Financial Uncertainty and Gold Market Volatility: Evidence from a Generalized Autoregressive Conditional Heteroskedasticity Variant of the Mixed-Data Sampling (GARCH-MIDAS) Approach with Variable Selection
<p>Choosing a proper tuning parameter <math display="inline"><semantics> <mi>λ</mi> </semantics></math> and number of variables. (<b>a</b>) <math display="inline"><semantics> <mi>λ</mi> </semantics></math> and number of variables. (<b>b</b>) <math display="inline"><semantics> <mi>λ</mi> </semantics></math> and GIC.</p> "> Figure A1
<p>Choosing a proper tuning parameter <math display="inline"><semantics> <mi>λ</mi> </semantics></math> and number of variables. (<b>a</b>) <math display="inline"><semantics> <mi>λ</mi> </semantics></math> and number of variables. (<b>b</b>) <math display="inline"><semantics> <mi>λ</mi> </semantics></math> and GIC.</p> "> Figure A1 Cont.
<p>Choosing a proper tuning parameter <math display="inline"><semantics> <mi>λ</mi> </semantics></math> and number of variables. (<b>a</b>) <math display="inline"><semantics> <mi>λ</mi> </semantics></math> and number of variables. (<b>b</b>) <math display="inline"><semantics> <mi>λ</mi> </semantics></math> and GIC.</p> ">
Abstract
:1. Introduction
2. Model and Methodology
2.1. GARCH-MIDAS Model
2.2. Model Comparison
3. Empirical Study
3.1. Data Description
3.2. Empirical Results
3.2.1. Estimation of GARCH-MIDAS Models
3.2.2. Out-of-Sample Predictability Analyses
3.2.3. Multivariate GARCH-MIDAS Model and Adaptive LASSO
3.3. Discussion of the Findings
- The safe-haven nature of gold is confirmed, as we find that higher financial market uncertainties increase gold returns volatility, likely due to higher trading in the market.
- The GARCH-MIDAS-GFU model tends to significantly outperform the forecasting ability of the benchmark GARCH-MIDAS-RV model, with the gains primarily originating for the regional financial uncertainties of Europe, and the majority (i.e., 36 out of 42) of the local uncertainties. This result highlights that various levels of uncertainties involving financial markets matter in accurately forecasting gold returns volatility.
- The forecasting performance of the GARCH-MIDAS-GFU model is statistically similar to that of the GARCH-MIDAS-GECON model, which involves a metric of global economic conditions, but when we combine the information of the GFU and GECON, we find the corresponding model to be more accurate than the versions of the GARCH-MIDAS model with RV, the GFU, and GECON, indicating that the GFU and GECON carry unique information that is complementary to each other. In other words, global, financial and economic conditions taken together can play a relatively better role in explaining gold returns volatility.
- A multivariate GARCH-MIDAS model, estimated with the adaptive LASSO, with financial uncertainties of the top 10 individually performing countries, irrespective of their level of development, can outperform the benchmark model, but not the GARCH-MIDAS-GFU model. This result suggests that the common factor of the financial uncertainties carries more information in forecasting gold returns volatility than the idiosyncratic local factors.
