Comparative Life Cycle Assessment of Landfilling with Sustainable Waste Management Methods for Municipal Solid Wastes
<p>Landfilling scenarios’ flow diagram and boundary.</p> "> Figure 2
<p>Single-stream recycling flow diagram and boundary.</p> "> Figure 3
<p>Incineration flow diagram and boundary.</p> "> Figure 4
<p>Windrow composting flow diagram and system boundary.</p> "> Figure 5
<p>Anaerobic digestion flow diagram and system boundary.</p> "> Figure 6
<p>Gasification flow diagram and system boundary.</p> "> Figure 7
<p>(<b>a</b>) Conventional treatment of MSW. (<b>b</b>) Sustainable and integrated waste management system.</p> "> Figure 8
<p>Impact assessment of conventional MSW treatment and integrated treatment.</p> ">
Abstract
:1. Introduction
2. Computational Methods
2.1. Goal and Scope
2.2. Treatments and Scenarios
2.2.1. Treatment 1: Landfilling
2.2.2. Treatment 2: Recycling
2.2.3. Treatment 3: Incineration
2.2.4. Treatment 4: Composting
2.2.5. Treatment 5: Anaerobic Digestion
2.2.6. Treatment 6: Gasification
2.2.7. Scenarios 1: MSW Conventional Treatment
2.2.8. Scenarios 2: Sustainable and Integrated Waste Management System
2.3. Life Cycle Inventories (LCIs)
Input | Recycling | Source |
---|---|---|
Electricity (kWh) | 4.9 | [32] |
Diesel (L) | 6.71 | [30,49] |
Output | ||
Recyclables (ton) | 0.85 | [34] |
Contaminants (ton) | 0.15 | |
Inputs | Incineration | |
Electricity (kWh) | 70 | [10] |
Outputs | ||
Electricity generated (kWh) | 550.0 | [37] |
Total ash (kg) | 200 | |
Bottom ash (kg) | 170.0 | |
Fly ash (kg) | 30 | |
Inputs | Gasification | |
MSW (ton) | 1 | |
Electricity (kWh) | 117.139 | [23] |
Propane (L) | 0.05 | |
Wood charcoal (kg) | 1.36 | |
Acetone (L) | 3.22 | |
Outputs | ||
Electricity generated (kWh) | 584.3 | [23] |
Solid residues (kg) | 102.4 |
Landfilling | Landfilling and Flaring | Landfilling and ER | Source | |
---|---|---|---|---|
Inputs | ||||
Diesel (L) | 6.71 | 6.71 | 6.71 | [30,49] |
Electricity (kWh) | - | - | 78.2 | [6] |
Outputs | ||||
Total LFG (m3) | 186.5 | 186.5 | 186.5 | LandGEM |
Collected LFG (m3) | - | 140 | 140 | |
Uncollected LFG (m3) | 186.5 | 46.5 | 46.5 | |
Collected CH4 (kg) | - | 46.0 | 46.0 | |
Collected CO2 (kg) | - | 130.8 | 130.8 | |
Uncollected CH4 (kg) | 61.29 | 15.3 | 15.3 | |
Uncollected CO2 (kg) | 184.71 | 43.6 | 43.6 | |
Electricity generated (kWh) | - | - | 199 | Calculated |
Leachate produced (m3) | 0.166 | 0.166 | 0.166 | HELP |
Leaked leachate (m3) | 0.83 | 0.83 | 0.83 | Calculated |
Inputs | Composting | Source |
---|---|---|
Electricity (kWh) | 0.1 | [42] |
Diesel (L) | 5.5 | |
Output | ||
Volatiles (kg) | [44,50] | |
Compost leachate composition (kg) | [43] |
Inputs | Anaerobic Digestion | Source |
---|---|---|
Electricity consumption (kWh) | 123 | [48] |
Outputs | ||
Total biogas | 197 | * |
Collected biogas (m3) | 187 | * |
Non-collected biogas (m3) | 10 | * |
Biogenic CO2 (m3) | 276 | calculated |
Electricity produced (kWh) | 314 | calculated |
Digestates (ton) | 0.9 | * |
Dry sludge | 0.7 | * |
Liquid effluent | 0.2 | * |
2.4. Assumptions and Limitations
3. Results and Discussion
3.1. Comparative LCA of Waste Treatment Methods in the US
3.1.1. Global Warming Potential
3.1.2. Acidification Potentials
3.1.3. Ecotoxicity Potential
