Attention Mechanisms in CNN-Based Single Image Super-Resolution: A Brief Review and a New Perspective
<p>The detailed structure of channel attention mechanisms. (<b>a</b>) Channel attention in RCAN, (<b>b</b>) Second-order channel attention in SAN, (<b>c</b>) Laplacian pyramid attention in DRLN.</p> "> Figure 2
<p>The detailed structure of spatial attention mechanism. (<b>a</b>) SU in SelNet, (<b>b</b>) EFA block in RFANet.</p> "> Figure 3
<p>The detailed structure of the attention blocks, which has the combination of the two kinds of attention mechanisms. (<b>a</b>) CSAR module in CSFM, (<b>b</b>) RAM in SRRAM.</p> "> Figure 4
<p>The detailed structure of non-local attention. (<b>a</b>) Non-local attention, (<b>b</b>) Cross-scale non-local attention.</p> "> Figure 5
<p>The detailed structure of coordinate attention mechanism.</p> ">
Abstract
:1. Introduction
2. Background
3. Attention Mechanisms in SR
3.1. Channel Attention Mechanism
3.1.1. RCAN
3.1.2. SAN (Enhanced Channel Attention)
3.1.3. DRLN
3.2. Spatial Attention Mechanism
3.2.1. SelNet
3.2.2. RFANet
3.3. Combining the above Two Attention Mechanisms
3.3.1. CSFM
3.3.2. SRRAM
3.4. Non-Local Attention
3.4.1. SAN (Region-Level Non-Local Attention)
3.4.2. CSNLN
3.4.3. Pyramid Attention Networks
4. Bottlenecks in SR Attention Mechanisms and a New Perspective
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Q.; Song, H.; Yu, J.; Kim, K. Current development and applications of super-resolution ultrasound imaging. Sensors 2021, 21, 2417. [Google Scholar] [CrossRef]
- Zhou, H.; Zhuang, Z.; Liu, Y.; Liu, Y.; Zhang, X. Defect classification of green plums based on deep learning. Sensors 2020, 20, 6993. [Google Scholar] [CrossRef]
- Yan, X.; Liu, Y.; Xu, Y.; Jia, M. Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition. Energ. Convers. Manag. 2020, 225, 113456. [Google Scholar] [CrossRef]
- Pan, Z.; Tan, Z.; Lv, Q. A deep multi-frame super-resolution network for dynamic scenes. Appl. Sci. 2021, 11, 3285. [Google Scholar] [CrossRef]
- Xie, C.; Zeng, W.; Lu, X. Fast single-image super-resolution via deep network with component learning. IEEE T Circ. Syst. Vid. 2019, 29, 3473–3486. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recogn. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE T Pattern Anal. 2021. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Martinez-Gonzalez, P.; Garcia-Rodriguez, J. A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 2018, 70, 41–65. [Google Scholar] [CrossRef]
- Bouwmans, T.; Javed, S.; Sultana, M.; Jung, S.K. Deep neural network concepts for background subtraction:A systematic review and comparative evaluation. Neural Netw. 2019, 117, 8–66. [Google Scholar] [CrossRef] [Green Version]
- Yao, G.; Lei, T.; Zhong, J. A review of convolutional-neural-network-based action recognition. Pattern Recogn. Lett. 2019, 118, 14–22. [Google Scholar] [CrossRef]
- Wu, D.; Zheng, S.; Zhang, X.; Yuan, C.; Cheng, F.; Zhao, Y.; Lin, Y.; Zhao, Z.; Jiang, Y.; Huang, D. Deep learning-based methods for person re-identification: A comprehensive review. Neurocomputing 2019, 337, 354–371. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Liu, X.; Zengb, N.; Liu, Y.; Alsaadi, F. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Zheng, S.; Song, Y.; Leung, T.; Goodfellow, I. Improving the robustness of deep neural networks via stability training. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4480–4488. [Google Scholar]
- Nouiehed, M.; Razaviyayn, M. Learning deep models: Critical points and local openness. arXiv 2018, arXiv:1803.02968. [Google Scholar]