- In sum, we provide for the first time robust evidence of financial uncertainties accurately forecasting gold market volatility.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Results
Variable | Mean | Std | Min | Max | Skew | Kurt | ADFtest |
---|---|---|---|---|---|---|---|
Gold Return | 0.00 | 0.01 | −0.10 | 0.10 | −0.11 | 11.10 | −61.33 *** |
GECON | −0.02 | 0.48 | −4.42 | 0.91 | −4.13 | 31.25 | −7.09 *** |
GFU | 0.00 | 0.53 | −0.79 | 3.27 | 2.14 | 11.02 | −5.6 *** |
North America | −0.01 | 0.67 | −1.04 | 3.99 | 2.20 | 11.58 | −4.6 *** |
Europe | 0.00 | 1.72 | −2.68 | 10.53 | 2.11 | 10.68 | −5.48 *** |
Oceania | 0.00 | 1.22 | −1.49 | 9.40 | 3.21 | 19.77 | −5.75 *** |
Latin America | −0.01 | 0.37 | −0.70 | 1.66 | 1.52 | 6.33 | −7.27 *** |
Asia | 0.07 | 1.49 | −1.72 | 6.82 | 2.05 | 7.69 | −3.91 *** |
US | 0.00 | 1.32 | −1.87 | 7.45 | 2.25 | 11.52 | −4.34 *** |
Canada | −0.01 | 1.31 | −2.09 | 8.39 | 2.20 | 11.91 | −4.82 *** |
Mexico | 0.05 | 1.20 | −1.78 | 6.30 | 1.75 | 7.50 | −6.06 *** |
Germany | 0.01 | 1.31 | −1.96 | 6.22 | 1.65 | 6.34 | −5.57 *** |
Austria | 0.00 | 1.33 | −2.53 | 6.56 | 1.51 | 8.14 | −4.67 *** |
Belgium | −0.02 | 1.34 | −2.51 | 6.33 | 1.20 | 6.35 | −4.46 *** |
Czech Republic | −0.01 | 1.32 | −2.20 | 8.31 | 2.03 | 10.77 | −5.08 *** |
Denmark | 0.01 | 1.32 | −2.55 | 5.95 | 1.03 | 5.71 | −4.58 *** |
Finland | 0.01 | 1.44 | −2.02 | 4.40 | 1.25 | 3.97 | −2.41 *** |
France | 0.00 | 1.30 | −2.10 | 5.84 | 1.25 | 5.81 | −5.2 *** |
UK | 0.00 | 1.24 | −1.78 | 8.06 | 2.31 | 11.72 | −6.07 *** |
Greece | −0.04 | 1.35 | −2.12 | 3.85 | 0.75 | 2.92 | −2.24 *** |
Hungary | −0.03 | 1.34 | −2.15 | 7.21 | 1.87 | 8.15 | −4.25 *** |
Ireland | −0.02 | 1.34 | −2.64 | 6.23 | 1.34 | 6.96 | −3.67 *** |
Italy | 0.18 | 1.28 | −1.94 | 4.83 | 1.06 | 3.98 | −5.32 *** |
Netherlands | −0.02 | 1.35 | −1.80 | 7.49 | 1.98 | 8.31 | −5.6 *** |
Norway | −0.01 | 1.33 | −1.89 | 8.22 | 2.71 | 13.86 | −5.37 *** |
Poland | 0.65 | 2.58 | −0.90 | 17.84 | 4.24 | 22.73 | −13.22 *** |
Russia | 0.27 | 1.36 | −1.38 | 6.71 | 2.26 | 8.91 | −5.16 *** |
Spain | 0.01 | 1.29 | −2.44 | 5.97 | 0.97 | 5.67 | −4.49 *** |
Sweden | 0.01 | 1.30 | −2.05 | 6.60 | 2.06 | 9.62 | −4.08 *** |
Switzerland | 0.00 | 1.25 | −1.89 | 7.50 | 2.15 | 9.63 | −6.93 *** |
Turkey | 0.03 | 1.26 | −2.05 | 5.23 | 1.23 | 4.67 | −4.02 *** |
Australia | 0.00 | 1.27 | −1.74 | 11.15 | 3.73 | 26.76 | −6.22 *** |
New Zealand | −0.02 | 1.26 | −2.07 | 7.92 | 2.08 | 11.09 | −4.4 *** |
Argentina | 0.04 | 1.04 | −1.20 | 6.40 | 2.83 | 13.68 | −5.53 *** |
Brazil | 0.07 | 1.30 | −1.56 | 6.47 | 1.72 | 7.09 | −5.85 *** |
Chile | −0.15 | 0.84 | −1.79 | 3.73 | 1.44 | 6.18 | −6.49 *** |
Colombia | 0.00 | 0.98 | −1.50 | 6.05 | 1.81 | 8.38 | −8.02 *** |
Peru | 0.01 | 1.14 | −1.64 | 4.73 | 1.61 | 5.99 | −4.9 *** |
