How Much Hatchery-Reared Brown Trout Move in a Large, Deep Subalpine Lake? An Acoustic Telemetry Study
<p>Map of the study area. The four fish release points (1: Ponte Tresa; 2: Agno; 3: Brusimpiano; 4: Capo San Martino) and the seven acoustic receivers with their average detection range are shown.</p> "> Figure 2
<p>Example of movement profile and a fish performing reiterative movements during the first month.</p> "> Figure 3
<p>The two groups (<b>a</b>,<b>b</b>) identified by the cluster analysis, each consisting of multiple individuals (indicated by their respective tag numbers in the rectangular boxes). To improve clarity and readability, fish of each group are shown separately.</p> "> Figure 4
<p>Size distribution (total length) of fish forming the 7 groups identified by the cluster analysis.</p> "> Figure 5
<p>On the left, a fish marked on 9 March 2022 with an acoustic transmitter and released in Lake Lugano; on the right, the same fish recaptured on 30 December 2022 (9 months later) by a recreational angler.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Species and Tagging Procedure
2.3. Acoustic Receiver Network
2.4. Data Processing
2.5. Post-Release Behavior
2.6. Utilization Distribution (UD)
2.7. Cluster Analysis
2.8. Influence of Size on Cluster Groups
2.9. Correlation Between Space Use and Abiotic Factors
3. Results
3.1. Sample Description
3.2. Post-Release Behavior
3.3. Utilization Distribution (UD) and Cluster Analysis
3.4. Influence of Size on Cluster Groups
3.5. Correlation Between Space Use and Abiotic Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heupel, M.R.; Semmens, J.M.; Hobday, A.J. Automated acoustic tracking of aquatic animals: Scales, design and deployment of listening station arrays. Mar. Freshw. Res. 2006, 57, 113. [Google Scholar] [CrossRef]
- Kessel, S.T.; Cooke, S.J.; Heupel, M.R.; Hussey, N.E.; Simpfendorfer, C.A.; Vagle, S.; Fisk, A.T. A review of detection range testing in aquatic passive acoustic telemetry studies. Rev. Fish Biol. Fish. 2014, 24, 199–218. [Google Scholar] [CrossRef]
- Binder, T.R.; Holbrook, C.M.; Hayden, T.A.; Krueger, C.C. Spatial and temporal variation in positioning probability of acoustic telemetry arrays: Fine-scale variability and complex interactions. Anim. Biotelem. 2016, 4, 4. [Google Scholar] [CrossRef]
- Espinoza, M.; Farrugia, T.J.; Webber, D.M.; Smith, F.; Lowe, C.G. Testing a new acoustic telemetry technique to quantify long-term, fine-scale movements of aquatic animals. Fish Res. 2011, 108, 364–371. [Google Scholar] [CrossRef]
- How, J.R.; De Lestang, S. Acoustic tracking: Issues affecting design, analysis and interpretation of data from movement studies. Mar. Freshw. Res. 2012, 63, 312–324. [Google Scholar] [CrossRef]
- Hellström, G.; Klaminder, J.; Jonsson, M.; Fick, J.; Brodin, T. Upscaling behavioural studies to the field using acoustic telemetry. Aquat. Toxicol. 2016, 170, 384–389. [Google Scholar] [CrossRef]
- Espinoza, M.; Farrugia, T.J.; Lowe, C.G. Habitat use, movements and site fidelity of the gray smooth-hound shark (Mustelus californicus Gill 1863) in a newly restored southern California estuary. J. Exp. Mar. Biol. Ecol. 2011, 401, 63–74. [Google Scholar] [CrossRef]
- Lédée, E.J.I.; Heupel, M.R.; Taylor, M.D.; Harcourt, R.G.; Jaine, F.R.A.; Huveneers, C.; Udyawer, V.; Campbell, H.A.; Babcock, R.C.; Hoenner, X.; et al. Continental-scale acoustic telemetry and network analysis reveal new insights into stock structure. Fish Fish. 2021, 22, 987–1005. [Google Scholar] [CrossRef]
- Binder, T.R.; Farha, S.A.; Thompson, H.T.; Holbrook, C.M.; Bergstedt, R.A.; Riley, S.C.; Bronte, C.R.; He, J.; Krueger, C.C. Fine-scale acoustic telemetry reveals unexpected lake trout, Salvelinus namaycush, spawning habitats in northern Lake Huron, North America. Ecol. Freshw. Fish 2018, 27, 594–605. [Google Scholar] [CrossRef]
- Verhelst, P.; Buysse, D.; Reubens, J.; Pauwels, I.; Aelterman, B.; Van Hoey, S.; Goethals, P.; Coeck, J.; Moens, T.; Mouton, A. Downstream migration of European eel (Anguilla anguilla L.) in an anthropogenically regulated freshwater system: Implications for management. Fish Res. 2018, 199, 252–262. [Google Scholar] [CrossRef]
- Bašić, T.; Aislabie, L.; Ives, M.; Fronkova, L.; Piper, A.; Walker, A. Spatial and temporal behavioural patterns of the European eel Anguilla anguilla in a lacustrine environment. Aquat. Sci. 2019, 81, 73. [Google Scholar] [CrossRef]