3.1.4. Eutrophication Potential
3.1.5. Smog Formation
3.1.6. Ozone Depletion Potential
3.1.7. Carcinogenic Effects
3.1.8. Non-Carcinogenic Effects
3.1.9. Respiratory Effects
3.2. Comparative LCA of MSW Management Methods and Integrated Waste Management
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- US Environmental Protection Agency. LMOP: Basic Information about Landfill Gas; EPA: Washington, DC, USA, 2021. [Google Scholar]
- Abduli, M.; Naghib, A.; Yonesi, M.; Akbari, A. Life cycle assessment (LCA) of solid waste management strategies in Tehran: Landfill and composting plus landfill. Environ. Monit. Assess. 2011, 178, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Arena, U.; Mastellone, M.L.; Perugini, F. The environmental performance of alternative solid waste management options: A life cycle assessment study. Chem. Eng. J. 2003, 96, 207–222. [Google Scholar] [CrossRef]
- Aryan, Y.; Yadav, P.; Samadder, S.R. Life Cycle Assessment of the existing and proposed plastic waste management options in India: A case study. J. Clean. Prod. 2019, 211, 1268–1283. [Google Scholar] [CrossRef]
- Banar, M.; Cokaygil, Z.; Ozkan, A. Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Manag. 2009, 29, 54–62. [Google Scholar] [CrossRef]
- Cherubini, F.; Bargigli, S.; Ulgiati, S. Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration. Energy 2009, 34, 2116–2123. [Google Scholar] [CrossRef]
- Cremiato, R.; Mastellone, M.L.; Tagliaferri, C.; Zaccariello, L.; Lettieri, P. Environmental impact of municipal solid waste management using Life Cycle Assessment: The effect of anaerobic digestion, materials recovery and secondary fuels production. Renew. Energy 2018, 124, 180–188. [Google Scholar] [CrossRef]
- Gulluce, Y. Life cycle assessment for municipal waste management in mediterranean regions. Fresenius Environ. Bull. 2022, 31, 8306–8316. [Google Scholar]
- Hong, J.; Li, X.; Cui, Z. Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag. 2010, 30, 2362–2369. [Google Scholar] [CrossRef]
- Khoo, H.H. Life cycle impact assessment of various waste conversion technologies. Waste Manag. 2009, 29, 1892–1900. [Google Scholar] [CrossRef]
- Ramos, A.; Teixeira, C.A.; Rouboa, A. Environmental assessment of municipal solid waste by two-stage plasma gasification. Energies 2019, 12, 137. [Google Scholar] [CrossRef]
- Yay, A.S.E. Application of life cycle assessment (LCA) for municipal solid waste management: A case study of Sakarya. J. Clean. Prod. 2015, 94, 284–293. [Google Scholar] [CrossRef]
- Karaiskakis, A.; Hernández, B.; Ierapetritou, M. Multi-scale assessment of global warming mitigation potential of anaerobic digestion for food waste management in the United States: A comparison of Life Cycle Assessment approaches. Resour. Conserv. Recycl. 2024, 203, 107442. [Google Scholar] [CrossRef]
- Liu, Y.; Lyu, Y.; Tian, J.; Zhao, J.; Ye, N.; Zhang, Y.; Chen, L. Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment. Renew. Sustain. Energy Rev. 2021, 139, 110716. [Google Scholar] [CrossRef]
- Wu, W.; Chang, J.-S. Integrated algal biorefineries from process systems engineering aspects: A review. Bioresour. Technol. 2019, 291, 121939. [Google Scholar] [CrossRef] [PubMed]