- Vidal, R.; Bruna, J.; Giryes, R.; Soatto, S. Mathematics of deep learning. arXiv 2017, arXiv:1712.04741. [Google Scholar]
- Giryes, R.; Sapiro, G.; Bronstein, A.M. On the stability of deep networks. arXiv 2014, arXiv:1412.5896. [Google Scholar]
- Yan, X.; Liu, Y.; Huang, D.; Jia, M. A new approach to health condition identification of rolling bearing using hierarchical dispersion entropy and improved laplacian score. Struct. Health Monit. 2020. [Google Scholar] [CrossRef]
- Yan, X.; Liu, Y.; Jia, M. Health condition identification for rolling bearing using a multi-domain indicator-based optimized stacked denoising autoencoder. Struct Health Monit. 2020, 19, 1602–1626. [Google Scholar] [CrossRef]
- Huang, Y.; Si, W.; Chen, K.; Sun, Y. Assessment of tomato maturity in different layers by spatially resolved spectroscopy. Sensors 2020, 20, 7229. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Jiang, X.; Xu, L.; Luo, J.; Xu, M.; Hou, F. Continuous Gesture Recognition Based on Time Sequence Fusion Using MIMO Radar Sensor and Deep Learning. Electronics 2020, 9, 869. [Google Scholar] [CrossRef]
- Muhammad, W.; Aramvith, S. Multi-Scale Inception Based Super-Resolution Using Deep Learning Approach. Electronics 2019, 8, 892. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Shi, Y.; Yang, Y.; Zhou, W. Perceptual Metric Guided Deep Attention Network for Single Image Super-Resolution. Electronics 2020, 9, 1145. [Google Scholar] [CrossRef]
- Xie, C.; Zeng, W.L.; Jiang, S.Q.; Lu, X.B. Multiscale self-similarity and sparse representation based single image super-resolution. Neurocomputing 2017, 260, 92–103. [Google Scholar] [CrossRef]
- Xie, C.; Liu, Y.; Zeng, W.; Lu, X. An improved method for single image super-resolution based on deep learning. Signal Image Video Process. 2019, 13, 557–565. [Google Scholar] [CrossRef]
- Yan, X.; Liu, Y.; Xu, Y.; Jia, M. Multichannel fault diagnosis of wind turbine driving system using multivariate singular spectrum decomposition and improved Kolmogorov complexity. Renew. Energ. 2021, 170, 724–748. [Google Scholar] [CrossRef]
- Du, J.; Cheng, K.; Yu, Y.; Wang, D.; Zhou, H. Panchromatic Image super-resolution via self attention-augmented wasserstein generative adversarial network. Sensors 2021, 21, 2158. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Kwon, K.; Erdenebat, M.; Abbass, M.Y.; Alam, M.A.; Kim, N. Super-resolution enhancement method based on generative adversarial network for integral imaging microscopy. Sensors 2021, 21, 2164. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Bae, A.; Kim, W. Speaker Verification Employing Combinations of Self-Attention Mechanisms. Electronics 2020, 9, 2201. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Park, S.C.; Park, M.K.; Kang, M.G. Super-resolution image reconstruction: A technical overview. IEEE Signal Proc. Mag. 2003, 20, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Ha, V.K.; Ren, J.C.; Xu, X.Y.; Zhao, S.; Xie, G.; Masero, V.; Hussain, A. Deep Learning Based Single Image Super-resolution: A Survey. Int. J. Autom. Comput. 2019, 16, 413–426. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, S.; Barnes, N. A deep journey into super-resolution: A survey. ACM Comput. Surv. 2020, 53, 1–34. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, P.; Pan, D. A survey of super-resolution based on deep learning. In Proceedings of the 2020 International Conference on Culture-Oriented Science & Technology (ICCST), Beijing, China, 30–31 October 2020. [Google Scholar]
