Carbon Soil Mapping in a Sustainable-Managed Farm in Northeast Italy: Geochemical and Geophysical Applications
<p>(<b>a</b>) Location of the sampling area (MB), in the Northeast sector of the municipality of Ferrara in the Emilia–Romagna region (Northeastern Italy); (<b>b</b>) the hazel orchard–grassland field before the geochemical and geophysical investigation of 19 October 2021; (<b>c</b>) soil sampling locations represented by light blue dots; (<b>d</b>) at each location, a sample was collected and mixed with five aliquots of soil per square probed at a depth of 0–30 cm; (<b>e</b>) geophysical measurements were indicated with red dots and georeferenced with an internal GPR; and (<b>f</b>) a Profiler EMP-400 (GSSI) was used to acquire the Hp and Hs electromagnetic fields at different positions.</p> "> Figure 2
<p>Elemental and isotopic composition of the total carbon (TC), organic carbon (OC), and inorganic carbon (IC) fractions of the soil samples.</p> "> Figure 3
<p>Boxplots of the (<b>a</b>) LOI 105 °C, (<b>b</b>) LOI 550 °C, (<b>c</b>) LOI 1000 °C, (<b>d</b>) TC, (<b>e</b>) OC, (<b>f</b>) IC, (<b>g</b>) δ<sup>13</sup>C<sub>TC</sub>, and (<b>h</b>) δ¹³C<sub>OC</sub> of the samples divided into three classes based on their aspect in the field and OC/IC ratio (see the text for details). In each box plot, the black line represents the median. Letters below the box plots represent the results of the Tukey post hoc test. Different letters denote significant differences between classes. The one-way ANOVA results are also reported (** <span class="html-italic">p</span> < 0.001; *** <span class="html-italic">p</span> < 0.0001).</p> "> Figure 4
<p>Spatial variability and distribution of the ECa values obtained from the EMI acquisition field survey using three different frequencies: (<b>a</b>) 16, (<b>b</b>) 14, and (<b>c</b>) 10 kHz.</p> "> Figure 5
<p>The elemental TC contents and δ¹³C<sub>TC</sub> of MB samples and average elemental TC contents and δ¹³C<sub>TC</sub> recognized as deposits from the paleochannel and levee of the easternmost Padanian plain soils, as studied by Natali et al. [<a href="#B36-environments-11-00289" class="html-bibr">36</a>] and Salani et al. [<a href="#B37-environments-11-00289" class="html-bibr">37</a>].</p> "> Figure 6
<p>OC/IC (in logarithmic scale) versus (<b>a</b>) δ<sup>13</sup>C<sub>TC</sub> shows a strong negative correlation; the insets reproduce the relationships between OC/IC, (<b>b</b>) δ<sup>13</sup>C<sub>IC</sub>, and (<b>c</b>) δ<sup>13</sup>C<sub>OC</sub>.</p> "> Figure 7
<p>Principal Component Analysis (PCA) for δ<sup>13</sup>CTC, OC, IC, TC, and ECa (measured at 10 kHz), clustered in Class I (green dots and dash-dotted line ellipse), Class II (yellow triangles and solid line ellipse), and Class III (red squares and dashed line ellipse).</p> "> Figure 8
<p>Linear regression graphics used to observe the relationships between the ECa measured at 10 kHz and (<b>a</b>) OC, (<b>b</b>) OC/IC, and (<b>c</b>) δ<sup>13</sup>C<sub>TC</sub>. The data are represented as green dots, yellow triangles, and red squares, for Class I, Class II, and Class III, respectively. The regression line (in black) and relative equation, R<sup>2</sup> value, and 95% confidence intervals (the red curves) are provided for each plot.</p> "> Figure 9
<p>Predictive maps realized using ordinary kriging for (<b>a</b>) the OC values, (<b>b</b>) the ECa values measured at 10 kHz, and cokriging to predict (<b>c</b>) a new OC surface, with the OC values and the ECa values at 10 kHz as a covariate variable. The legend values for each map represent a quantile classification.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Geochemical Methods
2.2.1. Thermo–Gravimetric Analyses
2.2.2. Carbon Speciation
2.2.3. Carbon Isotopic Analysis
2.3. Geophysical Methods
2.4. Statistical and Geospatial Analyses
3. Results
4. Discussion
4.1. Soil Carbon Elemental and Isotopic Speciation
4.2. Insights from Soil Organic Carbon and Geophysical Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; ITPS. Status of the World’s Soil Resources; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Available online: https://www.fao.org/documents/card/en/c/cb5125en (accessed on 8 November 2024).