Japan | 0.00 | 1.17 | −2.25 | 5.84 | 1.24 | 6.24 | −5.8 *** |
China | 0.02 | 1.33 | −2.00 | 5.97 | 1.91 | 7.25 | −3.69 *** |
Hong Kong | 0.00 | 1.21 | −1.71 | 6.32 | 1.80 | 7.18 | −4.46 *** |
India | 0.03 | 0.97 | −1.50 | 6.10 | 2.08 | 10.32 | −8.1 *** |
Indonesia | 0.12 | 1.38 | −1.41 | 10.06 | 3.56 | 19.34 | −3.98 *** |
Korea | 0.02 | 1.32 | −1.71 | 6.41 | 1.55 | 5.80 | −4.06 *** |
Malaysia | −0.02 | 1.22 | −1.39 | 8.16 | 3.50 | 19.91 | −3.88 *** |
Pakistan | −0.01 | 1.16 | −1.92 | 5.40 | 1.44 | 6.51 | −3.61 *** |
Philippines | 0.01 | 1.21 | −1.76 | 6.23 | 2.34 | 9.77 | −3.87 *** |
Singapore | 0.03 | 1.39 | −2.38 | 6.13 | 1.97 | 7.72 | −3.92 *** |
Taiwan | 0.02 | 1.24 | −2.32 | 3.21 | 0.38 | 2.33 | −2.89 *** |
Thailand | 0.06 | 1.38 | −1.58 | 7.03 | 2.51 | 10.74 | −3.16 *** |
GECON & GFU | |
---|---|
h = 3 | −1.3654 |
(0.1761) | |
h = 6 | 0.2952 |
(0.7686) | |
h = 9 | 0.9738 |
(0.3333) |
GFC1 & GFC2 | |
---|---|
h = 3 | −0.1044 |
(0.9172) | |
h = 6 | −0.1855 |
(0.8534) | |
h = 9 | −0.701 |
(0.4857) |
RV | GECON | GFU | |
---|---|---|---|
h = 3 | 2.0652 ** | 2.5537 ** | 1.8500 * |
(0.0423) | (0.0127) | (0.0682) | |
h = 6 | 3.323 *** | 1.9827 * | 2.939 *** |
(0.0014) | (0.0510) | (0.0044) | |
h = 9 | 3.112 *** | 0.9026 | 2.6152 ** |
(0.0026) | (0.3696) | (0.0107) |
Appendix B. Country-Specific Financial Uncertainty Out-of-Sample Forecast Evaluation via the Diebold–Mariano Tests (lag = 12)
US | Canada | Mexico | |
---|---|---|---|
h = 3 | 0.8306 | 2.4133 ** | 1.8674 * |
(0.4088) | (0.0182) | (0.0657) | |
h = 6 | 2.4473 ** | 3.9812 *** | 2.6136 ** |
(0.0167) | (0.0002) | (0.0108) | |
h = 9 | 3.1981 *** | 3.4903 *** | 1.7085 * |
(0.0020) | (0.0008) | (0.0916) |
Germany | France | UK | Netherlands | Austria | Belgium | Czech Republic | |
---|---|---|---|---|---|---|---|
h = 3 | 1.5177 | 2.0657 ** | 1.5132 | 1.9145 * | 2.2767 ** | 2.6803 *** | 1.9117 * |
(0.1332) | (0.0423) | (0.1344) | (0.0593) | (0.0256) | (0.0090) | (0.0597) | |
h = 6 | 3.1354 *** | 3.4927 *** | 3.5045 *** | 3.1335 *** | 4.1119 *** | 5.4909 *** | 2.8963 *** |
(0.0024) | (0.0008) | (0.0008) | (0.0025) | (0.0001) | 0.0000 | (0.0049) | |
h = 9 | 3.0766 *** | 3.5474 *** | 3.2205 *** | 3.2040 *** | 4.1116 *** | 5.3801 *** | 3.1828 *** |
(0.0029) | (0.0007) | (0.0019) | (0.0020) | (0.0001) | 0.0000 | (0.0021) |
Denmark | Finland | Greece | Hungary | Ireland | Italy | Norway | |
---|---|---|---|---|---|---|---|
h = 3 | 2.1026 ** | 2.4367 ** | 1.1946 | 2.1723 ** | 2.4974 | 1.9819 * | 1.5097 |
(0.0388) | (0.0172) | (0.2360) | (0.0329) | (0.3674) | (0.0511) | (0.1353) | |
h = 6 | 3.5728 *** | 4.3774 *** | 1.5671 | 4.4284 *** | 4.2563 *** | 3.0615 *** | 2.9822 *** |
(0.0006) | 0.0000 | (0.1212) | 0.0000 | (0.0001) | (0.0030) | (0.0038) | |
