adaptive image retargeting. IEEE Trans. Image Process. 2012, 21, 3888–3901. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Jiang, Q.; Lin, W.; Wang, Y. SGDNet: An end-to-end saliency-guided deep neural network for no-reference image quality assessment. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21 October 2019; pp. 1383–1391. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Zhao, J.X.; Liu, J.J.; Fan, D.P.; Cao, Y.; Yang, J.; Cheng, M.M. EGNet: Edge guidance network for salient object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8779–8788. [Google Scholar]
- Zhao, X.; Pang, Y.; Zhang, L.; Lu, H.; Zhang, L. Suppress and balance: A simple gated network for salient object detection. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part II 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 35–51. [Google Scholar]
- Xu, B.; Liang, H.; Liang, R.; Chen, P. Locate globally, segment locally: A progressive architecture with knowledge review network for salient object detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 3004–3012. [Google Scholar]
- Hou, Q.; Cheng, M.M.; Hu, X.; Borji, A.; Tu, Z.; Torr, P.H. Deeply supervised salient object detection with short connections. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3203–3212. [Google Scholar]
- Casagli, N.; Intrieri, E.; Tofani, V.; Gigli, G.; Raspini, F. Landslide detection, monitoring and prediction with remote-sensing techniques. Nat. Rev. Earth Environ. 2023, 4, 51–64. [Google Scholar] [CrossRef]
- Wellmann, T.; Lausch, A.; Andersson, E.; Knapp, S.; Cortinovis, C.; Jache, J.; Scheuer, S.; Kremer, P.; Mascarenhas, A.; Kraemer, R.; et al. Remote sensing in urban planning: Contributions towards ecologically sound policies? Landsc. Urban Plan. 2020, 204, 103921. [Google Scholar] [CrossRef]
- Li, C.; Cong, R.; Hou, J.; Zhang, S.; Qian, Y.; Kwong, S. Nested network with two-stream pyramid for salient object detection in optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9156–9166. [Google Scholar] [CrossRef]
- Li, G.; Liu, Z.; Lin, W.; Ling, H. Multi-content complementation network for salient object detection in optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–13. [Google Scholar] [CrossRef]
- Li, G.; Liu, Z.; Zeng, D.; Lin, W.; Ling, H. Adjacent context coordination network for salient object detection in optical remote sensing images. IEEE Trans. Cybern. 2022, 53, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, H.; Liu, B.; Wang, Z. Semantic-guided attention refinement network for salient object detection in optical remote sensing images. Remote Sens. 2021, 13, 2163. [Google Scholar] [CrossRef]
- Zhang, Q.; Cong, R.; Li, C.; Cheng, M.M.; Fang, Y.; Cao, X.; Zhao, Y.; Kwong, S. Dense attention fluid network for salient object detection in optical remote sensing images. IEEE Trans. Image Process. 2020, 30, 1305–1317. [Google Scholar] [CrossRef]
- Tu, Z.; Wang, C.; Li, C.; Fan, M.; Zhao, H.; Luo, B. ORSI salient object detection via multiscale joint region and boundary model. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–13. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, K.; Weng, L.; Cong, R.; Zheng, B.; Zhang, J.; Yan, C. Edge-guided recurrent positioning network for salient object detection in optical remote sensing images. IEEE Trans. Cybern. 2022, 53, 539–552. [Google Scholar] [CrossRef]