- Peake, B.; Braund, R.; Tong, A.; Tremblay, L. Green chemistry, green pharmacy, and life-cycle assessments. In The Life-Cycle of Pharmaceuticals in the Environment; Woodhead Publishing: Sawston, UK, 2016; pp. 229–242. [Google Scholar] [CrossRef]
- Jayawickrama, K.; Ruparathna, R.; Seth, R.; Biswas, N.; Hafez, H.; Tam, E. Challenges and Issues of Life Cycle Assessment of Anaerobic Digestion of Organic Waste. Environments 2024, 11, 217. [Google Scholar] [CrossRef]
- Nubi, O.; Murphy, R.; Morse, S. Life Cycle Sustainability Assessment of Waste to Energy Systems in the Developing World: A Review. Environments 2024, 11, 123. [Google Scholar] [CrossRef]
- SimaPro. About SimaPro. Available online: https://simapro.com/about/ (accessed on 21 June 2023).
- Sphera Solutions. GaBi Databases; Greenhouse Gas Protocol: Washington, DC, USA, 2023. [Google Scholar]
- International Organization for Standardization. Environmental Management: Life Cycle Assessment; Principles and Framework; ISO: Geneva, Switzerland, 2006; Volume 14044, p. 20. [Google Scholar]
- US Environmental Protection Agency. National Overview: Facts and Figures on Materials, Wastes and Recycling. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials (accessed on 3 January 2021).
- Ouedraogo, A.S.; Frazier, R.S.; Kumar, A. Comparative Life Cycle Assessment of Gasification and Landfilling for Disposal of Municipal Solid Wastes. Energies 2021, 14, 7032. [Google Scholar] [CrossRef]
- U. S Environmental Protection Agency. Landfill Methane Outreach Program (LMOP): Landfill Technical Data; EPA: Washington, DC, USA, 2021. [Google Scholar]
- Pelt, R.; White, C.; Blackard, A.; Bass, R.L.; Burklin, C.; Heaton, R.E.; Reisdorph, A.; Thorneloe, S.A. User’s Manual Landfill Gas Emissions Model-Version 2.0; US Environmental Protection Agency: Washignton, DC, USA, 1998; p. 94. [Google Scholar]
- US Environmental Protection Agency. Hydrologic Evaluation of Landfill Performence: HELP 4.0 User Manual; EPA: Washington, DC, USA, 2020. [Google Scholar]
- US Environmental Protection Agency. Municipal Solid Waste Landfills; EPA: Washington, DC, USA, 2021. [Google Scholar]
- Paladino, O.; Massabò, M. Health risk assessment as an approach to manage an old landfill and to propose integrated solid waste treatment: A case study in Italy. Waste Manag. 2017, 68, 344–354. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Characterization of MWC Ashes and Leachates from MSW Landfills, Monofills, and Co-Disposal Sites; EPA: Washington, DC, USA, 1987. [Google Scholar]
- Caterpillar. Caterpillar Equipment Selection and Application Guide; Caterpilar: San Leandro, CA, USA, 2008; p. 37. [Google Scholar]
- US Environmental Protection Agency. LMOP: Benefits of Landfill Gas Energy Projects. Available online: https://www.epa.gov/lmop/benefits-landfill-gas-energy-projects#:~:text=It%20is%20estimated%20that%20an,on%20system%20design%20and%20effectiveness (accessed on 6 February 2023).
- Pressley, P.N.; Levis, J.W.; Damgaard, A.; Barlaz, M.A.; DeCarolis, J.F. Analysis of material recovery facilities for use in life-cycle assessment. Waste Manag. 2015, 35, 307–317. [Google Scholar] [CrossRef]
- Scientific American. Single Stream Recycling. Available online: https://www.scientificamerican.com/article/single-stream-recycling/ (accessed on 21 June 2023).