- Pinnix, W.D.; Nelson, P.A.; Stutzer, G.; Wright, K.A. Residence time and habitat use of coho salmon in Humboldt Bay, California: An acoustic telemetry study. Environ. Biol. Fishes 2013, 96, 315–323. [Google Scholar] [CrossRef]
- Eldøy, S.H.; Davidsen, J.G.; Thorstad, E.B.; Whoriskey, F.G.; Aarestrup, K.; Næsje, T.F.; Rønning, L.; Sjursen, A.D.; Rikardsen, A.H.; Arnekleiv, J.V. Marine depth use of sea trout Salmo trutta in fjord areas of central Norway. J. Fish Biol. 2017, 91, 1268–1283. [Google Scholar] [CrossRef] [PubMed]
- Lewandoski, S.A.; Bishop, M.A.; McKinzie, M.K.; William, P. Evaluating Pacific cod migratory behavior and site fidelity in a fjord environment using acoustic. Can. J. Fish. Aquat. Sci. 2018, 75, 2084–2095. [Google Scholar] [CrossRef]
- Ellis, R.D.; Flaherty-Walia, K.E.; Collins, A.B.; Bickford, J.W.; Boucek, R.; Walters Burnsed, S.L.; Lowerre-Barbieri, S.K. Acoustic telemetry array evolution: From species- and project-specific designs to large-scale, multispecies, cooperative networks. Fish Res. 2019, 209, 186–195. [Google Scholar] [CrossRef]
- Abecasis, D.; Steckenreuter, A.; Reubens, J.; Aarestrup, K.; Alós, J.; Badalamenti, F.; Bajona, L.; Boylan, P.; Deneudt, K.; Greenberg, L.; et al. A review of acoustic telemetry in Europe and the need for a regional aquatic telemetry network. Anim. Biotelem. 2018, 6, 12. [Google Scholar] [CrossRef]
- Lucas, M.C.; Baras, E. Methods for studying spatial behaviour of freshwater fishes in the natural environment. Fish Fish. 2000, 1, 283–316. [Google Scholar] [CrossRef]
- Landsman, S.J.; Nguyen, V.M.; Gutowsky, L.F.G.; Gobin, J.; Cook, K.V.; Binder, T.R.; Lower, N.; McLaughlin, R.L.; Cooke, S.J. Fish movement and migration studies in the Laurentian Great Lakes: Research trends and knowledge gaps. J. Great Lakes Res. 2011, 37, 365–379. [Google Scholar] [CrossRef]
- Aprahamian, M.W.; Smith, K.M.; McGinnity, P.; McKelvey, S.; Taylor, J. Restocking of salmonids-opportunities and limitations. Fish. Res. 2003, 62, 211–227. [Google Scholar] [CrossRef]
- Riepe, C.; Fujitani, M.; Cucherousset, J.; Pagel, T.; Buoro, M.; Santoul, F.; Lassus, R.; Arlinghaus, R. What determines the behavioral intention of local-level fisheries managers to alter fish stocking practices in freshwater recreational fisheries of two European countries? Fish Res. 2017, 194, 173–187. [Google Scholar] [CrossRef]
- Cornelius, F.C.; Muth, K.M.; Kenyon, R. Lake Trout Rehabilitation in Lake Erie: A Case History. J. Great Lakes Res. 1995, 21, 65–82. [Google Scholar] [CrossRef]
- Cooke, S.J. Biotelemetry and biologging in endangered species research and animal conservation: Relevance to regional, national, and IUCN Red List threat assessments. Endanger Species Res. 2008, 4, 165–185. [Google Scholar] [CrossRef]
- Bagliniere, L. Introduction: The brown trout (Salmo trutta L.)—Its origin, distribution and economic and scientific significance. In Biology and Ecology of the Brown and Sea Trout; Springer: London, UK, 1999; pp. 1–12. [Google Scholar]
- Lobón-Cerviá, J.; Sanz, N. (Eds.) Brown Trout: Biology, Ecology and Management; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Guinand, B.; Oral, M.; Tougard, C. Brown trout phylogenetics: A persistent mirage towards (too) many species. J. Fish Biol. 2021, 99, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Von Lindern, E.; Mosler, H.J. Insights into fisheries management practices: Using the theory of planned behavior to explain fish stocking among a sample of Swiss anglers. PLoS ONE 2014, 9, e115360. [Google Scholar] [CrossRef] [PubMed]
- Casalinuovo, M.A.; Alonso, M.F.; Macchi, P.J.; Kuroda, J.A. Brown trout in Argentina: History, interactions and perspectives. In Brown Trout: Life History, Ecology and Management; Wiley: Hoboken, NJ, USA, 2017; pp. 599–621. [Google Scholar] [CrossRef]
- Christophe, M. Certificate of Advanced Studies (CAS) Poissons d’eau douce d’Europe-Ecologie et Gestion Caractérisation Génétique des Truites de Rivière du Canton du Tessin. Travail de Certificat de Christophe Molina. 2019. Available online: https://www4.ti.ch/fileadmin/DT/temi/pesca/rapporti/CAS__ChristopheMolina_Caracterisation_genetique_des_truites_de_riviere_du_Canton_Tessin.pdf (accessed on 29 May 2023).
