Automatic Segmentation in 3D CT Images: A Comparative Study of Deep Learning Architectures for the Automatic Segmentation of the Abdominal Aorta
<p>The architecture of UNet.</p> "> Figure 2
<p>The architecture of UNETR.</p> "> Figure 3
<p>The architecture of SwinUNETR.</p> "> Figure 4
<p>The architecture of SegResNet.</p> "> Figure 5
<p>Detected regions of interest (aorta) superimposed on the original imaging data slices for two clinical cases (row 1 and 2) of the public dataset for (<b>a</b>) the initial image; (<b>b</b>) ground truth; (<b>c</b>) UNet model; (<b>d</b>) UNETR model; (<b>e</b>) SwinUNETR model; and (<b>f</b>) SegResNet.</p> "> Figure 6
<p>Detected regions of interest (aorta) superimposed on the original imaging data slices for two clinical cases (row 1 and 2) of the private dataset for (<b>a</b>) the initial image; (<b>b</b>) ground truth; (<b>c</b>) UNet model; (<b>d</b>) UNETR model; (<b>e</b>) SwinUNETR model; and (<b>f</b>) SegResNet.</p> "> Figure 7
<p>Three-dimensional fused models of the estimated aorta (blue) superimposed on the ground truth (coral) for three cases, using (<b>a</b>) UNet; (<b>b</b>) UNETR; (<b>c</b>) SwinUNETR; and (<b>d</b>) SegResNet.</p> "> Figure 7 Cont.
<p>Three-dimensional fused models of the estimated aorta (blue) superimposed on the ground truth (coral) for three cases, using (<b>a</b>) UNet; (<b>b</b>) UNETR; (<b>c</b>) SwinUNETR; and (<b>d</b>) SegResNet.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Preprocessing
2.3. Deep Learning Segmenation
2.3.1. UNet Architecture
2.3.2. UNETR Architecture
2.3.3. SwinUNETR Architecture
2.3.4. SegResNet Architecture
2.4. Implementation and Computational Cost
2.5. 3D Mesh Reconstruction
3. Results
3.1. Quantitative Evaluation
3.2. Qualitative Evaluation
3.3. 3D Reconstruction Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodella, L.F.; Rezzani, R.; Bonomini, F.; Peroni, M.; Cocchi, M.A.; Hirtler, L.; Bonardelli, S. Abdominal Aortic Aneurysm and Histological, Clinical, Radiological Correlation. Acta Histochem. 2016, 118, 256–262. [Google Scholar] [CrossRef]
- Shaw, P.M.; Loree, J.; Gibbons, R.C. Abdominal Aortic Aneurysm. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2024. [Google Scholar]
- Sethi, A.; Taylor, D.L.; Ruby, J.G.; Venkataraman, J.; Sorokin, E.; Cule, M.; Melamud, E. Calcification of the Abdominal Aorta Is an Under-Appreciated Cardiovascular Disease Risk Factor in the General Population. Front. Cardiovasc. Med. 2022, 9, 1003246. [Google Scholar] [CrossRef]
- Gameraddin, M. Normal Abdominal Aorta Diameter on Abdominal Sonography in Healthy Asymptomatic Adults: Impact of Age and Gender. J. Radiat. Res. Appl. Sci. 2019, 12, 186–191. [Google Scholar] [CrossRef]
- Tran, C.T.; Wu, C.Y.; Bordes, S.J.; Lui, F. Anatomy, Abdomen and Pelvis: Abdominal Aorta. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2024. [Google Scholar]
- Zhou, L.; Fan, M.; Hansen, C.; Johnson, C.R.; Weiskopf, D. A Review of Three-Dimensional Medical Image Visualization. Health Data Sci. 2022, 2022, 9840519. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ding, P.; Li, L.; Liu, Y.; Jin, P.; Tang, J.; Yang, J. Three-Dimensional Printing for Heart Diseases: Clinical Application Review. Bio-Des. Manuf. 2021, 4, 675–687. [Google Scholar] [CrossRef]
- Shashi, P.; Suchithra, R. Review Study on Digital Image Processing and Segmentation. Am. J. Comput. Sci. Technol. 2019, 2, 68–72. [Google Scholar] [CrossRef]
