A New Perspective on the Kauzmann Entropy Paradox: A Crystal/Glass Critical Point in Four- and Three-Dimensions †
<p>(<b>A</b>) The ‘Mexican hat’ free energy function of complex ordered systems whose order parameter has the form <math display="inline"> <semantics> <mrow> <mi mathvariant="normal">Ψ</mi> <mo>=</mo> <mrow> <mo>|</mo> <mi mathvariant="normal">Ψ</mi> <mo>|</mo> </mrow> <msup> <mi>e</mi> <mrow> <mover accent="true"> <mi>i</mi> <mo>^</mo> </mover> <mi>θ</mi> </mrow> </msup> </mrow> </semantics> </math>. In phase-coherent superfluid phases, <math display="inline"> <semantics> <mrow> <mo>|</mo> <mi mathvariant="normal">Ψ</mi> <mo>|</mo> <mo>></mo> <mn>0</mn> </mrow> </semantics> </math> and a massless Nambu–Goldstone and a massive Higgs modes arise. (<b>B</b>) On approaching the superfluid/Mott insulator QPT in two- and one dimensions [<a href="#B9-proceedings-46-00023" class="html-bibr">9</a>], the free energy function transforms to one with a minimum at <math display="inline"> <semantics> <mrow> <mo>|</mo> <mi mathvariant="normal">Ψ</mi> <mo>|</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> at a critical value of frustration (<math display="inline"> <semantics> <msub> <mi>g</mi> <mi>C</mi> </msub> </semantics> </math>) [Reproduced from Ref. [<a href="#B9-proceedings-46-00023" class="html-bibr">9</a>]].</p> "> Figure 2
<p>Classical 2D/1D <math display="inline"> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> rotor model. (<b>A</b>) An abundance of misorientational fluctuations develops below the bulk Bose-Einstein condensation temperature (<math display="inline"> <semantics> <msub> <mi>T</mi> <mrow> <mi>B</mi> <mi>E</mi> <mi>C</mi> </mrow> </msub> </semantics> </math>), and may be discretized as a plasma of isolated point defects and anti-defects. (<b>B</b>) As the temperature is lowered below the Kosterlitz–Thouless transition temperature (<math display="inline"> <semantics> <msub> <mi>T</mi> <mrow> <mi>K</mi> <mi>T</mi> </mrow> </msub> </semantics> </math>), complementary defects/anti-defects begin to form bound pairs. (<b>C</b>) As the temperature approaches 0 K, defects and anti-defects that comprise bound states come together and annihilate. In the absence of frustration, no signed defects persist to the ground state that is perfectly phase-coherent.</p> "> Figure 3
<p>(<b>A</b>) Complex ordered systems (<math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math>) that exist in 2D/1D are mathematically described using O(2) quantum rotor models, and admit a second-order quantum critical point at absolute zero temperature [<a href="#B16-proceedings-46-00023" class="html-bibr">16</a>] that is known as the superfluid/Mott-insulator QPT [<a href="#B9-proceedings-46-00023" class="html-bibr">9</a>]. (<b>B</b>) Solidification in four- and three-dimensions, as characterized by a quaternion orientational order parameter (<math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math>), may be described using <math display="inline"> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </semantics> </math> quantum rotor models. Such <math display="inline"> <semantics> <mrow> <mi>O</mi> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </semantics> </math> quantum rotor models admit a critical point that is first-order which may be identified with the “ideal glass transition”, that occurs at a finite Kauzmann [<a href="#B5-proceedings-46-00023" class="html-bibr">5</a>] temperature.</p> "> Figure 4
<p>Geometrically-frustrated crystalline structures are topologically close-packed, and are stabilized in the ground state by the inclusion of a periodic arrangement of frustration-induced topological defects. Ordered arrangements of negative wedge disclinations [<a href="#B27-proceedings-46-00023" class="html-bibr">27</a>,<a href="#B28-proceedings-46-00023" class="html-bibr">28</a>] are known as “major skeleton networks.” Signed third homotopy group defects also form a periodic arrangement in geometrically-frustrated crystalline solid ground states, but are not visible as a consequence of their nature as points in four-dimensions. [Reproduced from Ref. [<a href="#B33-proceedings-46-00023" class="html-bibr">33</a>]].</p> ">
Abstract
:1. Introduction
2. Crystalline-to-Glass First-Order Critical Point and the Kauzmann Entropy Paradox
3. Conclusions and Outlook
Acknowledgments
References
- Anderson, P.W. Through the glass lightly. Science 1995, 267, 1615–1616. [Google Scholar]
- Angell, C.A. Insights into phases of liquid water from study of its unusual glass-forming properties. Science 2008, 319, 582–587. [Google Scholar]
- Mauro, J.C.; Smedskjaer, M.M. Statistical mechanics of glass. J. Non-Cryst. Solids 2014, 396, 41–53. [Google Scholar]
- Charbonneau, P.; Kurchan, J.; Parisi, G.; Urbani, P.; Zamponi, F. Glass and jamming transitions: From exact results to finite-dimensional descriptions. Annu. Rev. Condens. Matter Phys. 2017, 8, 265–288. [Google Scholar]