- Polgar, G.; Iaia, M.; Righi, T.; Volta, P. The Italian Alpine and Subalpine trouts: Taxonomy, Evolution, and Conservation. Biology 2022, 11, 576. [Google Scholar] [CrossRef]
- Jorgensen, J.; Berg, S. Stocking experiments with 0+ and 1+ trout parr, Salmo trutta L., of wild and hatchery origin: 2. Post-stocking movements. J. Fish Biol. 1991, 39, 171–180. [Google Scholar] [CrossRef]
- Baer, J.; Blasel, K.; Diekmann, M. Benefits of repeated stocking with adult, hatchery-reared brown trout, Salmo trutta, to recreational fisheries? Fish Manag. Ecol. 2007, 14, 51–59. [Google Scholar] [CrossRef]
- Sundström, L.F.; Petersson, E.; Höjesjö, J.; Johnsson, J.I.; Järvi, T. Hatchery selection promotes boldness in newly hatched brown trout (Salmo trutta): Implications for dominance. Behav. Ecol. 2004, 15, 192–198. [Google Scholar] [CrossRef]
- Johnsson, J.I.; Höjesjö, J.; Fleming, I.A. Behavioural and heart rate responses to predation risk in wild and domesticated Atlantic salmon. Can. J. Fish. Aquat. Sci. 2001, 58, 788–794. [Google Scholar] [CrossRef]
- Hansen, M.M. Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: An approach using microsatellite DNA analysis of historical and contemporary samples. Mol. Ecol. 2002, 11, 1003–1015. [Google Scholar] [CrossRef]
- Petersson, E.; Järvi, T.; Steffner, N.G.; Ragnarsson, B. The effect of domestication on some life history traits of sea trout and Atlantic salmon. J. Fish Biol. 1996, 48, 776–791. [Google Scholar] [CrossRef]
- Huntingford, F.A. Implications of domestication and rearing conditions for the behaviour of cultivated fishes. J. Fish Biol. 2004, 65, 122–142. [Google Scholar] [CrossRef]
- Pasquet, A. Effects of domestication on fish behaviour. In Animal Domestication; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar] [CrossRef]
- Milla, S.; Pasquet, A.; El Mohajer, L.; Fontaine, P. How domestication alters fish phenotypes. Rev. Aquac. 2021, 13, 388–405. [Google Scholar] [CrossRef]
- Duthie, G.G. Observations of poor swimming performance among hatchery-reared rainbow trout, Salmo gairdneri. Environ. Biol. Fishes 1987, 18, 309–311. [Google Scholar] [CrossRef]
- Reinbold, D.; Thorgaard, G.H.; Carter, P.A. Reduced swimming performance and increased growth in domesticated rainbow trout, Oncorhynchus mykiss. Can. J. Fish. Aquat. Sci. 2009, 66, 1025–1032. [Google Scholar] [CrossRef]
- Blouin, M.S.; Wrey, M.C.; Bollmann, S.R.; Skaar, J.C.; Twibell, R.G.; Fuentes, C. Offspring of first-generation hatchery steelhead trout (Oncorhynchus mykiss) grow faster in the hatchery than offspring of wild fish, but survive worse in the wild: Possible mechanisms for inadvertent domestication and fitness loss in hatchery salmon. PLoS ONE 2021, 16, e0257407. [Google Scholar] [CrossRef]
- Ojanguren, A.F.; Brana, F. Effects of size and morphology on swimming performance in juvenile brown trout (Salmo trutta L.). Ecol. Freshw. Fish 2003, 12, 241–246. [Google Scholar] [CrossRef]
- Huntingford, F.; Adams, C. Behavioural syndromes in farmed fish: Implications for production and welfare. Behaviour 2005, 142, 1207–1221. [Google Scholar] [CrossRef]
- Sih, A.; Bell, A.; Johnson, J.C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 2004, 19, 372–378. [Google Scholar] [CrossRef]
- Conrad, J.L.; Weinersmith, K.L.; Brodin, T.; Saltz, J.B.; Sih, A. Behavioural syndromes in fishes: A review with implications for ecology and fisheries management. J. Fish Biol. 2011, 78, 395–435. [Google Scholar] [CrossRef]
- Spiegel, O.; Leu, S.T.; Bull, C.M.; Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 2017, 20, 3–18. [Google Scholar] [CrossRef]
- Johnsson, J.; Petersson, E.; Björnsson, B.; Järvi, T. Domestication and growth hormone alter antipredator behaviour and growth patterns in juvenile brown trout (Salmo trutta). Can. J. Fish. Aquat. Sci. 1996, 53, 1546–1554. [Google Scholar] [CrossRef]
- Einum, S.; Fleming, I.A. Genetic divergence and interactions in the wild among native, farmed and hybrid Atlantic salmon. J. Fish Biol. 1997, 50, 634–651. [Google Scholar] [CrossRef]
- Alvarez, D.; Nicieza, A.G. Predator avoidance behaviour in wild and hatchery-reared brown trout: The role of experience and domestication. J. Fish Biol. 2003, 63, 1565–1577. [Google Scholar] [CrossRef]
- Abrahams, M.V.; Sutterlin, A. The foraging and antipredator behaviour of growth-enhanced transgenic Atlantic salmon. Anim. Behav. 1999, 58, 933–942. [Google Scholar] [CrossRef]
- Godin, J.G. Evading predators. In Behavioral Ecology of Teleost Fishes; Oxford University Press: Oxford, UK, 1997; pp. 191–236. [Google Scholar]
- Öhlund, G. Ecological and Evolutionary Effects of Predation in Environmental Gradients. Ph.D. Thesis, Umeå Universitet, Umeå, Sweden, 2012. [Google Scholar]
- Sutter, D.A.H.; Suski, C.D.; Philipp, D.P.; Klefoth, T.; Wahl, D.H.; Kersten, P.; Cooke, S.J.; Arlinghaus, R. Recreational fishing selectively captures individuals with the highest fitness potential. Proc. Natl. Acad. Sci. USA 2012, 109, 20960–20965. [Google Scholar] [CrossRef]
- Keiling, T.D.; Louison, M.J.; Suski, C.D. Big, hungry fish get the lure: Size and food availability determine capture over boldness and exploratory behaviors. Fish Res. 2020, 227, 105554. [Google Scholar] [CrossRef]
- Biro, P.A.; Stamps, J.A. Are animal personality traits linked to life-history productivity? Trends Ecol. Evol. 2008, 23, 361–368. [Google Scholar] [CrossRef]
- Monk, C. Mining the Behavioural Reality of Fish-Fisher Interactions to Understand Vulnerability to Hook-and-Line Fishing. Ph.D. Thesis, Humboldt-Universität zu Berlin, Berlin, Germany, 2019. Available online: https://edoc.hu-berlin.de/handle/18452/20565 (accessed on 26 May 2023).
