Semantic Segmentation Framework for Glomeruli Detection and Classification in Kidney Histological Sections
<p>Glomeruli. Top row: non-sclerotic glomeruli. Bottom row: sclerotic glomeruli.</p> "> Figure 2
<p>CAD architecture. Physicians can visualize and annotate the WSIs using Aperio ImageScope software. The developed Deep Learning models can interact with ImageScope through an XML interface.</p> "> Figure 3
<p>Semantic Segmentation approach architecture. The top part describes how to train the CNN. The bottom part explains how to use the trained model for performing inference, and the related morphological and clustering post-processing steps.</p> "> Figure 4
<p>(<b>Left</b>) Semantic Segmentation output. (<b>Right</b>) After Morphological Operators.</p> "> Figure 5
<p>Morphological operators sequence applied to the output masks from the semantic segmentation network. The output of the morphological post-processing is used for calculating shape descriptors to eventually perform clustering.</p> "> Figure 6
<p>Examples of K-means clustering for both sclerotic and non-sclerotic glomeruli. The number <span class="html-italic">K</span> of clusters is determined according to <tt>deltaArea</tt> defined in (1). (<b>a</b>) Sclerotic glomeruli before clustering. (<b>b</b>) Sclerotic glomeruli after clustering, with <span class="html-italic">K</span> = 2. (<b>c</b>) Non-sclerotic glomeruli before clustering. (<b>d</b>) Non-sclerotic glomeruli after clustering, with <span class="html-italic">K</span> = 3.</p> "> Figure 7
<p>Elastic deformation example. Left: original image. Right: after elastic deformation with <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>6.29</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>340</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>HSV shift examples. Top Left: original image. Top Center: <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>H</mi> <mo>=</mo> <mo>+</mo> <mn>0.18</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>S</mi> <mo>=</mo> <mo>+</mo> <mn>0.03</mn> </mrow> </semantics></math>. Top Right: <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>H</mi> <mo>=</mo> <mo>+</mo> <mn>0.06</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>S</mi> <mo>=</mo> <mo>−</mo> <mn>0.06</mn> </mrow> </semantics></math>. Bottom Left: <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>H</mi> <mo>=</mo> <mo>−</mo> <mn>0.04</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>S</mi> <mo>=</mo> <mo>−</mo> <mn>0.02</mn> </mrow> </semantics></math>. Bottom Center: <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>H</mi> <mo>=</mo> <mo>−</mo> <mn>0.11</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>S</mi> <mo>=</mo> <mo>+</mo> <mn>0.10</mn> </mrow> </semantics></math>. Bottom Right: <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>H</mi> <mo>=</mo> <mo>+</mo> <mn>0.18</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>S</mi> <mo>=</mo> <mo>+</mo> <mn>0.09</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Top Left: original image. Top Right: ground truth. Bottom Left: SegNet prediction. Bottom Right: DeepLab v3+ prediction. Sclerotic glomeruli and non-sclerotic ones are white and gray colored, respectively.</p> ">
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Semantic Segmentation Framework
3.2. Proposed Workflow
3.2.1. CAD Architecture
3.2.2. Semantic Segmentation Workflow
3.2.3. Morphological Operators and Clustering
3.2.4. Data Augmentation
3.2.5. Hyperparameters Tuning
4. Experimental Results
4.1. Pixel-Level Metrics
4.2. Object Detection Metrics
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Temerinac-Ott, M.; Forestier, G.; Schmitz, J.; Hermsen, M.; Bräsen, J.; Feuerhake, F.; Wemmert, C. Detection of glomeruli in renal pathology by mutual comparison of multiple staining modalities. In Proceedings of the IEEE 10th International Symposium on Image and Signal Processing and Analysis, Ljubljana, Slovenia, 18–20 Sepember 2017; pp. 19–24. [Google Scholar]
- Gallego, J.; Pedraza, A.; Lopez, S.; Steiner, G.; Gonzalez, L.; Laurinavicius, A.; Bueno, G. Glomerulus classification and detection based on convolutional neural networks. J. Imaging 2018, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Ledbetter, D.; Ho, L.; Lemley, K.V. Prediction of Kidney Function from Biopsy Images Using Convolutional Neural Networks; Los Alamos National Lab: Santa Fe, NM, USA, 2017; pp. 1–11.