- Wang, Z.; Chen, J.; Hoi, S.C.H. Deep learning for image super-resolution: A survey. IEEE T Pattern Anal. 2020. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Jun, D.; Kim, B.; Lee, H.; Rhee, E. Single image super-resolution method using cnn-based lightweight neural networks. Appl. Sci. 2021, 11, 1092. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, G.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H. An Efficient Super-Resolution Network Based on Aggregated Residual Transformations. Electronics 2019, 8, 339. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Han, M.; Jin, L.; Hua, Y.; Li, S. Target Localization Methods Based on Iterative Super-Resolution for Bistatic MIMO Radar. Electronics 2020, 9, 341. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Li, B.; Wang, B.; Qi, Z.; Liu, J. Unsupervised Single-Image Super-Resolution with Multi-Gram Loss. Electronics 2019, 8, 833. [Google Scholar] [CrossRef] [Green Version]
- Sahito, F.; Zhiwen, P.; Ahmed, J.; Memon, R.A. Wavelet-Integrated Deep Networks for Single Image Super-Resolution. Electronics 2019, 8, 553. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Wang, J.; Teng, G.; An, P. Video Super-Resolution Based on Generative Adversarial Network and Edge Enhancement. Electronics 2021, 10, 459. [Google Scholar] [CrossRef]
- Ooi, Y.K.; Ibrahim, H. Deep Learning Algorithms for Single Image Super-Resolution: A Systematic Review. Electronics 2021, 10, 867. [Google Scholar] [CrossRef]
- Xie, C.; Zeng, W.L.; Jiang, S.Q.; Lu, X.B. Bidirectionally aligned sparse representation for single image super-resolution. Multimed. Tools Appl. 2018, 77, 7883–7907. [Google Scholar] [CrossRef]
- Tao, D.; Jianrui, C.; Zhang, Y.B.; Xia, S.-T. Second-order attention network for single image super-resolution. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 11057–11066. [Google Scholar]
- Anwar, S.; Barnes, N. Densely residual laplacian super-resolution. IEEE T Pattern Anal. 2020. [Google Scholar] [CrossRef]
- Yang, C.; Lu, G. Deeply recursive low- and high-frequency fusing networks for single image super-resolution. Sensors 2020, 20, 7268. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Agustsson, E.; Timofte, R. Ntire 2017 challenge on single image super-resolution: Dataset and study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 126–135. [Google Scholar]
- Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning deep CNN denoiser prior for image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3929–3938. [Google Scholar]
- Li, P.; Xie, J.; Wang, Q.; Zuo, W. Is second-order information helpful for large-scale visual recognition? In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2070–2078. [Google Scholar]
- Benesty, J. Adaptive eigenvalue decomposition algorithm for passive acoustic source localization. J. Acoust. Soc. Am. 2000, 107, 384–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higham, N.J. Functions of matrices: Theory and computation. In Proceedings of the SIAM, Atlanta, GA, USA, 24–26 April 2008. [Google Scholar]
- Musunuri, Y.R.; Kwon, O.-S. Deep Residual Dense Network for Single Image Super-Resolution. Electronics 2021, 10, 555. [Google Scholar] [CrossRef]
- Choi, J.; Kim, M. A deep convolutional neural network with selection units for super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1150–1156. [Google Scholar]
- Liu, J.; Zhang, W.; Tang, Y.; Tang, J.; Wu, G. Residual feature aggregation network for image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 2359–2368. [Google Scholar]