- Cascadia Consulting Group. Volume 3 Material Recovery: Sustainable Materials Management Plan 2015; Cascadia Consulting Group: Tacoma, WA, USA, 2015. [Google Scholar]
- GreenWaste. Single Stream Facility Tour. Available online: https://www.greenwaste.com/about-us/processing-facility/ (accessed on 2 June 2023).
- US Environmental Protection Agency. Advancing Sustainable Materials Management: 2018 Tables and Figures; EPA: Washington, DC, USA, 2020. [Google Scholar]
- US Environmental Protection Agency. Energy Recovery from the Combustion of Municipal Solid Waste (MSW). Available online: https://www.epa.gov/smm/energy-recovery-combustion-municipal-solid-waste-msw (accessed on 2 June 2023).
- Huang, T.; Chuieh, P. Life cycle assessment of reusing fly ash from municipal solid waste incineration. Procedia Eng. 2015, 118, 984–991. [Google Scholar] [CrossRef]
- Birgisdottir, H.; Bhander, G.; Hauschild, M.Z.; Christensen, T.H. Life cycle assessment of disposal of residues from municipal solid waste incineration: Recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. Waste Manag. 2007, 27, S75–S84. [Google Scholar] [CrossRef] [PubMed]
- Silpa, K.; Perinaz, B.-T. Decisions Maker’s Guides for Solid Waste Management: Incineration with Energy Recovery; Urban Development Series Knowledge Papers; World Bank: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Johnke, B. Emissions from Waste Incineration. In Proceedings of Background Papers IPPC Expert Meeting on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, Japan. 1999. Intergovernmental Panel on Climate Change. Available online: https://www.ipcc-nggip.iges.or.jp/public/gp/bgp/5_3_Waste_Incineration.pdf (accessed on 4 November 2024).
- Recycled Organic Units; The University of New South Wales. Life Cycle Inventory and Life Cycle Assessment for Windrow Composting Systems; University of New South Wales: Sydney, Australia, 2006. [Google Scholar]
- Dimitris, K. Life Cycle Inventory and Cost Model for Mixed Municipal and Yard Waste Composting; US EPA: Washington, DC, USA, 2000. [Google Scholar]
- Riitta, P.; Wagner, J.; Silva, A.; Qingxian, G.; López Cabrera, C.; Katarina, M.; Hans, O.; Elizabeth, S.; Chhemendra, S.; Alison, S.; et al. Biological treatment of solid waste. In IPCC Guidelines for National Greenhouse Gas Inventories; U.S. Department of Energy: Washington, DC, USA, 2006. [Google Scholar]
- David, P.; Phil, L.; Chris, N.; Keith, H.; Jeff, G.; Jennifer, G. Anaerobic Digester/Biogas System Operator Guidebook; US EPA AgStar: Washington, DC, USA, 2020. [Google Scholar]
- Jeff, C.; Chris, W.; Matt, S.; Art, U. Anaerobic Digestion Fundamentals; Water Environment Federation: Alexandria, VA, USA, 2017. [Google Scholar]
- Global Methane Initiative. Anaerobic Digestion Screening Tool, Version 2.2; Global Methane Initiative (GMI): Washington, DC, USA, 2022. [Google Scholar]
- Moriarty, K. Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana; NREL and US EPA, National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013. [Google Scholar]