- Brown, C.; Laland, K. Social learning and life skills training for hatchery reared fish. J. Fish Biol. 2001, 59, 471–493. [Google Scholar] [CrossRef]
- Franchini, F.; Lepori, F.; Bruder, A. Improving estimates of primary production in lakes: A test and a case study from a peri-alpine lake (Lake Lugano). Inland Waters 2017, 7, 77–87. [Google Scholar] [CrossRef]
- Cannata, M.; Neumann, J.; Rossetto, R. Open source GIS platform for water resource modelling: FREEWAT approach in the Lugano Lake. Spat. Inf. Res. 2018, 26, 241–251. [Google Scholar] [CrossRef]
- Lavelli, A.; Boillat, J.-L.; De Cesare, G. Numerical 3D Modelling of the Vertical Mass Exchange Induced by Turbidity Currents in Lake Lugano (Switzerland). In Proceedings of the 5th International Conference on Hydro-Science and -Engineering (ICHE-2002) (Reference: LCH-CONF-2002-012 Note: [355]), Warsaw, Poland, September 2002; Available online: https://www.researchgate.net/publication/37445865 (accessed on 25 May 2023).
- Barbieri, A.; Polli, B. Description of Lake Lugano; Birkhauser Verlag: Basel, Switzerland, 1992. [Google Scholar]
- Lepori, F.; Bartosiewicz, M.; Simona, M.; Veronesi, M. Effects of winter weather and mixing regime on the restoration of a deep perialpine lake (Lake Lugano, Switzerland and Italy). Hydrobiologia 2018, 824, 229–242. [Google Scholar] [CrossRef]
- Tu, L.; Jarosch, K.A.; Schneider, T.; Grosjean, M. Phosphorus fractions in sediments and their relevance for historical lake eutrophication in the Ponte Tresa basin (Lake Lugano, Switzerland) since 1959. Sci. Total Environ. 2019, 685, 806–817. [Google Scholar] [CrossRef] [PubMed]
- Kottelat, M.; Freyhof, J. Handbook of European Freshwater Fishes; IUCN: Gland, Switzerland, 2007. [Google Scholar]
- Elliott, J.M.; Elliott, J.A. Temperature requirements of Atlantic salmon (Salmo salar), brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus): Predicting the effects of climate change. J. Fish Biol. 2010, 77, 1793–1817. [Google Scholar] [CrossRef]
- Molony, B. Environmental Requirements and Tolerances of Rainbow Trout (Oncorhynchus mykiss) and Brown Trout (Salmo trutta) with Special Reference to Western Australia: A Review; Department of Fisheries, Government of Western Australia, Fisheries Research Division: Perth, Australia, 2001.
- Lepori, F.; Capelli, C. Seasonal variation in trophic structure and restoration effects in a deep perialpine lake (Lake Lugano, Switzerland and Italy). J. Great Lakes Res. 2020, 46, 870–880. [Google Scholar] [CrossRef]
- Winter, J.D. Underwater biotelemetry. In Fisheries Techniques; Nielsen, L.A., Johnsen, J.D., Eds.; American Fisheries Society: Bethesda, Maryland, 1983; pp. 371–395. [Google Scholar]
- Jepsen, N. A brief discussion of the 2% tag/bodymass rule. In Aquatic Telemetry: Advances and Applications; FAO/COISPA: Rome, Italy, 2005; pp. 255–259. Available online: https://www.researchgate.net/publication/259573199 (accessed on 26 May 2023).
- Moore, A.; Russell, I.C.; Potter, E.C.E. The effects of intraperitoneally implanted dummy acoustic transmitters on the behaviour and physiology of juvenile Atlantic salmon, Salmo salar L. J. Fish Biol. 1990, 37, 713–721. [Google Scholar] [CrossRef]
- Bridger, C.J.; Booth, R.K. The effects of biotelemetry transmitter presence and attachment procedures on fish physiology and behavior. Rev. Fish. Sci. 2003, 11, 13–34. [Google Scholar] [CrossRef]
- Barry, J.; McLoone, P.; Fitzgerald, C.J.; King, J.J. The spatial ecology of brown trout (Salmo trutta) and dace (Leuciscus leuciscus) in an artificially impounded riverine habitat: Results from an acoustic telemetry study. Aquat. Sci. 2020, 82, 63. [Google Scholar] [CrossRef]
- Domeier, M.L. Methods for the deployment and maintenance of an acoustic tag tracking array: An example from California’s Channel Islands. Mar. Technol. Soc. J. 2005, 39, 74–80. [Google Scholar] [CrossRef]
- Flávio, H.; Baktoft, H. actel: Standardised analysis of acoustic telemetry data from animals moving through receiver arrays. Methods Ecol. Evol. 2021, 12, 196–203. [Google Scholar] [CrossRef]
- Simpfendorfer, C.A.; Huveneers, C.; Steckenreuter, A.; Tattersall, K.; Hoenner, X.; Harcourt, R.; Heupel, M.R. Ghosts in the data: False detections in VEMCO pulse position modulation acoustic telemetry monitoring equipment. Anim. Biotelem. 2015, 3, 55. [Google Scholar] [CrossRef]
- Crossin, G.T.; Heupel, M.R.; Holbrook, C.M.; Hussey, N.E.; Lowerre-Barbieri, S.K.; Nguyen, V.M.; Raby, G.D.; Cooke, S.J. Acoustic telemetry and fisheries management. Ecol. Appl. 2017, 27, 1031–1049. [Google Scholar] [CrossRef] [PubMed]
- Castro-Santos, T.; Sanz-Ronda, F.J.; Ruiz-Legazpi, J. Breaking the speed limit-comparative sprinting performance of brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta). Can. J. Fish. Aquat. Sci. 2013, 70, 280–293. [Google Scholar] [CrossRef]
- Kie, J.G.; Matthiopoulos, J.; Fieberg, J.; Powell, R.A.; Cagnacci, F.; Mitchell, M.S.; Gaillard, J.M.; Moorcroft, P.R. The home-range concept: Are traditional estimators still relevant with modern telemetry technology? Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2221–2231. [Google Scholar] [CrossRef] [PubMed]
- Horne, J.S.; Garton, E.O.; Krone, S.M.; Lewis, J.S. Analyzing animal movements using Brownian bridges. Ecology 2007, 88, 2354–2363. [Google Scholar] [CrossRef]
- Kranstauber, B.; Kays, R.; Lapoint, S.D.; Wikelski, M.; Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 2012, 81, 738–746. [Google Scholar] [CrossRef]
- Niella, Y.; Flávio, H.; Smoothey, A.F.; Aarestrup, K.; Taylor, M.D.; Peddemors, V.M.; Harcourt, R. Refined Shortest Paths (RSP): Incorporation of topography in space use estimation from node-based telemetry data. Methods Ecol Evol 2020, 11, 1733–1742. [Google Scholar] [CrossRef]
- Ferreira, L.N. From Time Series to Networks in R with the ts2net Package. arXiv 2022, arXiv:2208.09660. [Google Scholar] [CrossRef]
- Environmental Observatory of Switzerland. Available online: https://www.oasi.ti.ch (accessed on 20 May 2023).