- Gadermayr, M.; Dombrowski, A.K.; Klinkhammer, B.M.; Boor, P.; Merhof, D. CNN Cascades for Segmenting Whole Slide Images of the Kidney. arXiv 2017, arXiv:1708.00251. [Google Scholar]
- Cascarano, G.D.; Debitonto, F.S.; Lemma, R.; Brunetti, A.; Buongiorno, D.; De Feudis, I.; Guerriero, A.; Rossini, M.; Pesce, F.; Gesualdo, L.; et al. An Innovative Neural Network Framework for Glomerulus Classification Based on Morphological and Texture Features Evaluated in Histological Images of Kidney Biopsy; Springer: Berlin, Germany, 2019; pp. 727–738. [Google Scholar] [CrossRef]
- Kawazoe, Y.; Shimamoto, K.; Yamaguchi, R.; Shintani-Domoto, Y.; Uozaki, H.; Fukayama, M.; Ohe, K. Faster R-CNN-based glomerular detection in multistained human whole slide images. J. Imaging 2018, 4, 91. [Google Scholar] [CrossRef] [Green Version]
- Ginley, B.; Lutnick, B.; Jen, K.Y.; Fogo, A.B.; Jain, S.; Rosenberg, A.; Walavalkar, V.; Wilding, G.; Tomaszewski, J.E.; Yacoub, R.; et al. Computational Segmentation and Classification of Diabetic Glomerulosclerosis. J. Am. Soc. Nephrol. 2019, 30, 1953–1967. [Google Scholar] [CrossRef] [PubMed]
- Marsh, J.N.; Matlock, M.K.; Kudose, S.; Liu, T.C.; Stappenbeck, T.S.; Gaut, J.P.; Swamidass, S.J. Deep learning global glomerulosclerosis in transplant kidney frozen sections. IEEE Trans. Med. Imaging 2018, 37, 2718–2728. [Google Scholar] [CrossRef] [PubMed]
- Karpinski, J.; Lajoie, G.; Cattran, D.; Fenton, S.; Zaltzman, J.; Cardella, C.; Cole, E. Outcome of kidney transplantation from high-risk donors is determined by both structure and function. Transplantation 1999, 67, 1162–1167. [Google Scholar] [CrossRef]
- Remuzzi, G.; Grinyò, J.; Ruggenenti, P.; Beatini, M.; Cole, E.H.; Milford, E.L.; Brenner, B.M. Early experience with dual kidney transplantation in adults using expanded donor criteria. J. Am. Soc. Nephrol. 1999, 10, 2591–2598. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. 2012 AlexNet. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IIEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Lindeberg, T. Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention. Int. J. Comput. Vis. 1993, 11, 283–318. [Google Scholar] [CrossRef] [Green Version]
- Hermsen, M.; de Bel, T.; Den Boer, M.; Steenbergen, E.J.; Kers, J.; Florquin, S.; Roelofs, J.J.; Stegall, M.D.; Alexander, M.P.; Smith, B.H.; et al. Deep Learning–Based Histopathologic Assessment of Kidney Tissue. J. Am. Soc. Nephrol. 2019, 30, 1968–1979. [Google Scholar] [CrossRef]
- Bevilacqua, V.; Pietroleonardo, N.; Triggiani, V.; Brunetti, A.; Di Palma, A.M.; Rossini, M.; Gesualdo, L. An innovative neural network framework to classify blood vessels and tubules based on Haralick features evaluated in histological images of kidney biopsy. Neurocomputing 2017, 228, 143–153. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Ha, P. LeNet. Proc. IEEE 1998. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Li, J.; Salemi, H.; Arnold, C.; Knudsen, B.S.; Gertych, A.; Ing, N. Semantic segmentation for prostate cancer grading by convolutional neural networks. In Proceedings of the SPIE Medical Imaging 2018: Digital Pathology, Houston, TX, USA, 10–15 February 2018; p. 46. [Google Scholar] [CrossRef]