- Panagos, P.; Ballabio, C.; Himics, M.; Scarpa, S.; Matthews, F.; Bogonos, M.; Poesen, J.; Borrelli, P. Projections of Soil Loss by Water Erosion in Europe by 2050. Environ. Sci. Policy 2021, 124, 380–392. [Google Scholar] [CrossRef]
- Turner, K.G.; Anderson, S.; Gonzales-Chang, M.; Costanza, R.; Courville, S.; Dalgaard, T.; Dominati, E.; Kubiszewski, I.; Ogilvy, S.; Porfirio, L.; et al. A Review of Methods, Data, and Models to Assess Changes in the Value of Ecosystem Services from Land Degradation and Restoration. Ecol. Modell. 2016, 319, 190–207. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Canqui, H.; Lal, R. Mechanisms of Carbon Sequestration in Soil Aggregates. CRC Crit. Rev. Plant Sci. 2004, 23, 481–504. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse Gas Emissions from Soils—A Review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef]
- Dai, X.; Wang, H.; Fu, X. Soil Microbial Community Composition and Its Role in Carbon Mineralization in Long-Term Fertilization Paddy Soils. Sci. Total Environ. 2017, 580, 556–563. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil Organic Carbon Storage as a Key Function of Soils—A Review of Drivers and Indicators at Various Scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Qin, Z.; Zhuang, Q.; Chen, M. Impacts of Land Use Change Due to Biofuel Crops on Carbon Balance, Bioenergy Production, and Agricultural Yield, in the Conterminous United States. GCB Bioenergy 2012, 4, 277–288. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, Q.; Zheng, D.; Ning, Y.; Gao, Y. A Short-Term Load Forecasting Model of Multi-Scale CNN-LSTM Hybrid Neural Network Considering the Real-Time Electricity Price. Energy Rep. 2020, 6, 1046–1053. [Google Scholar] [CrossRef]
- Salani, G.M.; Lissoni, M.; Bianchini, G.; Brombin, V.; Natali, S.; Natali, C. Soil Organic Carbon Estimation in Ferrara (Northern Italy) Combining In Situ Geochemical Analyses and Hyperspectral Remote Sensing. Environments 2023, 10, 173. [Google Scholar] [CrossRef]
- Beka, S.; Burgess, P.J.; Corstanje, R.; Stoate, C. Spatial Modelling Approach and Accounting Method Affects Soil Carbon Estimates and Derived Farm-Scale Carbon Payments. Sci. Total Environ. 2022, 827, 154164. [Google Scholar] [CrossRef]
- Smith, J.L.; Doran, J.W. Measurement and use of pH and electrical conductivity for soil quality analysis. Soil Sci. Soc. Am. J. 1996, 60, 1234–1240. [Google Scholar]
- Hartemink, A.E. Soil fertility decline in the tropics. Soil Sci. Soc. Am. J. 2003, 67, 1201–1210. [Google Scholar]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems: A review of the nature, causes, and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Doolittle, J.; Petersen, M.; Wheeler, T. Comparison of Two Electromagnetic Induction Tools in Salinity Appraisals. J. Soil Water Conserv. 2001, 56, 257–262. [Google Scholar]
- Morari, F.; Castrignanò, A.; Pagliarin, C. Application of Multivariate Geostatistics in Delineating Management Zones within a Gravelly Vineyard Using Geo-Electrical Sensors. Comput. Electron. Agric. 2009, 68, 97–107. [Google Scholar] [CrossRef]
- Tromp-van Meerveld, H.J.; McDonnell, J.J. Assessment of Multi-Frequency Electromagnetic Induction for Determining Soil Moisture Patterns at the Hillslope Scale. J. Hydrol. 2009, 368, 56–67. [Google Scholar] [CrossRef]