- Visual Crossing: Weather Data and Weather API. Available online: https://www.visualcrossing.com (accessed on 22 May 2023).
- Tracey, S.R.; Hartmann, K.; McAllister, J.; Lyle, J.M. Home range, site fidelity and synchronous migrations of three co-occurring, morphologically distinct estuarine fish species. Sci. Total Environ. 2020, 713, 136629. [Google Scholar] [CrossRef]
- Watz, J.; Calles, O.; Carlsson, N.; Collin, T.; Huusko, A.; Johnsson, J.; Nilsson, P.A.; Norrgård, J.; Nyqvist, D. Wood addition in the hatchery and river environments affects post-release performance of overwintering brown trout. Freshw. Biol. 2019, 64, 71–80. [Google Scholar] [CrossRef]
- Bridger, C.J.; Booth, R.K.; Mckinley, R.S.; Scruton, D.A. Site fidelity and dispersal patterns of domestic triploid steelhead trout (Oncorhynchus mykiss Walbaum) released to the wild. ICES J. Mar. Sci. 2001, 58, 510–516. [Google Scholar] [CrossRef]
- Pursche, A.R.; Suthers, I.M.; Taylor, M.D. Post-release monitoring of site and group fidelity in acoustically tagged stocked fish. Fish. Manag. Ecol. 2013, 20, 445–453. [Google Scholar] [CrossRef]
- Schulz, U.; Berg, R. Movements of ultrasonically tagged brown trout (Salmo trutta L.) in Lake Constance. J. Fish Biol. 1992, 40, 909–917. [Google Scholar] [CrossRef]
- Härkönen, L.; Hyvärinen, P.; Paappanen, J.; Vainikka, A. Explorative behavior increases vulnerability to angling. Can. J. Fish. Aquat. Sci. 2014, 71, 1900–1909. [Google Scholar] [CrossRef]
- Alioravainen, N.; Prokkola, J.; Lemopoulos, A.; Härkönen, L.; Hyvärinen, P.; Vainikka, A. Post-release exploration and diel activity of hatchery, wild and crossbred strain brown trout in semi-natural streams. EcoEvoRxiv 2019. [Google Scholar] [CrossRef]
- Cote, J.; Clobert, J.; Brodin, T.; Fogarty, S.; Sih, A. Personality-dependent dispersal: Characterization, ontogeny and consequences for spatially structured populations. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 4065–4076. [Google Scholar] [CrossRef]
- Villegas-Ríos, D.; Réale, D.; Freitas, C.; Moland, E.; Olsen, E.M. Personalities influence spatial responses to environmental fluctuations in wild fish. J. Anim. Ecol. 2018, 87, 1309–1319. [Google Scholar] [CrossRef]
- Taylor, M.D.; Laffan, S.W.; Fairfax, A.V.; Payne, N.L. Finding their way in the world: Using acoustic telemetry to evaluate relative movement patterns of hatchery-reared fish in the period following release. Fish. Res. 2017, 186, 538–543. [Google Scholar] [CrossRef]
- Rogell, B.; Dannewitz, J.; Palm, S.; Petersson, E.; Dahl, J.; Prestegaard, T.; Järvi, T.; Laurila, A. Strong divergence in trait means but not in plasticity across hatchery and wild populations of sea-run brown trout Salmo trutta. Mol. Ecol. 2012, 21, 2963–2976. [Google Scholar] [CrossRef]
- Hulthén, K.; Chapman, B.B.; Nilsson, P.A.; Hansson, L.A.; Skov, C.; Brodersen, J.; Vinterstare, J.; Brönmark, C. A predation cost to bold fish in the wild. Sci. Rep. 2017, 7, 1239. [Google Scholar] [CrossRef]
- Alós, J.; Palmer, M.; Arlinghaus, R. Consistent selection towards low activity phenotypes when catchability depends on encounters among human predators and fish. PLoS ONE 2012, 7, e48030. [Google Scholar] [CrossRef] [PubMed]
- Kolok, A.S. Morphological and physiological correlates with swimming performance in juvenile largemouth bass. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1992, 263, 1042–1048. [Google Scholar] [CrossRef]
- Gregory, R.; Wood, C.M. Individual variation and interrelationships between swimming performance, growth rate, and feeding in juvenile rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 1998, 55, 1583–1590. [Google Scholar] [CrossRef]
- McDonald, D.; Milligan, C.; McFarlane, W.; Croke, S.; Currie, S.; Hooke, B.; Angus, R.; Tufts, B.; Davidson, K. Condition and performance of juvenile Atlantic salmon (Salmo salar): Effects of rearing practices on hatchery fish and comparison with wild fish. Can. J. Fish. Aquat. Sci. 1998, 55, 1208–1219. [Google Scholar] [CrossRef]