h = 9 | 3.7568 *** | 4.6410 *** | 1.3627 | 4.3308 *** | 4.2816 *** | 2.4865 ** | 2.9739 *** |
(0.0003) | 0.0000 | (0.1770) | 0.0000 | (0.0001) | (0.0151) | (0.0039) |
Poland | Russia | Spain | Sweden | Switzerland | Turkey | |
---|---|---|---|---|---|---|
h = 3 | 0.5034 | 2.2070 ** | 1.9573 * | 2.2121 ** | 1.7483 * | 2.3748 ** |
(0.6161) | (0.0303) | (0.0540) | (0.0300) | (0.0844) | (0.0201) | |
h = 6 | −0.5001 | 4.0944 *** | 3.5500 *** | 4.1645 *** | 2.7765 *** | 2.9947 *** |
(0.6185) | (0.0001) | (0.0007) | (0.0001) | (0.0069) | (0.0037) | |
h = 9 | −0.7681 | 3.6779 *** | 3.9258 *** | 4.4339 *** | 2.5498 ** | 1.8160 * |
(0.4448) | (0.0004) | (0.0002) | 0.0000 | (0.0128) | (0.0733) |
Australia | New Zealand | |
---|---|---|
h = 3 | 1.8400 * | 1.2487 |
(0.0697) | (0.2156) | |
h = 6 | 4.3272 *** | 3.5565 *** |
(0.0000) | (0.0007) | |
h = 9 | 3.4643 *** | 3.6756 *** |
(0.0009) | (0.0004) |
Argentina | Brazil | Chile | Colombia | Peru | |
---|---|---|---|---|---|
h = 3 | 2.2921 ** | 1.9377 * | 0.6277 | 0.8762 | 2.1237 ** |
(0.0247) | (0.0564) | (0.5321) | (0.3837) | (0.0370) | |
h = 6 | 3.9226 *** | 2.7788 *** | 1.5338 | 1.4116 | 3.8861 *** |
(0.0002) | (0.0069) | (0.1292) | (0.1622) | (0.0002) | |
h = 9 | 3.5167 *** | 2.8604 *** | 2.3169 ** | 1.9768 * | 3.7930 *** |
(0.0007) | (0.0055) | (0.0232) | (0.0517) | (0.0003) |
Japan | China | Hong Kong | India | Indonesia | Korea | |
---|---|---|---|---|---|---|
h = 3 | 2.3597 ** | −0.4202 | 2.0664 ** | 1.2073 | 1.9170 * | 1.4576 |
(0.0209) | (0.6755) | (0.0422) | (0.2310) | (0.0590) | (0.1491) | |
h = 6 | 4.1814 *** | −0.9573 | 3.7636 *** | 1.4164 | 2.5763 ** | 3.3060 *** |
(0.0001) | (0.3414) | (0.0003) | (0.1608) | (0.0119) | (0.0014) | |
h = 9 | 3.6178 *** | −1.1509 | 3.6370 *** | 1.155 | 2.1285 ** | 2.9459 *** |
(0.0005) | (0.2534) | (0.0005) | (0.1608) | (0.0365) | (0.0043) |
Malaysia | Pakistan | Philippines | Singapore | Taiwan | Thailand | |
---|---|---|---|---|---|---|
h = 3 | 1.3225 | 1.8164 * | 1.9539 * | 1.2645 | −0.5580 | 1.8115 * |
(0.1900) | (0.0732) | (0.0544) | (0.2099) | (0.5785) | (0.0740) | |
h = 6 | 0.5748 | 2.7063 *** | 2.4962 ** | 2.5360 ** | −0.4583 | 2.6652 *** |
(0.5671) | (0.0084) | (0.0147) | (0.0133) | (0.6481) | (0.0094) | |
h = 9 | (0.5586) | 2.5107 ** | 2.7601 *** | 2.5073 ** | −0.1251 | 1.8822 * |
(0.5781) | (0.0142) | (0.0072) | (0.0143) | (0.9008) | (0.0636) |
Appendix C. Multivariate GARCH-MIDAS Model and Adaptive LASSO: An Alternative Approach
Coeff | StdErr | tStat | Prob | |
---|---|---|---|---|
0.000 | 0.000 | 0.356 | 0.721 | |
0.043 | 0.001 | 33.627 | 0.000 | |
0.956 | 0.001 | 738.01 | 0.000 | |
0.452 | 0.087 | 5.191 | 0.000 | |
−0.230 | 0.067 | −3.421 | 0.001 | |
−0.151 | 0.079 | −1.91 | 0.056 | |
48.682 | 2795 | 0.002 | 0.995 | |