- Cong, R.; Zhang, Y.; Fang, L.; Li, J.; Zhao, Y.; Kwong, S. RRNet: Relational reasoning network with parallel multiscale attention for salient object detection in optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, K.; Liu, Z.; Gong, C.; Zhang, J.; Yan, C. Edge-Aware Multiscale Feature Integration Network for Salient Object Detection in Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Gao, S.H.; Tan, Y.Q.; Cheng, M.M.; Lu, C.; Chen, Y.; Yan, S. Highly efficient salient object detection with 100k parameters. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 702–721. [Google Scholar]
- Liu, Y.; Zhang, X.Y.; Bian, J.W.; Zhang, L.; Cheng, M.M. SAMNet: Stereoscopically attentive multi-scale network for lightweight salient object detection. IEEE Trans. Image Process. 2021, 30, 3804–3814. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Sun, H.; Liu, N.; Bian, Y.; Cen, J.; Zhou, H. A lightweight multi-scale context network for salient object detection in optical remote sensing images. In Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; pp. 238–244. [Google Scholar]
- Shen, K.; Zhou, X.; Wan, B.; Shi, R.; Zhang, J. Fully squeezed multiscale inference network for fast and accurate saliency detection in optical remote-sensing images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- GongyangLi, Z.; Bai, Z.; Lin, W.; Ling, H. Lightweight salient object detection in optical remote sensing images via feature correlation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5617712. [Google Scholar]
- Li, G.; Liu, Z.; Zhang, X.; Lin, W. Lightweight salient object detection in optical remote-sensing images via semantic matching and edge alignment. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–11. [Google Scholar] [CrossRef]
- Liang, B.; Luo, H. MEANet: An effective and lightweight solution for salient object detection in optical remote sensing images. Expert Syst. Appl. 2024, 238, 121778. [Google Scholar] [CrossRef]
- Wang, L.; Long, C.; Li, X.; Tang, X.; Bai, Z.; Gao, H. CSFFNet: Lightweight cross-scale feature fusion network for salient object detection in remote sensing images. IET Image Process. 2024, 18, 602–614. [Google Scholar] [CrossRef]
- Luo, H.; Wang, J.; Liang, B. Spatial attention feedback iteration for lightweight salient object detection in optical remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 13809–13823. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y.; Zhang, J.; Gao, P.; Song, G.; Liu, Y.; Li, H.; Qiao, Y. Uniformer: Unifying convolution and self-attention for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 12581–12600. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef]
- Li, C.; Yuan, Y.; Cai, W.; Xia, Y.; Dagan Feng, D. Robust saliency detection via regularized random walks ranking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2710–2717. [Google Scholar]