- Hu, Y.; Li, J.; Huang, Y.; Gao, X. Channel-wise and spatial feature modulation network for single image super-resolution. IEEE T Circ. Syst. Vid. 2019, 30, 3911–3927. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Choi, J.; Cheon, M.; Lee, J. RAM: Residual attention module for single image super-resolution. arXiv Comput. Vis. Pattern Recognit. 2018, arXiv:1811.12043. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Zhong, B.; Fu, Y. Residual non-local attention networks for image restoration. arXiv 2019, arXiv:1903.10082 2019. [Google Scholar]
- Mei, Y.; Fan, Y.; Zhou, Y.; Huang, L.; Huang, T.S.; Shi, H. Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 5690–5699. [Google Scholar]
- Mei, Y.; Fan, Y.; Zhang, Y.; Yu, J.; Zhou, Y.; Liu, D.; Fu, Y.; Huang, T.S.; Shi, H. Pyramid attention networks for image restoration. arXiv 2020, arXiv:2004.13824. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for efficient mobile network design. arXiv 2021, arXiv:2103.02907. [Google Scholar]
- Huang, Y.; Lu, R.; Chen, K. Detection of internal defect of apples by a multichannel Vis/NIR spectroscopic system. Postharvest Biol. Tec. 2020, 161, 111065. [Google Scholar] [CrossRef]
- Yan, X.; Liu, Y.; Jia, M. Research on an enhanced scale morphological-hat product filtering in incipient fault detection of rolling element bearings. Measurement 2019, 147, 106856. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In Proceedings of the BMVC, Surrey, UK, 3–7 September 2012. [Google Scholar]
SR Networks | x2 | x3 | x4 | x8 | Attention Mechanisms | Sources | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | CA | SA | NLA | ||
EDSR [43] | 38.11 | 0.9601 | 34.65 | 0.9282 | 32.46 | 0.8968 | - | - | CVPR2017(BASELINE) | |||
RCAN [30] | 38.27 | 0.9614 | 34.74 | 0.9299 | 32.63 | 0.9002 | 27.31 | 0.7878 | √ | ECCV2018 | ||
SAN [47] | 38.31 | 0.9620 | 34.75 | 0.9300 | 32.64 | 0.9003 | 27.22 | 0.7829 | √ | √ | CVPR2019 | |
DRNL [48] | 38.27 | 0.9616 | 34.78 | 0.9303 | 32.63 | 0.9002 | 27.36 | 0.7882 | √ | TPAMI2020(Arxiv2019) | ||
SelNet [57] | 37.98 | 0.9598 | 34.27 | 0.9257 | 32.00 | 0.8931 | - | - | √ | CVPRW2017 | ||
RFANet [58] | 38.26 | 0.9615 | 34.79 | 0.9300 | 32.66 | 0.9004 | - | - | √ | CVPR2020 | ||
CSFM [59] | 38.26 | 0.9615 | 34.76 | 0.9301 | 32.61 | 0.9000 | - | - | √ | √ | TCSVT2018 | |
SRRAM [60] | 37.82 | 0.9592 | 34.30 | 0.9256 | 32.13 | 0.8932 | - | - | √ | √ | Neurocomputing2020(Arxiv2018) | |
CSNLN [63] | 38.28 | 0.9616 | 34.74 | 0.9300 | 32.68 | 0.9004 | - | - | √ | CVPR2020 | ||
PA-EDSR [64] | 38.33 | 0.9617 | 34.84 | 0.9306 | 32.65 | 0.9006 | - | - | √ | Arxiv2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Xie, C.; Fei, Y.; Tao, H. Attention Mechanisms in CNN-Based Single Image Super-Resolution: A Brief Review and a New Perspective. Electronics 2021, 10, 1187. https://doi.org/10.3390/electronics10101187
Zhu H, Xie C, Fei Y, Tao H. Attention Mechanisms in CNN-Based Single Image Super-Resolution: A Brief Review and a New Perspective. Electronics. 2021; 10(10):1187. https://doi.org/10.3390/electronics10101187
Chicago/Turabian StyleZhu, Hongyu, Chao Xie, Yeqi Fei, and Huanjie Tao. 2021. "Attention Mechanisms in CNN-Based Single Image Super-Resolution: A Brief Review and a New Perspective" Electronics 10, no. 10: 1187. https://doi.org/10.3390/electronics10101187
APA StyleZhu, H., Xie, C., Fei, Y., & Tao, H. (2021). Attention Mechanisms in CNN-Based Single Image Super-Resolution: A Brief Review and a New Perspective. Electronics, 10(10), 1187. https://doi.org/10.3390/electronics10101187