49.934 | 48.296 | 1.034 | 0.301 | |
49.763 | 202.66 | 0.246 | 0.806 | |
1.358 | 3848.3 | 0.000 | 0.998 | |
10.921 | 10.545 | 1.036 | 0.300 | |
7.487 | 28.721 | 0.261 | 0.794 | |
m | −8.037 | 0.146 | −54.878 | 0.000 |
Germany–Norway–Netherlands | |
---|---|
h = 3 | 2.2916 ** |
(0.0247) | |
h = 6 | 3.9252 *** |
(0.0002) | |
h = 9 | 3.7073 *** |
(0.0004) |
Appendix D. GARCH-MIDAS Model with Financial Stress Index (FSI)
Coeff | StdErr | tStat | Prob | |
---|---|---|---|---|
0.0002 | 0.0001 | 1.6075 | 0.1079 | |
0.0508 | 0.0018 | 28.932 | 0 | |
0.9349 | 0.0024 | 387 | 0 | |
0.0152 | 0.0096 | 1.5739 | 0.1155 | |
31.378 | 159.23 | 0.1971 | 0.8438 | |
32.775 | 166.40 | 0.1970 | 0.8439 | |
m | −9.125 | 0.0557 | −163.76 | 0 |
FSI | |
---|---|
h = 3 | 1.4155 |
(0.1614) | |
h = 6 | 1.8446 * |
(0.0693) | |
h = 9 | 2.1235 ** |
(0.0372) |
References
- Agyei-Ampomah, Sam, Dimitrios Gounopoulos, and Khelifa Mazouz. 2014. Does gold offer a better protection against losses in sovereign debt bonds than other metals? Journal of Banking & Finance 40: 507–21. [Google Scholar]
- Asai, Manabu, Rangan Gupta, and Michael McAleer. 2020. Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks. International Journal of Forecasting 36: 933–48. [Google Scholar] [CrossRef]
- Balcilar, Mehmet, Riza Demirer, Rangan Gupta, and Mark E. Wohar. 2020. The effect of global and regional stock market shocks on safe haven assets. Structural Change and Economic Dynamics 54: 297–308. [Google Scholar] [CrossRef]
- Bańbura, Marta, and Michele Modugno. 2014. Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. Journal of Applied Econometrics 29: 133–60. [Google Scholar] [CrossRef]
- Baumeister, Christiane, Dimitris Korobilis, and Thomas K. Lee. 2022. Energy markets and global economic conditions. Review of Economics and Statistics 104: 828–44. [Google Scholar] [CrossRef]
- Baur, Dirk G. 2012. Asymmetric volatility in the gold market. The Journal of Alternative Investments 14: 26. [Google Scholar] [CrossRef]
- Baur, Dirk G., and Brian M. Lucey. 2010. Is gold a hedge or a safe haven? An analysis of stocks, bonds and gold. Financial Review 45: 217–29. [Google Scholar] [CrossRef]
- Baur, Dirk G., and Thomas K. McDermott. 2010. Is gold a safe haven? International evidence. Journal of Banking & Finance 34: 1886–98. [Google Scholar]
- Beckmann, Joscha, Theo Berger, and Robert Czudaj. 2015. Does gold act as a hedge or a safe haven for stocks? A smooth transition approach. Economic Modelling 48: 16–24. [Google Scholar] [CrossRef]
- Boubaker, Heni, Juncal Cunado, Luis A. Gil-Alana, and Rangan Gupta. 2020. Global crises and gold as a safe haven: Evidence from over seven and a half centuries of data. Physica A: Statistical Mechanics and Its Applications 540: 123093. [Google Scholar] [CrossRef]