- Billerbeck, J.M.; Lankford, T.E.; Conover, D.O. Evolution of intrinsic growth and energy acquisition rates. I. Trade-offs with swimming performance in Menidia menidia. Evolution 2001, 55, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Klinard, N.V.; Matley, J.K. Living until proven dead: Addressing mortality in acoustic telemetry research. Rev. Fish Biol. Fish. 2020, 30, 485–499. [Google Scholar] [CrossRef]
- Khan, J.A.; Welsh, J.Q.; Bellwood, D.R. Using passive acoustic telemetry to infer mortality events in adult herbivorous coral reef fishes. Coral Reefs 2016, 35, 411–420. [Google Scholar] [CrossRef]
- Thorstad, E.B.; Uglem, I.; Finstad, B.; Chittenden, C.M.; Nilsen, R.; Økland, F.; Bjørn, P.A. Stocking location and predation by marine fishes affect survival of hatchery-reared Atlantic salmon smolts. Fish Manag. Ecol. 2012, 19, 400–409. [Google Scholar] [CrossRef]
- Klinard, N.V.; Matley, J.K.; Halfyard, E.A.; Connerton, M.; Johnson, T.B.; Fisk, A.T. Post-stocking movement and survival of hatchery-reared bloater (Coregonus hoyi) reintroduced to Lake Ontario. Freshw. Biol. 2020, 65, 1073–1085. [Google Scholar] [CrossRef]
- Rechisky, E.L.; Welch, D.W. Surgical implantation of acoustic Tags: Influence of tag loss and tag-induced mortality on free-ranging and hatchery-held spring Chinook Salmon (Oncorhynchus tshawytscha) Smolts. In Tagging, Telemetry and Marking Measures for Monitoring Fish Populations: A Compendium of New and Recent Science for Use in Informing Technique and Decision Modalities; Wolf, K., O’Neal, J., Duvall, W., Eds.; Pacific Northwest Aquatic Monitoring Partnership: Duvall, WA, USA, 2010; pp. 69–94. Available online: https://www.researchgate.net/publication/305657189 (accessed on 26 May 2023).
- Lawrence, M.J.; Wilson, B.M.; Reid, G.K.; Hawthorn, C.; English, G.; Black, M.; Leadbeater, S.; McKindsey, C.W.; Trudel, M. The fate of intracoelomic acoustic transmitters in Atlantic salmon (Salmo salar) post-smolts and wider considerations for causal factors driving tag retention and mortality in fishes. Anim. Biotelem. 2023, 11, 40. [Google Scholar] [CrossRef]
- Daniels, J.; Brunsdon, E.B.; Chaput, G.; Dixon, H.J.; Labadie, H.; Carr, J.W. Quantifying the effects of post-surgery recovery time on the migration dynamics and survival rates in the wild of acoustically tagged Atlantic Salmon Salmo salar smolts. Anim. Biotelem. 2021, 9, 6. [Google Scholar] [CrossRef]
- Huveneers, C.; Simpfendorfer, C.A.; Kim, S.; Semmens, J.M.; Hobday, A.J.; Pederson, H.; Stieglitz, T.; Vallee, R.; Webber, D.; Heupel, M.R.; et al. The influence of environmental parameters on the performance and detection range of acoustic receivers. Methods Ecol. Evol. 2016, 7, 825–835. [Google Scholar] [CrossRef]
- Selby, T.H.; Hart, K.M.; Fujisaki, I.; Smith, B.J.; Pollock, C.J.; Hillis-Starr, Z.; Lundgren, I.; Oli, M.K. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat. Ecol. Evol. 2016, 6, 4823–4835. [Google Scholar] [CrossRef] [PubMed]
- Brownscombe, J.W.; Lédée, E.J.I.; Raby, G.D.; Struthers, D.P.; Gutowsky, L.F.G.; Nguyen, V.M.; Young, N.; Stokesbury, M.J.W.; Holbrook, C.M.; Brenden, T.O.; et al. Conducting and interpreting fish telemetry studies: Considerations for researchers and resource managers. Rev. Fish Biol. Fish. 2019, 29, 369–400. [Google Scholar] [CrossRef]
- Loher, T.; Webster, R.A.; Carlile, D. A test of the detection range of acoustic transmitters and receivers deployed in deep waters of Southeast Alaska, USA. Anim. Biotelem. 2017, 5, 27. [Google Scholar] [CrossRef]
- Halfyard, E.A.; Webber, D.; Del Papa, J.; Leadley, T.; Kessel, S.T.; Colborne, S.F.; Fisk, A.T. Evaluation of an acoustic telemetry transmitter designed to identify predation events. Methods Ecol. Evol. 2017, 8, 1063–1071. [Google Scholar] [CrossRef]
- Watson, W.H.; Johnson, S.K.; Whitworth, C.D.; Chabot, C.C. Rhythms of locomotion and seasonal changes in activity expressed by horseshoe crabs in their natural habitat. Mar. Ecol. Prog. Ser. 2016, 542, 109–121. [Google Scholar] [CrossRef]
- Weinz, A.A.; Matley, J.K.; Klinard, N.V.; Fisk, A.T.; Colborne, S.F. Identification of predation events in wild fish using novel acoustic transmitters. Anim. Biotelem. 2020, 8, 28. [Google Scholar] [CrossRef]