- Lambertson, G. Industry Begins Grappling With Rising Fuel Costs; ContructionEquipmentGuide.Com: Fort Washington, PA, USA, 2006. [Google Scholar]
- Saer, A.; Lansing, S.; Davitt, N.H.; Graves, R.E. Life cycle assessment of a food waste composting system: Environmental impact hotspots. J. Clean. Prod. 2013, 52, 234–244. [Google Scholar] [CrossRef]
- Laner, D. The consideration of long-term emissions from landfills within life-cycle assessment. Waste Manag. Res. 2009, 27, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Bare, J.; Young, D.; QAM, S.; Hopton, M.; Chief, S.A.B. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI); US Environmental Protection Agency: Washington, DC, USA, 2012. [Google Scholar]
Impact Category | Units | Landfilling | Landfilling and Flaring | Landfilling and ER | Composting | Anaerobic Digestion | Recycling | Incineration | Gasification |
---|---|---|---|---|---|---|---|---|---|
Global warming | Kg CO2 eq | 1.75 × 10+3 | 7.19 × 102 | 6.27 × 102 | 1.15 × 102 | −5.60 × 101 | 3.42 × 101 | −5.15 | −6.33 × 101 |
Acidification | Kg SO2 eq | 1.76 × 10−2 | 2.20 × 10−2 | −1.10 × 10−1 | 7.63 × 10−1 | −6.29 × 10−2 | 4.63 × 10−3 | 7.75 × 10−1 | 1.43 × 10−3 |
Ecotoxicity | CTUe | 4.64 × 103 | 4.64 × 103 | 4.64 × 103 | 1.65 × 102 | - | - | 1.65 × 102 | 4.22 |
Eutrophication | Kg N eq | 9.94 × 10−1 | 9.94 × 10−1 | 9.92 × 10−1 | 1.35 × 10−1 | 1.31 | 1.16 × 10−4 | 6.63 × 10−2 | 1.52 × 10−2 |
Smog Formation | Kg O3 eq | 2.93 × 10−1 | 3.67 × 10−1 | −1.56 | 5.95 × 10−2 | −2.57 | 6.62 × 10−2 | 3.55 × 101 | 8.36 |
Ozone depletion | Kg CFC-11 eq | 4.29 × 10−5 | 5.36 × 10−5 | 1.07 × 10−5 | - | - | - | - | - |
Carcinogenic | CTUh | 4.11 × 10−5 | 4.11 × 10−5 | 4.10 × 10−5 | 2.46 × 10−7 | - | - | 2.46 × 10−7 | 4.30 × 10−7 |
Non-carcinogenic | CTUh | 1.18 × 10−4 | 1.18 × 10−4 | 1.18 × 10−4 | 3.68 × 10−6 | - | - | 3.68 × 10−6 | 5.04 × 10−5 |
Respiratory effects | Kg PM2.5 eq | 1.06 × 10−5 | 1.33 × 10−5 | −6.12 × 10−3 | 2.71 × 10−2 | −8.20 × 10−3 | 2.49 × 10−4 | −1.04 × 10−2 | −1.91 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouedraogo, A.S.; Kumar, A.; Frazier, R.; Sallam, K.A. Comparative Life Cycle Assessment of Landfilling with Sustainable Waste Management Methods for Municipal Solid Wastes. Environments 2024, 11, 248. https://doi.org/10.3390/environments11110248
Ouedraogo AS, Kumar A, Frazier R, Sallam KA. Comparative Life Cycle Assessment of Landfilling with Sustainable Waste Management Methods for Municipal Solid Wastes. Environments. 2024; 11(11):248. https://doi.org/10.3390/environments11110248
Chicago/Turabian StyleOuedraogo, Angelika Sita, Ajay Kumar, Robert Frazier, and Khaled A. Sallam. 2024. "Comparative Life Cycle Assessment of Landfilling with Sustainable Waste Management Methods for Municipal Solid Wastes" Environments 11, no. 11: 248. https://doi.org/10.3390/environments11110248
APA StyleOuedraogo, A. S., Kumar, A., Frazier, R., & Sallam, K. A. (2024). Comparative Life Cycle Assessment of Landfilling with Sustainable Waste Management Methods for Municipal Solid Wastes. Environments, 11(11), 248. https://doi.org/10.3390/environments11110248