- Kauzmann, W. The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. Chem. Rev. 1948, 43, 219–256. [Google Scholar]
- Stillinger, F.H.; Debenedetti, P.G.; Truskett, T.M. The Kauzmann paradox revisited. J. Phys. Chem. B 2001, 105, 11809–11816. [Google Scholar]
- Speedy, R.J. Kauzmann’s paradox and the glass transition. Biophys. Chem. 2003, 105, 411–420. [Google Scholar]
- Debenedetti, P.G.; Stillinger, F.H. Supercooled liquids and the glass transition. Nature 2001, 410, 6825. [Google Scholar]
- Endres, M.; Fukuhara, T.; Pekker, D.; Cheneau, M.; Schauβ, P.; Gross, C.; Demler, E.; Kuhr, S.; Bloch, I. The ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 2012, 487, 454–458. [Google Scholar]
- Sachdev, S. Quantum Phase Transitions; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Gorham, C.S.; Laughlin, D.E. Opological description of the solidification of undercooled fluids and the temperature dependence of the thermal conductivity of crystalline and glassy solids above approximately 50 K. J. Phys. Condens. Matter 2019, 31, 105701. [Google Scholar]
- Gorham, C.S.; Laughlin, D.E. Crystallization in three dimensions: Defect-driven topological ordering and the role of geometrical frustration. Phys. Rev. B 2019, 99, 144106. [Google Scholar]
- Hohenberg, P.C. Existence of long-range order in one and two dimensions. Phys. Rev. 1967, 158, 383. [Google Scholar]
- Mermin, N.D.; Wagner, H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 1966, 17, 1133–1136. [Google Scholar]
- Halperin, B.I. On the Hohenberg–Mermin–Wagner Theorem and Its Limitations. J. Stat. Phys. 2019, 175, 521–529. [Google Scholar]
- Baturina, T.I.; Vinokur, V.M. Superinsulator–superconductor duality in two dimensions. Ann. Phys. 2013, 331, 236–257. [Google Scholar]
- Gorham, C.S.; Laughlin, D.E. SU(2) orientational ordering in restricted dimensions: Evidence for a Berezinskii-Kosterlitz-Thouless transition of topological point defects in four dimensions. J. Phys. Commun. 2018, 2, 7. [Google Scholar]
- Kosterlitz, J.M.; Thouless, D.J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 1973, 6, 7. [Google Scholar]
- Kosterlitz, J.M. The critical properties of the two-dimensional xy model. J. Phys. C Solid State Phys. 1974, 7, 6. [Google Scholar]
- Mermin, N.D. The homotopy groups of condensed matter physics. J. Math. Phys. 1978, 19, 6. [Google Scholar]
- Mermin, N.D. The topological theory of defects in ordered media. Rev. Mod. Phys. 1979, 51, 3. [Google Scholar]
- Nelson, D.R. Liquids and Glasses in Spaces of Incommensurate Curvature. Phys. Rev. Lett. 1983, 50, 982–985. [Google Scholar]
- Pretko, M. The fracton gauge principle. Phys. Rev. B 2018, 98, 115134. [Google Scholar]
- Halperin, B.I.; Nelson, D.R. Theory of two-dimensional melting. Phys. Rev. Lett. 1978, 41, 121. [Google Scholar]
- Chaikin, P.M.; Lubensky, T.C. Principles of Condensed Matter Physics; Cambridge University Press: Cambridge, UK, 2000; Volume 1. [Google Scholar]
- Yazyev, O.V.; Chen, Y.P. Polycrystalline graphene and other two-dimensional materials. Nat. Nanotechnol. 2014, 9, 10. [Google Scholar]
- Frank, F.C.; Kasper, J.S. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystall. 1959, 12, 7. [Google Scholar]
- Frank, F.C.; Kasper, J.S. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Crystall. 1958, 11, 3. [Google Scholar]
- Nelson, D.R.; Widom, M. Symmetry, Landau theory and polytope models of glass. Nucl. Phys. B 1984, 240, 113–139. [Google Scholar]
- Sadoc, J.F.; Mosseri, R. Geometrical Frustration; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Rivier, N.; Duffy, D.M. Line Defects and tunneling modes in glasses. J. Phys. 1982, 43, 293–306. [Google Scholar]
- Teitel, S.; Jayaprakash, C. Josephson-junction arrays in transverse magnetic fields. Phys. Rev. Lett. 1983, 51, 21. [Google Scholar]
- Doye, J.P.; Wales, D.J. The effect of the range of the potential on the structure and stability of simple liquids: From clusters to bulk, from sodium to C60. J. Phys. B Atom. Mol. Opt. Phys. 1996, 29, 4859. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorham, C.S.; Laughlin, D.E. A New Perspective on the Kauzmann Entropy Paradox: A Crystal/Glass Critical Point in Four- and Three-Dimensions. Proceedings 2020, 46, 23. https://doi.org/10.3390/ecea-5-06677
Gorham CS, Laughlin DE. A New Perspective on the Kauzmann Entropy Paradox: A Crystal/Glass Critical Point in Four- and Three-Dimensions. Proceedings. 2020; 46(1):23. https://doi.org/10.3390/ecea-5-06677
Chicago/Turabian StyleGorham, Caroline S., and David E. Laughlin. 2020. "A New Perspective on the Kauzmann Entropy Paradox: A Crystal/Glass Critical Point in Four- and Three-Dimensions" Proceedings 46, no. 1: 23. https://doi.org/10.3390/ecea-5-06677
APA StyleGorham, C. S., & Laughlin, D. E. (2020). A New Perspective on the Kauzmann Entropy Paradox: A Crystal/Glass Critical Point in Four- and Three-Dimensions. Proceedings, 46(1), 23. https://doi.org/10.3390/ecea-5-06677