- Caggiano, Giovanni, and Efrem Castelnuovo. 2023. Global financial uncertainty. Journal of Applied Econometrics 38: 432–49. [Google Scholar] [CrossRef]
- Chuang, O-Chia, and Chenxu Yang. 2022. Identifying the determinants of crude oil market volatility by the multivariate GARCH-MIDAS model. Energies 15: 2945. [Google Scholar] [CrossRef]
- Clements, Michael P., and Ana Beatriz Galvão. 2008. Macroeconomic forecasting with mixed-frequency data: Forecasting output growth in the united states. Journal of Business & Economic Statistics 26: 546–54. [Google Scholar]
- Dickey, David A., and Wayne A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association 74: 427–31. [Google Scholar]
- Diebold, Francis X., and Robert S. Mariano. 2002. Comparing predictive accuracy. Journal of Business & Economic Statistics 20: 134–44. [Google Scholar]
- Engle, Robert F., Eric Ghysels, and Bumjean Sohn. 2013. Stock market volatility and macroeconomic fundamentals. Review of Economics and Statistics 95: 776–97. [Google Scholar] [CrossRef]
- Fang, Libing, Baizhu Chen, Honghai Yu, and Yichuo Qian. 2018. The importance of global economic policy uncertainty in predicting gold futures market volatility: A garch-midas approach. Journal of Futures Markets 38: 413–22. [Google Scholar] [CrossRef]
- Gabauer, David, Rangan Gupta, Sayar Karmakar, and Joshua Nielsen. 2025. Stock market bubbles and the forecastability of gold returns and volatility. Applied Stochastic Models in Business and Industry, 1–19. [Google Scholar] [CrossRef]
- Ghysels, Eric, Alberto Plazzi, Rossen Valkanov, Antonio Rubia, and Asad Dossani. 2019. Direct versus iterated multiperiod volatility forecasts. Annual Review of Financial Economics 11: 173–95. [Google Scholar] [CrossRef]
- Ghysels, Eric, Arthur Sinko, and Rossen Valkanov. 2007. Midas regressions: Further results and new directions. Econometric Reviews 26: 53–90. [Google Scholar] [CrossRef]
- Gupta, Rangan, Sayar Karmakar, and Christian Pierdzioch. 2024. Safe havens, machine learning, and the sources of geopolitical risk: A forecasting analysis using over a century of data. Computational Economics 64: 487–513. [Google Scholar] [CrossRef]
- Gürgün, Gözde, and İbrahim Ünalmış. 2014. Is gold a safe haven against equity market investment in emerging and developing countries? Finance Research Letters 11: 341–48. [Google Scholar] [CrossRef]
- Hakkio, Craig S., and William R. Keeton. 2009. Financial stress: What is it, how can it be measured, and why does it matter. Economic Review 94: 5–50. [Google Scholar]
- Harvey, David, Stephen Leybourne, and Paul Newbold. 1997. Testing the equality of prediction mean squared errors. International Journal of forecasting 13: 281–91. [Google Scholar] [CrossRef]