- Kim, J.; Han, D.; Tai, Y.W.; Kim, J. Salient region detection via high-dimensional color transform and local spatial support. IEEE Trans. Image Process. 2015, 25, 9–23. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, Z.; Zhou, Z.; Hu, D. Salient region detection using diffusion process on a two-layer sparse graph. IEEE Trans. Image Process. 2017, 26, 5882–5894. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, C.; Kim, J.; Cai, W.; Feng, D.D. Reversion correction and regularized random walk ranking for saliency detection. IEEE Trans. Image Process. 2017, 27, 1311–1322. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Li, X. Salient region detection in remote sensing images based on color information content. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1877–1880. [Google Scholar]
- Zhang, Q.; Zhang, L.; Shi, W.; Liu, Y. Airport extraction via complementary saliency analysis and saliency-oriented active contour model. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1085–1089. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Zhang, J. Saliency detection based on self-adaptive multiple feature fusion for remote sensing images. Int. J. Remote Sens. 2019, 40, 8270–8297. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, H.X.; Zhou, T.; Yang, Y.Z.; Wang, C.Y.; Liu, B.Y. Contrast-weighted dictionary learning based saliency detection for VHR optical remote sensing images. Pattern Recognit. 2021, 113, 107757. [Google Scholar] [CrossRef]
- Wang, L.; Lu, H.; Ruan, X.; Yang, M.H. Deep networks for saliency detection via local estimation and global search. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3183–3192. [Google Scholar]
- Liu, J.J.; Hou, Q.; Cheng, M.M.; Feng, J.; Jiang, J. A simple pooling-based design for real-time salient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3917–3926. [Google Scholar]
- Qin, X.; Zhang, Z.; Huang, C.; Gao, C.; Dehghan, M.; Jagersand, M. Basnet: Boundary-aware salient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7479–7489. [Google Scholar]
- Zhou, H.; Xie, X.; Lai, J.H.; Chen, Z.; Yang, L. Interactive two-stream decoder for accurate and fast saliency detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 9141–9150. [Google Scholar]
- Liu, N.; Zhang, N.; Wan, K.; Shao, L.; Han, J. Visual saliency transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 4722–4732. [Google Scholar]
- Liu, K.; Zhang, B.; Lu, J.; Yan, H. Towards Integrity and Detail with Ensemble Learning for Salient Object Detection in Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Yan, R.; Yan, L.; Geng, G.; Cao, Y.; Zhou, P.; Meng, Y. ASNet: Adaptive Semantic Network Based on Transformer-CNN for Salient Object Detection in Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, Y.C.; Zhang, X.Y.; Wang, W.; Cheng, M.M. Lightweight salient object detection via hierarchical visual perception learning. IEEE Trans. Cybern. 2020, 51, 4439–4449. [Google Scholar] [CrossRef] [PubMed]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zhao, K.; Gao, S.; Wang, W.; Cheng, M.M. Optimizing the F-measure for threshold-free salient object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8849–8857. [Google Scholar]
- Cheng, M.M.; Mitra, N.J.; Huang, X.; Torr, P.H.; Hu, S.M. Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 569–582. [Google Scholar] [CrossRef] [PubMed]
- Achanta, R.; Hemami, S.; Estrada, F.; Susstrunk, S. Frequency-tuned salient region detection. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1597–1604. [Google Scholar]
- Fan, D.P.; Gong, C.; Cao, Y.; Ren, B.; Cheng, M.M.; Borji, A. Enhanced-alignment measure for binary foreground map evaluation. arXiv 2018, arXiv:1805.10421. [Google Scholar]
