Atlantic Forest Regeneration Dynamics Following Human Disturbance Cessation in Brazil
<p>Study area and BAF fragment locations (“Edgardia and Lageado” Experimental Farm, University of São Paulo State (UNESP), Botucatu, São Paulo State). Sentinel-2 cloudless—<a href="https://s2maps.eu" target="_blank">https://s2maps.eu</a> by EOX IT Services GmbH, (accessed on 31 August 2024). (Contains modified Copernicus Sentinel data 2016 and 2017). License: <a href="http://creativecommons.org/licenses/by/4.0/" target="_blank">http://creativecommons.org/licenses/by/4.0/</a>, accessed on 10 September 2024.</p> "> Figure 2
<p>Non-metric multidimensional scaling (NMDS, Stress: 0.13; <span class="html-italic">p</span> < 0.01) revealed the distribution of 2000 m<sup>2</sup> plots based on Bray–Curtis similarity indices of floristic composition within the investigated BAF fragments.</p> "> Figure 3
<p>Integrated rarefaction/extrapolation curves, plotted as a function of the number of individuals in three BAF fragments: human disturbance ceased over 40 (>40 y), approximately 30 (30 y), and ~20 (20 y) years ago. q<sup>0</sup>: species richness (effective number of species), q<sup>1</sup>: Shannon diversity exponent, q<sup>2</sup>: inverse Simpson’s diversity index (solid lines: interpolation; dashed lines: extrapolation; shaded area: 95% confidence intervals).</p> "> Figure 4
<p>Comparison of structural variables among different BAF fragments. Different letters indicate significant differences (<span class="html-italic">p</span> < 0.05) among BAF fragments based on the Generalized Linear Model (GLM) analysis and Tukey–Kramer test. >40 y, 30 y, 20 y: human disturbance ceased over 40, approximately 30, and ~20 years ago, respectively.</p> "> Figure 5
<p>Basal area distribution per hectare (<b>A</b>) and total number of individuals per hectare (<b>B</b>) by diameter class for trees ≥ 5 cm DBH. >40 y, 30 y, 20 y: human disturbance ceased over 40, approximately 30, and ~20 years ago, respectively. Different letters derived from the generalized linear model (GLM) analysis and the Tukey–Kramer test, <span class="html-italic">p</span> < 0.05, indicate significant statistical differences between the areas per diameter class.</p> "> Figure 6
<p>Canonical Correspondence Analysis (CCA) of factors influencing species distribution among the investigated BAF fragments. Colored points represent forest areas: >40 y (green), 30 y (yellow), 20 y (blue): human disturbance ceased over 40, approximately 30, and ~20 years ago, respectively. Arrows indicate factors with a significant correlation (<span class="html-italic">p</span> < 0.05) with the floristic composition of the sampled units. CEC: cation-exchange capacity; TMI: topographic moisture index; EStime: age of forest areas.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Area and Permanent Plots
- BAF fragments where human disturbance ceased over 40 years ago (>40 y, hereafter): representing the fragment with the highest naturalness, as it is characterized by native vegetation dating back over 40 years [5,10]. These lush, well-structured forests (with tall trees and abundant species diversity) are typically located in inaccessible areas, making them, at least currently, isolated and distant from human disturbance [18];
2.3. Vegetation, Topographic, and Soil Sampling
2.4. Statistical Analysis
3. Results
3.1. Richness and Diversity
3.2. Structure
3.3. Floristic Composition and Environmental Variables
4. Discussion
4.1. Floristic Composition, Richness, Diversity, and Structure
4.2. Floristic Composition and Environmental Variables
4.3. Findings Implications and Application to Forest Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Artaxo, P.; Hansson, H.C.; Machado, L.A.T.; Rizzo, L.V. Tropical forests are crucial in regulating the climate on Earth. PLoS Clim. 2022, 1, e0000054. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; Niamir, A.; Broadbent, E.; Crouzeilles, R.; Barros, F.S.M.; Zambrano, A.M.A.; Baccini, A.; Aronson, J.; Goetz, S.; Reid, J.L.; et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 2019, 5, eaav3223. [Google Scholar] [CrossRef] [PubMed]
- Fundación Vida Silvestre Argentina–FVSA. State of the Atlantic Forest: Three Countries, 148 Million People, One of the Richest Forests on Earth; FVSA: Puerto Iguazú, Argentina, 2017. [Google Scholar]