- Fantazzini, A.; Esposito, M.; Finotello, A.; Auricchio, F.; Pane, B.; Basso, C.; Spinella, G.; Conti, M. 3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks. Cardiovasc. Eng. Technol. 2020, 11, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Mavridis, C.; Economopoulos, T.L.; Benetos, G.; Matsopoulos, G.K. Aorta Segmentation in 3D CT Images by Combining Image Processing and Machine Learning Techniques. Cardiovasc. Eng. Technol. 2024, 15, 359–373. [Google Scholar] [CrossRef]
- Abdolmanafi, A.; Forneris, A.; Moore, R.D.; Di Martino, E.S. Deep-Learning Method for Fully Automatic Segmentation of the Abdominal Aortic Aneurysm from Computed Tomography Imaging. Front. Cardiovasc. Med. 2023, 9, 1040053. [Google Scholar] [CrossRef]
- Vezakis, A.; Vezakis, I.; Vagenas, T.P.; Kakkos, I.; Matsopoulos, G.K. A Multidimensional Framework Incorporating 2D U-Net and 3D Attention U-Net for the Segmentation of Organs from 3D Fluorodeoxyglucose-Positron Emission Tomography Images. Electronics 2024, 13, 3526. [Google Scholar] [CrossRef]
- Lyu, T.; Yang, G.; Zhao, X.; Shu, H.; Luo, L.; Chen, D.; Xiong, J.; Yang, J.; Li, S.; Coatrieux, J.-L.; et al. Dissected Aorta Segmentation Using Convolutional Neural Networks. Comput. Methods Programs Biomed. 2021, 211, 106417. [Google Scholar] [CrossRef]
- Chang, V.; Bhavani, V.R.; Xu, A.Q.; Hossain, M. An Artificial Intelligence Model for Heart Disease Detection Using Machine Learning Algorithms. Healthc. Anal. 2022, 2, 100016. [Google Scholar] [CrossRef]
- Izadikhah, M. A Fuzzy Stochastic Slacks-Based Data Envelopment Analysis Model with Application to Healthcare Efficiency. Healthc. Anal. 2022, 2, 100038. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed]
- López-Linares, K.; Aranjuelo, N.; Kabongo, L.; Maclair, G.; Lete, N.; Ceresa, M.; García-Familiar, A.; Macía, I.; González Ballester, M.A. Fully Automatic Detection and Segmentation of Abdominal Aortic Thrombus in Post-Operative CTA Images Using Deep Convolutional Neural Networks. Med. Image Anal. 2018, 46, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Lareyre, F.; Adam, C.; Carrier, M.; Dommerc, C.; Mialhe, C.; Raffort, J. A Fully Automated Pipeline for Mining Abdominal Aortic Aneurysm Using Image Segmentation. Sci. Rep. 2019, 9, 13750. [Google Scholar] [CrossRef]
- Kalla, M.-P.; Vagenas, T.P.; Economopoulos, T.L.; Matsopoulos, G.K. Deep Learning-Based Registration of Two-Dimensional Dental Images with Edge Specific Loss. J. Med. Imaging 2023, 10, 034002. [Google Scholar] [CrossRef]
- Shamshad, F.; Khan, S.; Zamir, S.W.; Khan, M.H.; Hayat, M.; Khan, F.S.; Fu, H. Transformers in Medical Imaging: A Survey. Med. Image Anal. 2023, 88, 102802. [Google Scholar] [CrossRef]
- Hatamizadeh, A.; Nath, V.; Tang, Y.; Yang, D.; Roth, H.R.; Xu, D. Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Crimi, A., Bakas, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 272–284. [Google Scholar]
- Yang, T.; Zhu, G.; Cai, L.; Yeo, J.H.; Mao, Y.; Yang, J. A Benchmark Study of Convolutional Neural Networks in Fully Automatic Segmentation of Aortic Root. Front. Bioeng. Biotechnol. 2023, 11, 1171868. [Google Scholar] [CrossRef]
- Kim, T.; On, S.; Gwon, J.G.; Kim, N. Computed Tomography-Based Automated Measurement of Abdominal Aortic Aneurysm Using Semantic Segmentation with Active Learning. Sci. Rep. 2024, 14, 8924. [Google Scholar] [CrossRef]