- Girard, P.; Boisclair, D.; Leclerc, M. The effect of cloud cover on the development of habitat quality indices for juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2003, 60, 1386–1397. [Google Scholar] [CrossRef]
- Payne, N.L.; van der Meulen, D.E.; Gannon, R.; Semmens, J.M.; Suthers, I.M.; Gray, C.A.; Taylor, M.D. Rain reverses diel activity rhythms in an estuarine teleost. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122363. [Google Scholar] [CrossRef]
- Jonsson, N. Influence of water flow, water temperature and light on fish migration in rivers. Nord. J. Freshw. Res. 1991, 66, 20–35. [Google Scholar]
- Milner, N.J.; Solomon, D.J.; Smith, G.W. The role of river flow in the migration of adult Atlantic salmon, Salmo salar, through estuaries and rivers. Fish Manag. Ecol. 2012, 19, 537–547. [Google Scholar] [CrossRef]
- Trépanier, S.; Rodríguez, M.A.; Magnan, P. Spawning migrations in landlocked Atlantic salmon: Time series modelling of river discharge and water temperature effects. J. Fish Biol. 1996, 48, 925–936. [Google Scholar] [CrossRef]
- Kulíšková, P.; Horký, P.; Slavík, O.; Jones, J.I. Factors influencing movement behaviour and home range size in ide Leuciscus idus. J. Fish Biol. 2009, 74, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Gagen, C.I.; Sharpe, W.E.; Carline, R.F.; Gagen, C.J.; Sharpe, W.E.; Carline, R.F. Downstream movement and mortality of brook trout (Salvelinus fontinalis) exposed to acidic episodes in streams. Can. J. Fish. Aquat. Sci. 1994, 51, 1620–1628. [Google Scholar] [CrossRef]
- Plumb, J.M.; Blanchfield, P.J. Performance of temperature and dissolved oxygen criteria to predict habitat use by lake trout (Salvelinus namaycush). Can. J. Fish. Aquat. Sci. 2009, 66, 2011–2023. [Google Scholar] [CrossRef]
- Cline, T.J.; Bennington, V.; Kitchell, J.F. Climate change expands the spatial extent and duration of preferred thermal habitat for Lake Superior fishes. PLoS ONE 2013, 8, e62279. [Google Scholar] [CrossRef]
- Ivanova, S.V.; Johnson, T.B.; Metcalfe, B.; Fisk, A.T. Spatial distribution of lake trout (Salvelinus namaycush) across seasonal thermal cycles in a large lake. Freshw. Biol. 2021, 66, 615–627. [Google Scholar] [CrossRef]
Tag | Release Site | T. Length (mm) | Mass (g) | % det | Tag | Release Site | T. Length (mm) | Mass (g) | % det |
---|---|---|---|---|---|---|---|---|---|
12472 | Agno | 540 | 2252 | 64.6 | 12545 | CSM | 530 | 2064 | 84.5 |
12510 | CSM | 530 | 1823 | 0.0 | 12546 | CSM | 530 | 2238 | 100.0 |
12511 | CSM | 550 | 2195 | 37.2 | 12548 | Agno | 540 | 2028 | 37.3 |
12513 | CSM | 540 | 1980 | 35.1 | 12549 | CSM | 550 | 2388 | 1.9 |
12514 | Agno | 520 | 2026 | 60.0 | 12550 | Agno | 600 | 2860 | 20.4 |
12515 | CSM | 540 | 1999 | 100.0 | 12551 | CSM | 540 | 1954 | 67.9 |
12516 | Agno | 470 | 1461 | 88.4 | 12552 | CSM | 540 | 2193 | 8.8 |
12518 | Agno | 610 | 2893 | 57.8 | 12554 | Agno | 580 | 2867 | 60.2 |
12519 | CSM | 540 | 2134 | 5.1 | 12555 | Agno | 580 | 2382 | 40.6 |
12520 | CSM | 510 | 1675 | 100.0 | 12556 | Agno | 590 | 2642 | 0.0 |
12521 | CSM | 580 | 2565 | 5.7 | 12557 | CSM | 530 | 1805 | 9.2 |
12522 | Agno | 540 | 1921 | 91.6 | 12558 | Agno | 510 | 1838 | 77.7 |
12523 | Agno | 600 | 2648 | 89.6 | 12559 | CSM | 520 | 1742 | 16.8 |
12524 | CSM | 430 | 1191 | 42.2 | 12560 | CSM | 550 | 2355 | 27.4 |
12525 | Agno | 540 | 2070 | 100.0 | 12561 | Agno | 510 | 1705 | 94.0 |
12526 | Agno | 560 | 2430 | 53.4 | 12562 | Agno | 560 | 1727 | 100.0 |
12527 | Agno | 570 | 2434 | 15.8 | 12563 | CSM | 560 | 2017 | 100.0 |
12528 | Agno | 460 | 1563 | 0.6 | 12564 | Agno | 560 | 2036 | 63.7 |
12529 | CSM | 480 | 1414 | 0.0 | 12565 | Agno | 550 | 2291 | 97.0 |
12530 | Agno | 570 | 2258 | 100.0 | 12580 | PonteTresa | 565 | 2300 | 100.0 |
12531 | Agno | 510 | 1830 | 98.2 | 12581 | PonteTresa | 530 | 1290 | 62.4 |
12532 | CSM | 540 | 1927 | 100.0 | 12582 | PonteTresa | 459 | 1500 | 4.8 |
12533 | Agno | 590 | 2979 | 86.7 | 12584 | Brusimpiano | 570 | 2300 | 100.0 |
12534 | Agno | 540 | 1862 | 65.1 | 12588 | Brusimpiano | 555 | 2200 | 100.0 |
12535 | CSM | 530 | 2361 | 8.6 | 12592 | Brusimpiano | 530 | 2100 | 100.0 |
