Performance of the Aerosol Species Separation Algorithm (ASSA) Using Data from a Raman-Depolarization Lidar System at Thessaloniki, Greece †
<p>The Thessaloniki lidar system (THELISYS) located in LAP.</p> "> Figure 2
<p>This flowchart demonstrates the input and output of ASSA.</p> "> Figure 3
<p>(<b>a</b>) Temporal evolution of the range-corrected lidar signal (RCS) in arbitrary units (AU) obtained over Thessaloniki at 1064 nm, between 18:30 and 19:30 UTC on 30 June 2022. (<b>b</b>) The 7 d HYSPLIT backward trajectories ending at the position of Thessaloniki at 19:00 UTC.</p> "> Figure 4
<p>Average lidar vertical profiles of the backscattering coefficients (355, 532, 1064 nm), the extinction coefficients (355 and 532), the particle linear depolarization ratio (532 nm), backscatter-Ångström coefficients (355/1064, 532/1064 nm) and lidar ratios (355, 532 nm).</p> "> Figure 5
<p>Measured (blue) and fitted (orange) attenuated backscatter and depolarization values. The respective molecular attenuated backscatter profiles are also included in green.</p> "> Figure 6
<p>Ensemble potential mass concentration solutions per aerosol species and per vertical level for 4 aerosol species (coarse sea salt, water soluble, acc. dust, soot). The total concentration is also provided. The potential solutions within error bars that best reproduced the measured profiles are displayed.</p> "> Figure 7
<p>Optical product profiles of the backscattering coefficients produced by the ASSA in correspondence with the lidar retrievals in <a href="#environsciproc-26-00070-f004" class="html-fig">Figure 4</a>.</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Lidar Measurements from Thesslaoniki Lidar System (THELISYS)
2.2. Optical Properties of Aerosols and Clouds (OPAC)
2.3. Aerosol Species Separation Algorithm (ASSA) Description
3. Results
Case Study on 30 June 2022
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siomos, N.; Balis, D.S.; Voudouri, K.A.; Giannakaki, E.; Filioglou, M.; Amiridis, V.; Papayannis, A.; Fragkos, K. Are EARLINET and AERONET climatologies consistent? The case of Thessaloniki, Greece. Atmos. Chem. Phys. 2018, 18, 11885–11903. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Koepke, P.; Gasteiger, J.; Hess, M. Technical Note: Optical properties of desert aerosol with non-spherical mineral particles: Data incorporated to OPAC. Atmos. Chem. Phys. 2015, 15, 5947–5956. [Google Scholar] [CrossRef]
- Hara, Y.; Nishizawa, T.; Sugimoto, N.; Osada, K.; Yumimoto, K.; Uno, I.; Ishimoto, H. Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling. Remote Sens. 2018, 10, 937. [Google Scholar] [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef]
- Siomos, N.; Balis, D.; Bais, A.; Koukouli, M.E.; Garane, K.; Voudouri, K.A.; Gkertsi, F.; Natsis, A.; Karagkiozidis, D.; Fountoulakis, I. Towards an Algorithm for Near Real Time Profiling of Aerosol Species, Trace Gases, and Clouds Based on the Synergy of Remote Sensing Instruments. EPJ Web Conf. 2020, 237, 08023. [Google Scholar] [CrossRef]
- Ansmann, A.; Wandinger, U.; Riebesell, M.; Weitkamp, C.; Michaelis, W. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt. 1992, 31, 7113–7131. [Google Scholar] [CrossRef] [PubMed]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Draxler, R.; Hess, G. An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michailidis, K.; Siomos, N.; Balis, D. Performance of the Aerosol Species Separation Algorithm (ASSA) Using Data from a Raman-Depolarization Lidar System at Thessaloniki, Greece. Environ. Sci. Proc. 2023, 26, 70. https://doi.org/10.3390/environsciproc2023026070
Michailidis K, Siomos N, Balis D. Performance of the Aerosol Species Separation Algorithm (ASSA) Using Data from a Raman-Depolarization Lidar System at Thessaloniki, Greece. Environmental Sciences Proceedings. 2023; 26(1):70. https://doi.org/10.3390/environsciproc2023026070
Chicago/Turabian StyleMichailidis, Konstantinos, Nikolaos Siomos, and Dimitris Balis. 2023. "Performance of the Aerosol Species Separation Algorithm (ASSA) Using Data from a Raman-Depolarization Lidar System at Thessaloniki, Greece" Environmental Sciences Proceedings 26, no. 1: 70. https://doi.org/10.3390/environsciproc2023026070
APA StyleMichailidis, K., Siomos, N., & Balis, D. (2023). Performance of the Aerosol Species Separation Algorithm (ASSA) Using Data from a Raman-Depolarization Lidar System at Thessaloniki, Greece. Environmental Sciences Proceedings, 26(1), 70. https://doi.org/10.3390/environsciproc2023026070