- Camara, J.R.; Tomihama, R.T.; Pop, A.; Shedd, M.P.; Dobrowski, B.S.; Knox, C.J.; Abou-Zamzam, A.M.; Kiang, S.C. Development of a Convolutional Neural Network to Detect Abdominal Aortic Aneurysms. J. Vasc. Surg. Cases Innov. Tech. 2022, 8, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Shi, R.; Ge, Y.; Xing, L.; Zuo, P.; Jia, Y.; Liu, J.; He, Y.; Wang, X.; Luan, S.; et al. Fully Automatic Segmentation of Type B Aortic Dissection from CTA Images Enabled by Deep Learning. Eur. J. Radiol. 2019, 121, 108713. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding Deep Learning (Still) Requires Rethinking Generalization. Commun. ACM 2021, 64, 107–115. [Google Scholar] [CrossRef]
- Radl, L.; Jin, Y.; Pepe, A.; Li, J.; Gsaxner, C.; Zhao, F.; Egger, J. AVT: Multicenter Aortic Vessel Tree CTA Dataset Collection with Ground Truth Segmentation Masks. Data Brief 2022, 40, 107801. [Google Scholar] [CrossRef]
- Radl, L.; Jin, Y.; Pepe, A.; Li, J.; Gsaxner, C.; Zhao, F.; Egger, J. Aortic Vessel Tree (AVT) CTA Datasets and Segmentations. Figshare Dataset 2022. [Google Scholar] [CrossRef]
- Peyrin, F.; Engelke, K. CT Imaging: Basics and New Trends. In Handbook of Particle Detection and Imaging; Grupen, C., Buvat, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 883–915. ISBN 978-3-642-13271-1. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Jadon, S. A Survey of Loss Functions for Semantic Segmentation. In Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Via del Mar, Chile, 27–29 October 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Taha, A.A.; Hanbury, A. Metrics for Evaluating 3D Medical Image Segmentation: Analysis, Selection, and Tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Yeghiazaryan, V.; Voiculescu, I.D. Family of Boundary Overlap Metrics for the Evaluation of Medical Image Segmentation. JMI 2018, 5, 015006. [Google Scholar] [CrossRef]
- Sanjar, K.; Bekhzod, O.; Kim, J.; Kim, J.; Paul, A.; Kim, J. Improved U-Net: Fully Convolutional Network Model for Skin-Lesion Segmentation. Appl. Sci. 2020, 10, 3658. [Google Scholar] [CrossRef]
- Gillot, M.; Baquero, B.; Le, C.; Deleat-Besson, R.; Bianchi, J.; Ruellas, A.; Gurgel, M.; Yatabe, M.; Turkestani, N.A.; Najarian, K.; et al. Automatic Multi-Anatomical Skull Structure Segmentation of Cone-Beam Computed Tomography Scans Using 3D UNETR. PLoS ONE 2022, 17, e0275033. [Google Scholar] [CrossRef] [PubMed]
- Kakavand, R.; Palizi, M.; Tahghighi, P.; Ahmadi, R.; Gianchandani, N.; Adeeb, S.; Souza, R.; Edwards, W.B.; Komeili, A. Integration of Swin UNETR and Statistical Shape Modeling for a Semi-Automated Segmentation of the Knee and Biomechanical Modeling of Articular Cartilage. Sci. Rep. 2024, 14, 2748. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, J.; Dallan, L.; Zimin, V.; Hoori, A.; Shafiabadi, N.; Makhlouf, M.; Guagliumi, G.; Bezerra, H.; Wilson, D. Deep Learning Segmentation of Fibrous Cap in Intravascular Optical Coherence Tomography Images. Sci. Rep. 2024, 14, 4393. [Google Scholar] [CrossRef]
- Vagenas, T.P.; Georgas, K.; Matsopoulos, G.K. Deep Learning-Based Segmentation and Mesh Reconstruction of the Aortic Vessel Tree from CTA Images. In Segmentation of the Aorta. Towards the Automatic Segmentation, Modeling, and Meshing of the Aortic Vessel Tree from Multicenter Acquisition; Pepe, A., Melito, G.M., Egger, J., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 80–94. [Google Scholar]