- Calamita, G.; Perrone, A.; Brocca, L.; Onorati, B.; Manfreda, S. Field Test of a Multi-Frequency Electromagnetic Induction Sensor for Soil Moisture Monitoring in Southern Italy Test Sites. J. Hydrol. 2015, 529, 316–329. [Google Scholar] [CrossRef]
- von Hebel, C.; Rudolph, S.; Mester, A.; Huisman, J.A.; Kumbhar, P.; Vereecken, H.; van der Kruk, J. Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data. Water Resour. Res. 2014, 50, 2732–2748. [Google Scholar] [CrossRef]
- ARPAE. Rapporto Idrometeoclima Emilia-Romagna: Dati 2021; Arpae Emilia-Romagna: Bologna, Italy, 2022; p. 69. [Google Scholar]
- Dean, W.E. Determination of Carbonate and Organic Matter in Calcareous Sediments and Sedimentary Rocks by Loss on Ignition; Comparison with Other Methods. J. Sediment. Res. 1974, 44, 242–248. [Google Scholar]
- Zethof, J.H.T.; Leue, M.; Vogel, C.; Stoner, S.W.; Kalbitz, K. Identifying and Quantifying Geogenic Organic Carbon in Soils—The Case of Graphite. SOIL 2019, 5, 383–398. [Google Scholar] [CrossRef]
- Natali, C.; Bianchini, G.; Cremonini, S.; Salani, G.M.; Vianello, G.; Brombin, V.; Ferrari, M.; Vittori Antisari, L. Peat Soil Burning in the Mezzano Lowland (Po Plain, Italy): Triggering Mechanisms and Environmental Consequences. Geohealth 2021, 5, e2021GH000444. [Google Scholar] [CrossRef]
- Natali, C.; Bianchini, G. Thermally Based Isotopic Speciation of Carbon in Complex Matrices: A Tool for Environmental Investigation. Environ. Sci. Pollut. Res. 2015, 22, 12162–12173. [Google Scholar] [CrossRef]
- Gonfiantini, R.; Stichler, W.; Rozanski, K. Standards and Intercomparison Materials Distributed by the International Atomic Energy Agency for Stable Isotope Measurements. In Reference and Intercomparison Materials for Stable Isotopes of Light Elements; Stichler, W., Ed.; IAEA: Vienna, Austria, 1995; pp. 13–29. [Google Scholar]
- Kusaka, S.; Nakano, T. Carbon and Oxygen Isotope Ratios and Their Temperature Dependence in Carbonate and Tooth Enamel Using a GasBench II Preparation Device. Rapid Commun. Mass Spectrom. 2014, 28, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Dutta, K.; Schuur, E.A.G.; Neff, J.C.; Zimov, S.A. Potential Carbon Release from Permafrost Soils of Northeastern Siberia. Glob. Chang. Biol. 2006, 12, 2336–2351. [Google Scholar] [CrossRef]
- Biot, J.-B.; Savart, F. Note sur le Magnétisme de la pile de Volta. Ann. Chim. Phys. 1820, 15, 222–223. [Google Scholar]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E.; Keys, D.A. Applied Geophysics; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- R Core Team R. A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 22 June 2020).
- Ahmed, Z.U.; Woodbury, P.B.; Sanderman, J.; Hawke, B.; Jauss, V.; Solomon, D.; Lehmann, J. Assessing Soil Carbon Vulnerability in the Western USA by Geospatial Modeling of Pyrogenic and Particulate Carbon Stocks. J. Geophys. Res. Biogeosci. 2017, 122, 354–369. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformation. J. R. Stat. Soc. 1964, 26, 211–252. [Google Scholar] [CrossRef]
- QGIS.org. QGIS Geographic Information System. Available online: http://www.qgis.org (accessed on 22 June 2020).