- Tang, J.; Li, J.; Xu, X. Segnet-based gland segmentation from colon cancer histology images. In Proceedings of the IEEE 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Jiangsu, China, 18–20 May 2018; pp. 1078–1082. [Google Scholar]
- Alqazzaz, S.; Sun, X.; Yang, X.; Nokes, L. Automated brain tumor segmentation on multi-modal MR image using SegNet. Comput. Visual Media 2019, 5, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.T.; Chang, L.J.; Liu, W.M. Semantic segmentation of colorectal polyps with DeepLab and LSTM networks. In Proceedings of the IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Taiwan, China, 19–21 May 2018; pp. 1–2. [Google Scholar]
- Tang, W.; Zou, D.; Yang, S.; Shi, J. DSL: Automatic liver segmentation with faster R-CNN and DeepLab. In Proceedings of the International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; Springer: Berlin, Germany, 2018; pp. 137–147. [Google Scholar]
- Tang, W.; Zou, D.; Yang, S.; Shi, J.; Dan, J.; Song, G. A two-stage approach for automatic liver segmentation with Faster R-CNN and DeepLab. Neural Comput. Appl. 2020, 1–10. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin, Germany, 2018; Volume 11211 LNCS, pp. 833–851. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin, Germany, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Rio, Brazil, 14–21 October 2017. [Google Scholar] [CrossRef]
- Tellez, D.; Litjens, G.; Bándi, P.; Bulten, W.; Bokhorst, J.M.; Ciompi, F.; van der Laak, J. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 2019, 58, 101544. [Google Scholar] [CrossRef] [Green Version]
- Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis. In Proceedings of the ICDAR, Edinburgh, UK, 3–6 August 2003; Volume 3. [Google Scholar]
- MATLAB Documentation. Available online: https://www.mathworks.com/help/matlab/ (accessed on 19 November 2019).
- Azancot, M.A.; Moreso, F.; Salcedo, M.; Cantarell, C.; Perello, M.; Torres, I.B.; Montero, A.; Trilla, E.; Sellarés, J.; Morote, J.; et al. The reproducibility and predictive value on outcome of renal biopsies from expanded criteria donors. Kidney Int. 2014, 85, 1161–1168. [Google Scholar] [CrossRef] [Green Version]
- Haas, M. Donor kidney biopsies: Pathology matters, and so does the pathologist. Kidney Int. 2014, 85, 1016–1019. [Google Scholar] [CrossRef] [Green Version]
- Girolami, I.; Gambaro, G.; Ghimenton, C.; Beccari, S.; Caliò, A.; Brunelli, M.; Novelli, L.; Boggi, U.; Campani, D.; Zaza, G.; et al. Pre-implantation kidney biopsy: Value of the expertise in determining histological score and comparison with the whole organ on a series of discarded kidneys. J. Nephrol. 2020, 33, 167–176. [Google Scholar] [CrossRef] [PubMed]
Set | WSIs | Non-Sclerotic | Sclerotic | Ratio |
---|---|---|---|---|
Trainval set | 19 | 1852 | 341 | 5.43 : 1 |
Test set | 7 | 492 | 87 | 5.66 : 1 |
Dataset | 26 | 2344 | 428 | 5.48 : 1 |
System Details | |
---|---|
GPU | NVIDIA GTX 1060 with 6 GB of RAM |
CPU | Intel Core i7-4790 CPU @ 3.60 Ghz |
RAM | 32 GB |
OS | Microsoft Windows 10 Home |
Tool | MATLAB R2019a |
Data Augmentation | |
---|---|
Type | Details |
Group 1 | |
Rotate | , |
Flip left-right | |
Flip upside-down | |
Resize | , |
Group 2 | |
Gaussian Noise | , |
Gaussian Blur | , |
Elastic Deformation | , , |
Group 3 | |
HSV shift | , , |
Hyperparameter | SegNet | Deeplab v3+ |
---|---|---|
Optimizer | SGDM | SGDM |