- Fan, D.P.; Cheng, M.M.; Liu, Y.; Li, T.; Borji, A. Structure-measure: A new way to evaluate foreground maps. In Proceedings of the IEEE international Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4548–4557. [Google Scholar]
- Peng, H.; Li, B.; Ling, H.; Hu, W.; Xiong, W.; Maybank, S.J. Salient object detection via structured matrix decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 818–832. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, D.; Shi, Z.; Jiang, Z. Unsupervised saliency model with color Markov chain for oil tank detection. Remote Sens. 2019, 11, 1089. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Q.; Cong, R.; Huang, Q. Global context-aware progressive aggregation network for salient object detection. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 10599–10606. [Google Scholar]
- Li, J.; Pan, Z.; Liu, Q.; Wang, Z. Stacked U-shape network with channel-wise attention for salient object detection. IEEE Trans. Multimed. 2020, 23, 1397–1409. [Google Scholar] [CrossRef]
Methods | Type | Year | Backbone | Params (M) ↓ | FLOPs (G) ↓ | EORSSD | ORSSD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
↑ | ↑ | ↑ | MAE ↓ | ↑ | ↑ | ↑ | MAE ↓ | ||||||
RRWR [33] | T.N.S | 2015 | - | - | - | 0.3686 | 0.5943 | 0.5992 | 0.1677 | 0.5125 | 0.7017 | 0.6835 | 0.1324 |
HDCT [34] | T.N.S | 2016 | - | - | - | 0.4018 | 0.6376 | 0.5971 | 0.1088 | 0.4235 | 0.6495 | 0.6197 | 0.1309 |
DSG [35] | T.N.S | 2017 | - | - | - | 0.4597 | 0.6594 | 0.6420 | 0.1246 | 0.5747 | 0.7337 | 0.7195 | 0.1041 |
SMD [57] | T.N.S | 2017 | - | - | - | 0.5473 | 0.7286 | 0.7101 | 0.0771 | 0.6214 | 0.7745 | 0.7640 | 0.0715 |
RCRR [36] | T.N.S | 2018 | - | - | - | 0.3685 | 0.5946 | 0.6007 | 0.1644 | 0.5126 | 0.7021 | 0.6849 | 0.1277 |
VOS [38] | T.R.S | 2018 | - | - | - | 0.2107 | 0.4886 | 0.5082 | 0.2096 | 0.2717 | 0.5352 | 0.5366 | 0.2151 |
SMFF [39] | T.R.S | 2019 | - | - | - | 0.2992 | 0.5197 | 0.5401 | 0.1434 | 0.2684 | 0.4920 | 0.5312 | 0.1854 |
CMC [58] | T.R.S | 2019 | - | - | - | 0.2692 | 0.5894 | 0.5798 | 0.1057 | 0.3454 | 0.6417 | 0.6033 | 0.1267 |
PoolNet [42] | D.N.S | 2019 | VGG16 | 53.63 | 123.4 | 0.6406 | 0.8193 | 0.8207 | 0.0210 | 0.6999 | 0.8650 | 0.8403 | 0.0358 |
EGNet [7] | D.N.S | 2019 | ResNet50 | 108.07 | 291.9 | 0.6967 | 0.8775 | 0.8601 | 0.0110 | 0.7500 | 0.9013 | 0.8721 | 0.0216 |
ITSD [44] | D.N.S | 2020 | VGG16 | 17.08 | 54.5 | 0.8221 | 0.9407 | 0.9050 | 0.0106 | 0.8502 | 0.9482 | 0.9050 | 0.0165 |
GCPANet [59] | D.N.S | 2020 | ResNet50 | 67.06 | 54.3 | 0.7905 | 0.9167 | 0.8869 | 0.0102 | 0.8433 | 0.9341 | 0.9026 | 0.0168 |
SUCA [60] | D.N.S | 2021 | ResNet50 | 117.71 | 56.4 | 0.7949 | 0.9277 | 0.8988 | 0.0097 | 0.8237 | 0.9400 | 0.8989 | 0.0145 |
PA-KRN [9] | D.N.S | 2021 | ResNet50 | 141.06 | 617.7 | 0.8358 | 0.9536 | 0.9192 | 0.0104 | 0.8727 | 0.9620 | 0.9239 | 0.0139 |
LVNet [13] | D.R.S | 2019 | - | - | - | 0.7356 | 0.8826 | 0.8644 | 0.0145 | 0.7995 | 0.9259 | 0.8815 | 0.0207 |
SARNet [16] | D.R.S | 2021 | VGG16 | 25.91 | 118.16 | 0.8541 | 0.9555 | 0.9240 | 0.0099 | 0.8619 | 0.9477 | 0.9134 | 0.0187 |
DAFNet [17] | D.R.S | 2021 | Res2Net-50 | 29.35 | 839.21 | 0.7980 | 0.9382 | 0.9184 | 0.0053 | 0.8442 | 0.9537 | 0.9118 | 0.0106 |
MJRBM [18] | D.R.S | 2022 | ResNet50 | 63.28 | 80.56 | 0.8058 | 0.9212 | 0.9091 | 0.0099 | 0.8573 | 0.9394 | 0.9211 | 0.0146 |