- Cardoso, M.J.; Li, W.; Brown, R.; Ma, N.; Kerfoot, E.; Wang, Y.; Murrey, B.; Myronenko, A.; Zhao, C.; Yang, D.; et al. MONAI: An Open-Source Framework for Deep Learning in Healthcare. arXiv 2022, arXiv:2211.02701. [Google Scholar]
- Lorensen, W.E.; Cline, H.E. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. SIGGRAPH Comput. Graph. 1987, 21, 163–169. [Google Scholar] [CrossRef]
- Vollmer, J.; Mencl, R.; Müller, H. Improved Laplacian Smoothing of Noisy Surface Meshes. Comput. Graph. Forum 1999, 18, 131–138. [Google Scholar] [CrossRef]
- Attene, M. A Lightweight Approach to Repairing Digitized Polygon Meshes. Vis. Comput. 2010, 26, 1393–1406. [Google Scholar] [CrossRef]
- Advincula, W.D.C.; Choco, J.A.G.; Magpantay, K.A.G.; Sabellina, L.A.N., III; Tolentino, J.G.M.F.; Baldovino, R.G.; Bugtai, N.T.; See, A.R.; Du, Y.-C. Development and Future Trends in the Application of Visualization Toolkit (VTK): The Case for Medical Image 3D Reconstruction. AIP Conf. Proc. 2019, 2092, 020022. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, P.; Cai, X.; Xue, Z.; Shen, D. Integrating Convolutional Neural Network and Transformer for Lumen Prediction Along the Aorta Sections. In Machine Learning in Medical Imaging; Xu, X., Cui, Z., Rekik, I., Ouyang, X., Sun, K., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 340–349. [Google Scholar]
- Yang, Q.; Wang, C.; Pan, K.; Xia, B.; Xie, R.; Shi, J. An Improved 3D-UNet-Based Brain Hippocampus Segmentation Model Based on MR Images. BMC Med. Imaging 2024, 24, 166. [Google Scholar] [CrossRef] [PubMed]
- Azad, R.; Aghdam, E.K.; Rauland, A.; Jia, Y.; Avval, A.H.; Bozorgpour, A.; Karimijafarbigloo, S.; Cohen, J.P.; Adeli, E.; Merhof, D. Medical Image Segmentation Review: The Success of U-Net. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 10076–10095. [Google Scholar] [CrossRef]
- Salehi, A.W.; Khan, S.; Gupta, G.; Alabduallah, B.I.; Almjally, A.; Alsolai, H.; Siddiqui, T.; Mellit, A. A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope. Sustainability 2023, 15, 5930. [Google Scholar] [CrossRef]
- Shin, H.-C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [PubMed]
- Ali, L.; Alnajjar, F.; Jassmi, H.A.; Gocho, M.; Khan, W.; Serhani, M.A. Performance Evaluation of Deep CNN-Based Crack Detection and Localization Techniques for Concrete Structures. Sensors 2021, 21, 1688. [Google Scholar] [CrossRef]
- Chen, G.; Li, L.; Zhang, J.; Dai, Y. Rethinking the Unpretentious U-Net for Medical Ultrasound Image Segmentation. Pattern Recognit. 2023, 142, 109728. [Google Scholar] [CrossRef]
- Pinto-Coelho, L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering 2023, 10, 1435. [Google Scholar] [CrossRef] [PubMed]
- Elhaddad, M.; Hamam, S. AI-Driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential. Cureus 2024, 16, e57728. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Khan, A.R.; Sadiq, T.; Farooqi, A.H.; Khan, I.U.; Lim, W.H. A Systematic Literature Review of 3D Deep Learning Techniques in Computed Tomography Reconstruction. Tomography 2023, 9, 2158–2189. [Google Scholar] [CrossRef]
- Kappe, K.O.; Smorenburg, S.P.M.; Hoksbergen, A.W.J.; Wolterink, J.M.; Yeung, K.K. Deep Learning–Based Intraoperative Stent Graft Segmentation on Completion Digital Subtraction Angiography During Endovascular Aneurysm Repair. J. Endovasc. Ther. 2023, 30, 822–827. [Google Scholar] [CrossRef]