LearnRateSchedule | ‘piecewise’ | ‘piecewise’ |
LearnRateDropPeriod | 10 | 10 |
LearnRateDropFactor | 0.3 | 0.3 |
Momentum | 0.9 | 0.9 |
InitialLearnRate | 0.001 | 0.001 |
L2Regularization | 0.005 | 0.005 |
MaxEpochs | 30 | 30 |
MiniBatchSize | 1 | 8 |
Shuffle | ‘every-epoch’ | ‘every-epoch’ |
ValidationPatience | 10 | 10 |
ValidationFrequency | 1 per epoch | 1 per epoch |
CNN | Global Accuracy | Mean Accuracy | Mean IoU | Weighted IoU | Mean F-Score |
---|---|---|---|---|---|
SegNet | 0.98346 | 0.86385 | 0.71352 | 0.97156 | 0.81784 |
Deeplab v3+ | 0.99179 | 0.76884 | 0.72873 | 0.98434 | 0.84614 |
Class | Accuracy | IoU | Mean F-Score |
---|---|---|---|
Background | 0.98636 | 0.98294 | 0.99243 |
Non-sclerotic | 0.91925 | 0.66546 | 0.83239 |
sclerotic | 0.68594 | 0.49215 | 0.69686 |
Class | Accuracy | IoU | Mean F-Score |
---|---|---|---|
Background | 0.99690 | 0.99172 | 0.96684 |
Non-sclerotic | 0.88199 | 0.80872 | 0.93306 |
Sclerotic | 0.42764 | 0.38574 | 0.63852 |
Prediction | ||||
---|---|---|---|---|
B | NS | S | ||
Ground Truth | B | 98.64% | 1.26% | 0.10% |
NS | 8.07% | 91.93% | 0.00% | |
S | 30.97% | 0.44% | 68.59% |
Prediction | ||||
---|---|---|---|---|
B | NS | S | ||
Ground Truth | B | 99.69% | 0.28% | 0.03% |
NS | 11.78% | 88.20% | 0.02% | |
S | 50.57% | 6.67% | 42.76% |
Prediction | ||||
---|---|---|---|---|
NS | S | B | ||
Ground Truth | NS | 436 | 0 | 56 |
S | 1 | 58 | 28 | |
B | 86 | 14 | – |
Prediction | ||||
---|---|---|---|---|
NS | S | B | ||
Ground Truth | NS | 449 | 0 | 43 |
S | 7 | 41 | 39 | |
B | 24 | 1 | – |
Author | Model | Class | Recall | Precision | F-Score |
---|---|---|---|---|---|
Marsh et al. [8] | FCN + blob-detection | NS | 0.885 | 0.813 | 0.848 |
S | 0.698 | 0.607 | 0.649 | ||
Proposed approach | SegNet | NS | 0.886 | 0.834 | 0.859 |
S | 0.667 | 0.806 | 0.730 | ||
DeepLab v3+ | NS | 0.913 | 0.935 | 0.924 | |
S | 0.471 | 0.976 | 0.636 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altini, N.; Cascarano, G.D.; Brunetti, A.; Marino, F.; Rocchetti, M.T.; Matino, S.; Venere, U.; Rossini, M.; Pesce, F.; Gesualdo, L.; et al. Semantic Segmentation Framework for Glomeruli Detection and Classification in Kidney Histological Sections. Electronics 2020, 9, 503. https://doi.org/10.3390/electronics9030503
Altini N, Cascarano GD, Brunetti A, Marino F, Rocchetti MT, Matino S, Venere U, Rossini M, Pesce F, Gesualdo L, et al. Semantic Segmentation Framework for Glomeruli Detection and Classification in Kidney Histological Sections. Electronics. 2020; 9(3):503. https://doi.org/10.3390/electronics9030503
Chicago/Turabian StyleAltini, Nicola, Giacomo Donato Cascarano, Antonio Brunetti, Francescomaria Marino, Maria Teresa Rocchetti, Silvia Matino, Umberto Venere, Michele Rossini, Francesco Pesce, Loreto Gesualdo, and et al. 2020. "Semantic Segmentation Framework for Glomeruli Detection and Classification in Kidney Histological Sections" Electronics 9, no. 3: 503. https://doi.org/10.3390/electronics9030503
APA StyleAltini, N., Cascarano, G. D., Brunetti, A., Marino, F., Rocchetti, M. T., Matino, S., Venere, U., Rossini, M., Pesce, F., Gesualdo, L., & Bevilacqua, V. (2020). Semantic Segmentation Framework for Glomeruli Detection and Classification in Kidney Histological Sections. Electronics, 9(3), 503. https://doi.org/10.3390/electronics9030503