- Luo, Jiawen, Riza Demirer, Rangan Gupta, and Qiang Ji. 2022. Forecasting oil and gold volatilities with sentiment indicators under structural breaks. Energy Economics 105: 105751. [Google Scholar] [CrossRef]
- Miranda-Agrippino, Silvia, and Hélene Rey. 2020. Us monetary policy and the global financial cycle. The Review of Economic Studies 87: 2754–76. [Google Scholar] [CrossRef]
- Moench, Emanuel, Serena Ng, and Simon Potter. 2013. Dynamic hierarchical factor models. Review of Economics and Statistics 95: 1811–17. [Google Scholar] [CrossRef]
- Park, Cyn-Young, and Rogelio V. Mercado, Jr. 2014. Determinants of financial stress in emerging market economies. Journal of Banking & Finance 45: 199–224. [Google Scholar]
- Reboredo, Juan C. 2013. Is gold a safe haven or a hedge for the us dollar? Implications for risk management. Journal of Banking & Finance 37: 2665–76. [Google Scholar]
- Salisu, Afees A., Rangan Gupta, Elie Bouri, and Qiang Ji. 2020. The role of global economic conditions in forecasting gold market volatility: Evidence from a garch-midas approach. Research in International Business and Finance 54: 101308. [Google Scholar] [CrossRef]
- Salisu, Afees A., Rangan Gupta, Siphesihle Ntyikwe, and Riza Demirer. 2021. Gold and the global financial cycle. Quantitative Finance and Economics 7: 475–90. [Google Scholar]
- Salisu, Afees A., Elie Bouri, and Rangan Gupta. 2022a. Out-of-sample predictability of gold market volatility: The role of us nonfarm payroll. The Quarterly Review of Economics and Finance 86: 482–88. [Google Scholar] [CrossRef]
- Salisu, Afees A., Rangan Gupta, Sayar Karmakar, and Sonali Das. 2022b. Forecasting output growth of advanced economies over eight centuries: The role of gold market volatility as a proxy of global uncertainty. Resources Policy 75: 102527. [Google Scholar] [CrossRef]
Coeff | StdErr | tStat | Prob | |
---|---|---|---|---|
0.0006 | 0.0003 | 2.1467 | 0.0318 | |
0.1093 | 0.0098 | 11.206 | 0 | |
0.7005 | 0.0311 | 22.512 | 0 | |
40.994 | 2.6258 | 15.612 | 0 | |
21.036 | 90.445 | 0.2326 | 0.8161 | |
1.0024 | 13.065 | 0.0767 | 0.9388 | |
m | −8.115 | 0.0405 | −200.4 | 0 |
Coeff | StdErr | tStat | Prob | |
---|---|---|---|---|
0.0004 | 0.0002 | 1.7235 | 0.0848 | |
0.0576 | 0.0035 | 16.379 | 0 | |
0.9290 | 0.0042 | 221.39 | 0 | |
−0.8605 | 0.1888 | −4.5571 | 0 | |
4.1612 | 5.1741 | 0.8042 | 0.4212 | |
1.004 | 1.4721 | 0.6820 | 0.4952 | |
m | −7.4741 | 0.0846 | −88.332 | 0 |
Coeff | StdErr | tStat | Prob | |
---|---|---|---|---|
0.0004 | 0.0003 | 1.6508 | 0.0988 | |
0.0576 | 0.0035 | 16.311 | 0 | |
0.9288 | 0.0042 | 222.43 | 0 | |
0.5912 | 0.1392 | 4.2457 | 0 | |
6.0445 | 11.549 | 0.5234 | 0.6007 | |
1.027 | 2.754 | 0.3729 | 0.7092 | |
m | −7.523 | 0.0821 | −91.668 | 0 |
GECON | GFU | North America | Europe | Oceania | Latin America | Asia | |