12537 | Agno | 580 | 2407 | 26.3 | 12593 | Brusimpiano | 560 | 2250 | 98.6 |
12538 | CSM | 570 | 2550 | 1.8 | 12594 | PonteTresa | 510 | 2000 | nd |
12539 | CSM | 580 | 2618 | 100.0 | 12596 | Brusimpiano | 471 | 1500 | nd |
12540 | CSM | 550 | 2102 | 52.6 | 12597 | Brusimpiano | 545 | 2100 | 0.0 |
12541 | Agno | 580 | 2473 | 20.8 | 12600 | PonteTresa | 438 | 1287 | 75.2 |
12542 | CSM | 490 | 1490 | 9.0 | 12627 | PonteTresa | 485 | 1434 | 88.2 |
12543 | CSM | 560 | 2356 | 0.4 | 12629 | PonteTresa | 560 | 2387 | 100.0 |
12544 | Agno | 550 | 2309 | 69.5 |
Group | a | b | c | d | e | f |
---|---|---|---|---|---|---|
b | 0.0003 * | |||||
c | 0.0444 * | 0.462 | ||||
d | 0.0000 * | 0.0000 * | 0.0000 * | |||
e | 0.0039 * | 0.1961 | 0.2338 | 0.0000 * | ||
f | 0.3253 | 0.0129 * | 0.0517 | 0.0000 * | 0.0093 * | |
g | 0.0000 * | 0.0005 * | 0.0050 * | 0.0008 * | 0.0323 | 0.0000 * |
Rainfall | Pressure | Cloud Cover | Lunar Phase | Q (Cassarate) | Q (Vedeggio) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tag | r | p-Value | r | p-Value | r | p-Value | r | p-Value | r | p-Value | r | p-Value |
12510 | −0.091 | 0.249 | 0.021 | 0.794 | −0.024 | 0.758 | −0.274 | <0.01 * | 0.067 | 0.399 | 0.042 | 0.598 |
12511 | 0.019 | 0.806 | 0.061 | 0.441 | −0.026 | 0.74 | 0.25 | <0.01 * | 0.033 | 0.676 | 0.068 | 0.392 |
12515 | 0.07 | 0.379 | 0.239 | <0.01 * | −0.105 | 0.183 | −0.169 | 0.032 * | −0.014 | 0.862 | 0.011 | 0.889 |
12521 | −0.067 | 0.395 | −0.004 | 0.957 | −0.052 | 0.513 | 0.072 | 0.365 | −0.181 | 0.021 * | −0.121 | 0.124 |
12523 | −0.013 | 0.873 | 0.324 | <0.01 * | −0.127 | 0.107 | 0.125 | 0.112 | −0.08 | 0.315 | −0.07 | 0.379 |
12525 | 0.019 | 0.815 | −0.044 | 0.579 | 0.03 | 0.702 | −0.04 | 0.613 | 0.178 | 0.024 * | 0.106 | 0.18 |
12528 | −0.088 | 0.265 | 0.008 | 0.923 | 0.202 | 0.010 * | −0.143 | 0.07 | 0.03 | 0.702 | −0.031 | 0.694 |
12529 | 0.164 | 0.037 * | −0.11 | 0.164 | 0.206 | 0.009 | 0.131 | 0.098 | 0.116 | 0.142 | 0.069 | 0.385 |
12532 | 0.047 | 0.556 | 0.215 | <0.01 * | 0.005 | 0.952 | −0.05 | 0.532 | −0.061 | 0.439 | 0.073 | 0.355 |
12540 | 0.126 | 0.11 | −0.053 | 0.5 | 0.284 | <0.01 * | −0.107 | 0.177 | 0.067 | 0.395 | −0.027 | 0.733 |
12543 | 0.009 | 0.914 | −0.022 | 0.786 | 0.063 | 0.428 | 0.056 | 0.477 | 0.05 | 0.532 | 0.029 | 0.716 |
12550 | 0.051 | 0.519 | −0.079 | 0.318 | 0.007 | 0.93 | 0.094 | 0.232 | 0.047 | 0.549 | 0.057 | 0.474 |
12551 | 0.015 | 0.846 | −0.026 | 0.745 | 0.051 | 0.519 | −0.052 | 0.513 | −0.08 | 0.311 | −0.119 | 0.131 |
12552 | −0.069 | 0.383 | −0.053 | 0.504 | −0.014 | 0.855 | −0.066 | 0.402 | −0.184 | 0.019 * | −0.206 | <0.01 * |
12555 | −0.016 | 0.839 | 0.152 | 0.054 | 0.042 | 0.596 | −0.047 | 0.549 | 0.035 | 0.658 | −0.032 | 0.687 |
12582 | −0.013 | 0.867 | −0.271 | <0.01 * | 0.072 | 0.363 | 0.029 | 0.71 | −0.05 | 0.529 | −0.006 | 0.937 |
12593 | −0.008 | 0.919 | 0.073 | 0.356 | −0.014 | 0.858 | 0.062 | 0.432 | −0.056 | 0.483 | −0.092 | 0.245 |
12600 | 0.085 | 0.28 | −0.124 | 0.117 | 0.034 | 0.667 | 0.111 | 0.158 | 0.093 | 0.241 | 0.104 | 0.188 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brignone, S.; Minazzi, L.; Molina, C.; Putelli, T.; Volta, P. How Much Hatchery-Reared Brown Trout Move in a Large, Deep Subalpine Lake? An Acoustic Telemetry Study. Environments 2024, 11, 245. https://doi.org/10.3390/environments11110245
Brignone S, Minazzi L, Molina C, Putelli T, Volta P. How Much Hatchery-Reared Brown Trout Move in a Large, Deep Subalpine Lake? An Acoustic Telemetry Study. Environments. 2024; 11(11):245. https://doi.org/10.3390/environments11110245
Chicago/Turabian StyleBrignone, Stefano, Luca Minazzi, Christophe Molina, Tiziano Putelli, and Pietro Volta. 2024. "How Much Hatchery-Reared Brown Trout Move in a Large, Deep Subalpine Lake? An Acoustic Telemetry Study" Environments 11, no. 11: 245. https://doi.org/10.3390/environments11110245
APA StyleBrignone, S., Minazzi, L., Molina, C., Putelli, T., & Volta, P. (2024). How Much Hatchery-Reared Brown Trout Move in a Large, Deep Subalpine Lake? An Acoustic Telemetry Study. Environments, 11(11), 245. https://doi.org/10.3390/environments11110245