- Ntiri, E.E.; Holmes, M.F.; Forooshani, P.M.; Ramirez, J.; Gao, F.; Ozzoude, M.; Adamo, S.; Scott, C.J.M.; Dowlatshahi, D.; Lawrence-Dewar, J.M.; et al. Improved Segmentation of the Intracranial and Ventricular Volumes in Populations with Cerebrovascular Lesions and Atrophy Using 3D CNNs. Neuroinform 2021, 19, 597–618. [Google Scholar] [CrossRef]
- Lesage, D.; Angelini, E.D.; Bloch, I.; Funka-Lea, G. A Review of 3D Vessel Lumen Segmentation Techniques: Models, Features and Extraction Schemes. Med. Image Anal. 2009, 13, 819–845. [Google Scholar] [CrossRef]
Hyperparameters | UNet | UNETR | SwinUNETR | SegResNet |
---|---|---|---|---|
Features per layer | (16, 32, 64, 128, 256) | (16, 32, 64, 128) | (48, 96, 192, 384, 768) | (8, 16, 32, 64) |
Number of residual connections | 2 | - | - | 8 |
Conv kernel size | 3 | 3 | 3 | 3 |
Normalization | Batch | Instance | Instance | Group |
Dropout rate | 0.1 | 0.01 | 0.01 | 0.35 |
Learning rate | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Optimizer | Adam | Adam | Adam | Adam |
Feature size | 0 | 16 | 24 | - |
Hidden size | - | 768 | - | - |
Number of heads | - | 12 | (3, 6, 12, 24) | - |
Model | Parameters |
---|---|
UNet | 4,808,917 |
UNETR | 92,667,106 |
SwinUNETR | 62,186,708 |
SegResNet | 1,186,994 |
Model | DSC * | Recall * | Precision * | ASSD * |
---|---|---|---|---|
UNet | 0.89 ± 0.05 | 0.90 ± 0.06 | 0.89 ± 0.05 | 0.08 ± 0.04 |
UNETR | 0.75 ± 0.16 | 0.77 ± 0.12 | 0.74 ± 0.20 | 0.10 ± 0.06 |
SwinUNETR | 0.88 ± 0.08 | 0.87 ± 0.08 | 0.90 ± 0.09 | 0.08 ± 0.04 |
SegResNet | 0.88 ± 0.08 | 0.85 ± 0.10 | 0.91 ± 0.07 | 0.08 ± 0.04 |
Model | DSC * | Recall * | Precision * | ASSD * |
---|---|---|---|---|
UNet | 0.89 ± 0.07 | 0.89 ± 0.10 | 0.89 ± 0.05 | 0.04 ± 0.02 |
UNETR | 0.80 ± 0.13 | 0.84 ± 0.11 | 0.77 ± 0.17 | 0.05 ± 0.02 |
SwinUNETR | 0.85 ± 0.09 | 0.86 ± 0.12 | 0.85 ± 0.08 | 0.05 ± 0.02 |
SegResNet | 0.81 ± 0.13 | 0.75 ± 0.18 | 0.92 ± 0.04 | 0.06 ± 0.02 |
Models | UNet | UNETR | SwinUNETR | SegResNet |
---|---|---|---|---|
UNet | - | 5.01e-5 | 0.0318 | 0.0566 |
UNETR | 5.01 × 10−5 | - | 4.5 × 10−5 | 0.0271 |
SwinUNETR | 0.0318 | 4.5 × 10−5 | - | 0.3881 |
SegResNet | 0.0566 | 0.0271 | 0.3881 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavridis, C.; Vagenas, T.P.; Economopoulos, T.L.; Vezakis, I.; Petropoulou, O.; Kakkos, I.; Matsopoulos, G.K. Automatic Segmentation in 3D CT Images: A Comparative Study of Deep Learning Architectures for the Automatic Segmentation of the Abdominal Aorta. Electronics 2024, 13, 4919. https://doi.org/10.3390/electronics13244919
Mavridis C, Vagenas TP, Economopoulos TL, Vezakis I, Petropoulou O, Kakkos I, Matsopoulos GK. Automatic Segmentation in 3D CT Images: A Comparative Study of Deep Learning Architectures for the Automatic Segmentation of the Abdominal Aorta. Electronics. 2024; 13(24):4919. https://doi.org/10.3390/electronics13244919
Chicago/Turabian StyleMavridis, Christos, Theodoros P. Vagenas, Theodore L. Economopoulos, Ioannis Vezakis, Ourania Petropoulou, Ioannis Kakkos, and George K. Matsopoulos. 2024. "Automatic Segmentation in 3D CT Images: A Comparative Study of Deep Learning Architectures for the Automatic Segmentation of the Abdominal Aorta" Electronics 13, no. 24: 4919. https://doi.org/10.3390/electronics13244919
APA StyleMavridis, C., Vagenas, T. P., Economopoulos, T. L., Vezakis, I., Petropoulou, O., Kakkos, I., & Matsopoulos, G. K. (2024). Automatic Segmentation in 3D CT Images: A Comparative Study of Deep Learning Architectures for the Automatic Segmentation of the Abdominal Aorta. Electronics, 13(24), 4919. https://doi.org/10.3390/electronics13244919