- O’Leary, M.H. Carbon isotopes in photosynthesis. Bioscience 1988, 38, 328–336. [Google Scholar] [CrossRef]
- Natali, C.; Bianchini, G.; Vittori Antisari, L.; Natale, M.; Tessari, U. Carbon and Nitrogen Pools in Padanian Soils (Italy): Origin and Dynamics of Soil Organic Matter. Chem. Der Erde 2018, 78, 490–499. [Google Scholar] [CrossRef]
- Salani, G.M.; Brombin, V.; Natali, C.; Bianchini, G. Carbon, Nitrogen, and Sulphur Isotope Analysis of the Padanian Plain Sediments: Backgrounds and Provenance Indication of the Alluvial Components. Appl. Geochem. 2021, 135, 105130. [Google Scholar] [CrossRef]
- von Lützow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of Organic Matter in Temperate Soils: Mechanisms and Their Relevance under Different Soil Conditions—A Review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Gunina, A.; Kuzyakov, Y. Pathways of Litter C by Formation of Aggregates and SOM Density Fractions: Implications from 13C Natural Abundance. Soil Biol. Biochem. 2014, 71, 95–104. [Google Scholar] [CrossRef]
- De Clercq, T.; Heiling, M.; Dercon, G.; Resch, C.; Aigner, M.; Mayer, L.; Mao, Y.; Elsen, A.; Steier, P.; Leifeld, J.; et al. Predicting Soil Organic Matter Stability in Agricultural Fields through Carbon and Nitrogen Stable Isotopes. Soil Biol. Biochem. 2015, 88, 29–38. [Google Scholar] [CrossRef]
- Guillaume, T.; Damris, M.; Kuzyakov, Y. Losses of Soil Carbon by Converting Tropical Forest to Plantations: Erosion and Decomposition Estimated by Δ13C. Glob. Chang. Biol. 2015, 21, 3548–3560. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, B.; Singh, M.; Mandal, S.; Churchman, G.J.; Bolan, N.S. Clay Minerals—Organic Matter Interactions in Relation to Carbon Stabilization in Soils. In The Future of Soil Carbon; Elsevier: Amsterdam, The Netherlands, 2018; pp. 71–86. [Google Scholar]
- Brombin, V.; Salani, G.M.; De Feudis, M.; Mistri, E.; Precisvalle, N.; Bianchini, G. Soil Organic Carbon Depletion in Managed Temperate Forests: Two Case Studies from the Apennine Chain in the Emilia-Romagna Region (Northern Italy). Environments 2023, 10, 156. [Google Scholar] [CrossRef]
- Mateu, J.; Ramon, G. Geostatistical Functional Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salani, G.M.; Rizzo, E.; Brombin, V.; Fornasari, G.; Sobbe, A.; Bianchini, G. Carbon Soil Mapping in a Sustainable-Managed Farm in Northeast Italy: Geochemical and Geophysical Applications. Environments 2024, 11, 289. https://doi.org/10.3390/environments11120289
Salani GM, Rizzo E, Brombin V, Fornasari G, Sobbe A, Bianchini G. Carbon Soil Mapping in a Sustainable-Managed Farm in Northeast Italy: Geochemical and Geophysical Applications. Environments. 2024; 11(12):289. https://doi.org/10.3390/environments11120289
Chicago/Turabian StyleSalani, Gian Marco, Enzo Rizzo, Valentina Brombin, Giacomo Fornasari, Aaron Sobbe, and Gianluca Bianchini. 2024. "Carbon Soil Mapping in a Sustainable-Managed Farm in Northeast Italy: Geochemical and Geophysical Applications" Environments 11, no. 12: 289. https://doi.org/10.3390/environments11120289
APA StyleSalani, G. M., Rizzo, E., Brombin, V., Fornasari, G., Sobbe, A., & Bianchini, G. (2024). Carbon Soil Mapping in a Sustainable-Managed Farm in Northeast Italy: Geochemical and Geophysical Applications. Environments, 11(12), 289. https://doi.org/10.3390/environments11120289