ERPNet [19] | D.R.S | 2022 | VGG16 | 56.48 | 87.04 | 0.8304 | 0.9401 | 0.9210 | 0.0089 | 0.8745 | 0.9566 | 0.9254 | 0.0135 |
RRNet [20] | D.R.S | 2022 | R2esNet-50 | 86.27 | 692.15 | 0.8377 | 0.9449 | 0.9264 | 0.0074 | 0.8747 | 0.9553 | 0.9339 | 0.0112 |
EMFINet [21] | D.R.S | 2022 | VGG16 | 107.26 | 480.9 | 0.8486 | 0.9604 | 0.9290 | 0.0084 | 0.8856 | 0.9671 | 0.9366 | 0.0109 |
CSNet [22] | L.N.S. | 2020 | - | 0.14 | 0.7 | 0.7656 | 0.8929 | 0.8364 | 0.0169 | 0.8285 | 0.9171 | 0.8910 | 0.0186 |
SAMNet [23] | L.N.S. | 2021 | - | 1.33 | 0.5 | 0.6879 | 0.8473 | 0.8537 | 0.0151 | 0.7753 | 0.8930 | 0.8835 | 0.0214 |
HVPNet [48] | L.N.S. | 2021 | - | 1.23 | 1.1 | 0.7377 | 0.8721 | 0.8734 | 0.0110 | 0.7396 | 0.8717 | 0.8610 | 0.0225 |
MSCNet [24] | L.R.S. | 2022 | MobileNetV2 | 3.26 | 5.87 | 0.8151 | 0.9551 | 0.9071 | 0.0090 | 0.8676 | 0.9653 | 0.9227 | 0.0129 |
FSMINet [25] | L.R.S. | 2022 | - | 3.56 | 5.24 | 0.8436 | 0.9567 | 0.9255 | 0.0079 | 0.8878 | 0.9672 | 0.9361 | 0.0101 |
CorrNet [26] | L.R.S. | 2022 | - | 4.09 | 21.09 | 0.8620 | 0.9646 | 0.9289 | 0.0083 | 0.9002 | 0.9746 | 0.9380 | 0.0098 |
SeaNet [27] | L.R.S. | 2023 | MobileNetV2 | 2.76 | 1.7 | 0.8519 | 0.9651 | 0.9208 | 0.0073 | 0.8772 | 0.9722 | 0.9260 | 0.0105 |
MEANet [28] | L.R.S. | 2023 | MobileNetV2 | 3.27 | 9.62 | 0.8678 | 0.9658 | 0.9282 | 0.0070 | 0.8934 | 0.9730 | 0.9340 | 0.0098 |
CSFFNet [29] | L.R.S. | 2023 | - | 25.63 | 17.21 | 0.734 | 0.891 | 0.896 | 0.010 | 0.885 | 0.930 | 0.930 | 0.017 |
SAFINet [30] | L.R.S. | 2024 | MobileNetV2 | 3.12 | 7.63 | 0.8710 | 0.9682 | 0.9267 | 0.0065 | 0.9030 | 0.9748 | 0.9401 | 0.0086 |
Ours | UniFormer-L | 12.14 | 2.75 | 0.8585 | 0.9688 | 0.9292 | 0.0064 | 0.8984 | 0.9754 | 0.9384 | 0.0093 |
Baseline | MIF | SGF | Params (M) ↓ | FLOPs (G) ↓ | EORSSD | |||
---|---|---|---|---|---|---|---|---|
↑ | ↑ | ↑ | MAE ↓ | |||||
√ | 9.91 | 1.9935 | 0.8438 | 0.9628 | 0.9171 | 0.0080 | ||
√ | √ | 10.62 | 1.9951 | 0.8577 | 0.9683 | 0.9213 | 0.0070 | |
√ | √ | 1143 | 2.7565 | 0.8561 | 0.9676 | 0.9242 | 0.0069 | |
√ | √ | √ | 12.14 | 2.7582 | 0.8585 | 0.9688 | 0.9292 | 0.0064 |
NO. | Params (M) ↓ | FLOPs (G) ↓ | EORSSD | |||
---|---|---|---|---|---|---|
↑ | ↑ | ↑ | MAE ↓ | |||
1 | 11.48 | 2.7573 | 0.8489 | 0.9605 | 0.9188 | 0.0077 |
2 | 11.57 | 2.7576 | 0.8498 | 0.9631 | 0.9221 | 0.0071 |
3 | 11.76 | 2.7578 | 0.8530 | 0.9663 | 0.9242 | 0.0067 |
4 | 12.14 | 2.7582 | 0.8585 | 0.9688 | 0.9292 | 0.0064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Huang, K. Lightweight Multi-Scale Feature Fusion Network for Salient Object Detection in Optical Remote Sensing Images. Electronics 2025, 14, 8. https://doi.org/10.3390/electronics14010008
Li J, Huang K. Lightweight Multi-Scale Feature Fusion Network for Salient Object Detection in Optical Remote Sensing Images. Electronics. 2025; 14(1):8. https://doi.org/10.3390/electronics14010008
Chicago/Turabian StyleLi, Jun, and Kaigen Huang. 2025. "Lightweight Multi-Scale Feature Fusion Network for Salient Object Detection in Optical Remote Sensing Images" Electronics 14, no. 1: 8. https://doi.org/10.3390/electronics14010008
APA StyleLi, J., & Huang, K. (2025). Lightweight Multi-Scale Feature Fusion Network for Salient Object Detection in Optical Remote Sensing Images. Electronics, 14(1), 8. https://doi.org/10.3390/electronics14010008