---|---|---|---|---|---|---|---|
h = 3 | 2.7426 ** | 2.4086 ** | 0.4189 | 1.9922 ** | 0.1774 | 1.4933 | 1.7983 * |
(0.0076) | (0.0184) | (0.6765) | (0.0499) | (0.8596) | (0.1395) | (0.0761) | |
h = 6 | 4.2062 *** | 4.3541 *** | 2.3491 ** | 3.6731 *** | 1.5427 | 2.0519 ** | 2.2579 ** |
(0.0001) | (0.0000) | (0.0214) | (0.0004) | (0.1271) | (0.0436) | (0.0268) | |
h = 9 | 3.6225 *** | 4.4047 *** | 2.8344 *** | 3.3385 *** | 1.9482 *** | 1.7984 * | 2.3545 ** |
(0.0005) | (0.0000) | (0.0059) | (0.0013) | (0.0051) | (0.0761) | (0.0211) |
Coeff | StdErr | tStat | Prob | |
---|---|---|---|---|
0.000 | 0.000 | 0.589 | 0.556 | |
0.040 | 0.001 | 34.522 | 0.000 | |
0.960 | 0.001 | 850.8 | 0.000 | |
0.320 | 0.057 | 5.621 | 0.000 | |
−0.304 | 0.068 | −4.501 | 0.000 | |
−0.054 | 0.033 | −1.610 | 0.001 | |
42.735 | 3987 | 0.011 | 0.991 | |
48.194 | 31.16 | 1.547 | 0.122 | |
4.2599 | 94.20 | 0.045 | 0.964 | |
2.1635 | 551.6 | 0.004 | 0.997 | |
10.389 | 6.532 | 1.591 | 0.112 | |
36.891 | 646.6 | 0.057 | 0.955 | |
m | −8.0004 | 0.138 | −57.68 | 0.000 |
Multivariate GARCH-MIDAS (Germany, Norway, Brazil) | |
---|---|
h = 3 | 2.2290 ** |
(0.0288) | |
h = 6 | 4.0182 *** |
(0.0001) | |
h = 9 | 4.3731 *** |
(0.0000) |
GFU vs. LASSO | |
---|---|
h = 3 | 0.4532 |
(0.6517) | |
h = 6 | −0.0443 |
(0.9648) | |
h = 9 | 0.1297 |
(0.8971) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, O.-C.; Gupta, R.; Pierdzioch, C.; Shu, B. Financial Uncertainty and Gold Market Volatility: Evidence from a Generalized Autoregressive Conditional Heteroskedasticity Variant of the Mixed-Data Sampling (GARCH-MIDAS) Approach with Variable Selection. Econometrics 2024, 12, 38. https://doi.org/10.3390/econometrics12040038
Chuang O-C, Gupta R, Pierdzioch C, Shu B. Financial Uncertainty and Gold Market Volatility: Evidence from a Generalized Autoregressive Conditional Heteroskedasticity Variant of the Mixed-Data Sampling (GARCH-MIDAS) Approach with Variable Selection. Econometrics. 2024; 12(4):38. https://doi.org/10.3390/econometrics12040038
Chicago/Turabian StyleChuang, O-Chia, Rangan Gupta, Christian Pierdzioch, and Buliao Shu. 2024. "Financial Uncertainty and Gold Market Volatility: Evidence from a Generalized Autoregressive Conditional Heteroskedasticity Variant of the Mixed-Data Sampling (GARCH-MIDAS) Approach with Variable Selection" Econometrics 12, no. 4: 38. https://doi.org/10.3390/econometrics12040038
APA StyleChuang, O.-C., Gupta, R., Pierdzioch, C., & Shu, B. (2024). Financial Uncertainty and Gold Market Volatility: Evidence from a Generalized Autoregressive Conditional Heteroskedasticity Variant of the Mixed-Data Sampling (GARCH-MIDAS) Approach with Variable Selection. Econometrics, 12(4), 38. https://doi.org/10.3390/econometrics12040038