Terahertz Synthetic Aperture Imaging with a Light Field Imaging System
<p>The two-plane scheme of 4D light field.</p> "> Figure 2
<p>Light field acquisition and partition in (<b>a</b>) real aperture and (<b>b</b>) synthetic aperture.</p> "> Figure 3
<p>Experimental setup of transmission-type terahertz imaging system.</p> "> Figure 4
<p>Visual photograph of (<b>a</b>) the polypropylene composite Pelican case and (<b>b</b>) the bumped markings, A and B.</p> "> Figure 5
<p>Terahertz images of the bumped markings, A and B, with the markings at the center and the edge of the “effective” light spot, captured at different positions, with different markings at the center of the spot.</p> "> Figure 6
<p>Experimental setup of terahertz virtual camera array system.</p> "> Figure 7
<p>Visual photograph of the resolving power test target.</p> "> Figure 8
<p>Terahertz image of the test target, captured by single camera in single shot.</p> "> Figure 9
<p>Reconstructed image form full light field data, (<b>a</b>) directly reconstructed and (<b>b</b>) enhanced with Unsharp Mask (USM) algorithm.</p> ">
Abstract
:1. Introduction
2. Theory and Methods
2.1. Light Field Theory and Mathematical Model
2.2. The Acquisition of the 4D Light Field
2.3. Light Field Reconstruction
3. Experiment and Result
3.1. Distortion Analysis of Gaussian Beam Active Illuminated Terahertz Imaging
3.2. Resolving Power Analysis of Terahertz LFI Setup
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mittleman, D.M.; Jacobsen, R.; Nuss, M. T-ray imaging. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 679–692. [Google Scholar] [CrossRef] [Green Version]
- Guillet, J.-P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P. Review of Terahertz Tomography Techniques. J. Infrared Millim. Terahertz Waves 2014, 35, 382–411. [Google Scholar] [CrossRef] [Green Version]
- Mittleman, D.M. Twenty years of terahertz imaging [Invited]. Opt. Express 2018, 26, 9417–9431. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Xu, J.; Xie, X.; Yuan, T.; Reightler, R.; Madaras, E.; Zhang, X. Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sens. J. 2005, 5, 203–208. [Google Scholar] [CrossRef]
- Tanabe, T.; Watanabe, K.; Oyama, Y.; Seo, K. Polarization sensitive THz absorption spectroscopy for the evaluation of uniaxially deformed ultra-high molecular weight polyethylene. NDT E Int. 2010, 43, 329–333. [Google Scholar] [CrossRef]
- Groves, R.M.; Pradarutti, B.; Kouloumpi, E.; Osten, W.; Notni, G. 2D and 3D non-destructive evaluation of a wooden panel painting using shearography and terahertz imaging. NDT E Int. 2009, 42, 543–549. [Google Scholar] [CrossRef]
- Jackson, J.B.; Mourou, M.; Whitaker, J.; Duling, I.; Williamson, S.; Menu, M.; Mourou, G.; Iii, I.D. Terahertz imaging for non-destructive evaluation of mural paintings. Opt. Commun. 2008, 281, 527–532. [Google Scholar] [CrossRef]
- Caumes, J.-P.; Younus, A.; Salort, S.; Chassagne, B.; Recur, B.; Ziéglé, A.; Dautant, A.; Abraham, E. Terahertz tomographic imaging of XVIIIth Dynasty Egyptian sealed pottery. Appl. Opt. 2011, 50, 3604. [Google Scholar] [CrossRef] [Green Version]
- Stoik, C.; Bohn, M.; Blackshire, J. Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT E Int. 2010, 43, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Kapilevich, B.; Pinhasi, Y.; Arusi, R.; Anisimov, M.; Hardon, D.; Litvak, B.; Wool, Y. 330 GHz FMCW Image Sensor for Homeland Security Applications. J. Infrared Millim. Terahertz Waves 2010, 31, 1370–1381. [Google Scholar] [CrossRef]
- Marchese, L.E.; Terroux, M.; Dufour, D.; Bolduc, M.; Chevalier, C.; Généreux, F.; Jerominek, H.; Bergeron, A. Case study of concealed weapons detection at stand-off distances using a compact, large field-of-view THz camera. In Micro-and Nanotechnology Sensors, Systems, and Applications VI; SPIE: Baltimore, MD, USA, 2014. [Google Scholar] [CrossRef]
- Kemp, M.C.; Taday, P.F.; Cole, B.E.; Cluff, J.A.; Fitzgerald, A.J.; Tribe, W.R. Security Applications of Terahertz Technology; SPIE: Orlando, FL, USA, 2003; pp. 44–52. [Google Scholar] [CrossRef]
- Humphreys, K.; Loughran, J.; Grądziel, M.; Lanigan, W.; Ward, T.; Murphy, J.; O’Sullivan, C. Medical applications of terahertz imaging: A review of current technology and potential applications in biomedical engineering. In Proceedings of the the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2005; Volume 3, pp. 1302–1305. [Google Scholar]
- Marchese, L.; Bolduc, M.; Tremblay, B.; Doucet, M.; Oulachgar, H.; Le Noc, L.; Williamson, F.; Alain, C.; Jerominek, H.; Bergeron, A. A microbolometer-based THz imager. In Proceedings of the SPIE Defense, Security, and Sensing, Orlando, FL, USA, 5–9 April 2010. [Google Scholar] [CrossRef]
- Dufour, D.; Marchese, L.; Terroux, M.; Oulachgar, H.; Généreux, F.; Doucet, M.; Mercier, L.; Tremblay, B.; Alain, C.; Beaupré, P.; et al. Review of terahertz technology development at INO. J. Infrared Millim. Terahertz Waves 2015, 36, 922–946. [Google Scholar] [CrossRef]
- Al Hadi, R.; Sherry, H.; Grzyb, J.; Zhao, Y.; Forster, W.; Keller, H.M.; Cathelin, A.; Kaiser, A.; Pfeiffer, U.R. A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS. IEEE J. Solid-State Circuits 2012, 47, 2999–3012. [Google Scholar] [CrossRef]
- Han, R.; Zhang, Y.; Kim, Y.; Shichijo, H.; Afshari, E.; O, K.K. Active Terahertz Imaging Using Schottky Diodes in CMOS: Array and 860-GHz Pixel. IEEE J. Solid-state Circuits 2013, 48, 2296–2308. [Google Scholar] [CrossRef]
- Al Hadi, R.; Grzyb, J.; Heinemann, B.; Pfeiffer, U.R. A Terahertz Detector Array in a SiGe HBT Technology. IEEE J. Solid-State Circuits 2013, 48, 2002–2010. [Google Scholar] [CrossRef]
- Corcos, D.; Kaminski, N.; Shumaker, E.; Markish, O.; Elad, D.; Morf, T.; Drechsler, U.; Saha, W.T.S.; Kull, L.; Wood, K.; et al. Antenna-Coupled MOSFET Bolometers for Uncooled THz Sensing. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 902–913. [Google Scholar] [CrossRef]
- Yeom, S.; Lee, D.-S.; Son, J.-Y.; Jung, M.-K.; Jang, Y.; Jung, S.-W.; Lee, S.-J. Real-time outdoor concealed-object detection with passive millimeter wave imaging. Opt. Express 2011, 19, 2530–2536. [Google Scholar] [CrossRef]
- Coelho, P.; Tapia, J.E.; Pérez, F.; Torres, S.N.; Saavedra, C. Infrared light field imaging system free of fixed-pattern noise. Sci. Rep. 2017, 7, 13040. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Yi, X.; Zhao, X.; Xiong, B. Characterizations of VO2-based uncooled microbolometer linear array. Sens. Actuators A Phys. 2001, 90, 212–214. [Google Scholar] [CrossRef]
- Levoy, M. Light Fields and Computational Imaging. Computer 2006, 39, 46–55. [Google Scholar] [CrossRef]
- Ng, R. Digital Light Field Photography. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2006. [Google Scholar]
- Wiburn, B. High Performance Imaging using Arrays of Inexpensive Cameras. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2004. [Google Scholar]
- Liu, L.; Zhang, Z.; Gan, L.; Shen, Y.; Huang, Y. Terahertz imaging with compressed sensing. In Proceedings of the 2016 IEEE 9th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), Qingdao, China, 5–7 September 2016; pp. 50–53. [Google Scholar] [CrossRef]
- Georgiev, T.; Lumsdaine, A. Depth of Field in Plenoptic Cameras; Eurographics (Short Papers): Munich, Germany, 2009. [Google Scholar]
- Takahashi, K.; Kubota, A.; Naemura, T. Focus measurement and all in-focus image synthesis for light-field rendering. Syst. Comput. Jpn. 2005, 37, 1–12. [Google Scholar] [CrossRef]
- Adelson, E.; Wang, J. Single lens stereo with a plenoptic camera. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lv, H.; Liu, Y.; Wang, H.; Wang, X.; Huang, Q.; Xiang, X.; Dai, Q. Light-Field Depth Estimation via Epipolar Plane Image Analysis and Locally Linear Embedding. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 739–747. [Google Scholar] [CrossRef]
- Lüke, J.P.; Marichal-Hernández, J.G.; Rosa, F.; Rodríguez-Ramos, J.M. A prototype of a real-time single lens 3D camera. Proceedings of International Conference on 3D Systems and Applications, Tokyo, Japan, 19–21 May 2010; pp. 19–106. [Google Scholar]
- Bishop, T.E.; Zanetti, S.; Favaro, P. Light field superresolution. In Proceedings of the 2009 IEEE International Conference on Computational Photography (ICCP), San Francisco, CA, USA, 16–17 April 2009; pp. 1–9. [Google Scholar]
- Carles, G.; Downing, J.; Harvey, A.R. Super-resolution imaging using a camera array. Opt. Lett. 2014, 39, 1889–1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, R.; Grzyb, J.; Pfeiffer, U.R. Terahertz Light-Field Imaging. IEEE Trans. Terahertz Sci. Technol. 2016, 5, 1–9. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, N.; Zuo, J.; Zhao, Y.; Zhang, C. Terahertz Synthetic Aperture Imaging with a Light Field Imaging System. Electronics 2020, 9, 830. https://doi.org/10.3390/electronics9050830
Lyu N, Zuo J, Zhao Y, Zhang C. Terahertz Synthetic Aperture Imaging with a Light Field Imaging System. Electronics. 2020; 9(5):830. https://doi.org/10.3390/electronics9050830
Chicago/Turabian StyleLyu, Nanfang, Jian Zuo, Yuanmeng Zhao, and Cunlin Zhang. 2020. "Terahertz Synthetic Aperture Imaging with a Light Field Imaging System" Electronics 9, no. 5: 830. https://doi.org/10.3390/electronics9050830
APA StyleLyu, N., Zuo, J., Zhao, Y., & Zhang, C. (2020). Terahertz Synthetic Aperture Imaging with a Light Field Imaging System. Electronics, 9(5), 830. https://doi.org/10.3390/electronics9050830