- De Lima, R.A.F.; Dauby, G.; De Gasper, A.L.; Fernandez, E.P.; Vibrans, A.C.; Oliveira, A.A.; Prado, P.I.; Souza, V.C.; De Siqueira, F.M.; Ter Steege, H. Comprehensive conservation assessments reveal high extinction risks across Atlantic Forest trees. Science 2024, 383, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, I.A.; da Silva, J.P.; Lozano Sivisaca, D.C.; de Moraes, F.G.; Puglla, C.A.Y.; de Melo Silva Neto, C.; Barroca Silva, R.; Pereira Justino, S.T.; Roder, R.L.; James, J.N.; et al. Evaluating carbon stocks in soils of fragmented Brazilian Atlantic Forests (BAF) based on soil features and different methodologies. Sci. Rep. 2024, 14, 10007. [Google Scholar] [CrossRef]
- Murray-Smith, C.; Brummitt, N.A.; Oliveira-Filho, A.T.; Bachman, S.; Moat, J.; Lughadha, E.M.N.; Lucas, E.J. Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conserv. Biol. 2009, 23, 151–163. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Righelato, R. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 2014, 11, 2741–2754. [Google Scholar] [CrossRef]
- Martins, S.C.; Neto, E.S.; de Cassia Piccolo, M.; Almeida, D.Q.; de Camargo, P.B.; do Carmo, J.B.; Martinelli, L.A. Soil texture and chemical characteristics along an elevation range in the coastal Atlantic Forest of Southeast Brazil. Geoderma Reg. 2015, 5, 106–116. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Eller, C.B.; Bittencourt, P.R.L.; Mulligan, M. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann. Bot. 2014, 113, 909–920. [Google Scholar] [CrossRef]
- Roder, L.R.; Guerrini, I.A.; Lozano Sivisaca, D.C.; Yaguana Puglla, C.A.; Góes de Moraes, F.; Pinheiro da Silva, J.; Batista Fonseca, R.C.; Umbelino, M.T.; James, J.N.; Capra, G.F.; et al. Atlantic Rainforest Natural Regeneration in Fragmented Formations Affected by Increasing Human Disturbance. J. Environ. Manag. 2023, 325, 116521. [Google Scholar] [CrossRef]
- Gunter, S.; Weber, M.; Erreis, R.; Aguirre, N. Influence of distance to forest edges on natural regeneration of abandoned pastures: A case study in the tropical mountain rain forest of Southern Ecuador. Eur. J. For. Res. 2007, 126, 67–75. [Google Scholar] [CrossRef]
- Rozendaal, D.M.; Bongers, F.; Aide, T.M.; Alvarez-Dávila, E.; Ascarrunz, N.; Balvanera, P.; Becknell, J.M.; Bentos, T.; Brancalion, P.; Cabral, G.; et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 2019, 5, eaau3114. [Google Scholar] [CrossRef] [PubMed]
- Joly, C.A.; Metzger, J.P.; Tabarelli, M. Experiences from the Brazilian Atlantic Forest: Ecological findings and conservation initiatives. New Phytol. 2014, 204, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Lortie, C.J. An ecological tardis: The implications of facilitation through evolutionary time. Trends Ecol. Evol. 2007, 22, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Sandor, M.E.; Chazdon, R.L. Remnant trees affect species composition but not structure of tropical second-growth forest. PLoS ONE 2014, 9, e83284. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Cunha, A.R.; Martins, D. Classificação Climática para os municípios de Botucatu e São Manuel—SP. Rev. Irrig. 2009, 14, 1–11. [Google Scholar] [CrossRef]
- Ortega, V.R.; Engel, V.L. Conservação da biodiversidade de remanescentes de Mata Atlântica na região de Botucatu, SP. Rev. Inst. Florest. 1992, 4, 839–852. [Google Scholar]
- Jorge, L.A.B.; Sartori, M.S. Uso do solo e analise temporal da ocorrência de vegetação natural na Fazenda Experimental Edgárdia, em Botucatu-SP. Rev. Árvore. 2002, 26, 585–592. [Google Scholar] [CrossRef]
- Milliren, C.E.; Evans, C.R.; Richmond, T.K.; Dunn, E.C. Does an uneven sample size distribution across settings matter in cross-classified multilevel modeling? Results of a simulation study. Health Place 2018, 52, 121–126. [Google Scholar] [CrossRef]
- The Angiosperm Phylogeny Group–TAPG. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009, 161, 105–121. [Google Scholar] [CrossRef]
- Flora e Funga do Brasil–FFB. Flora do Brasil (Brazilian flora), Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 2024. Available online: http://floradobrasil.jbrj.gov.br/ (accessed on 30 August 2024).
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Raij, B.; van Andrade, J.C.; Cantareiia, H.; Quaggio, J.A. Analise Química Para Avaliaçao da Fertilidade de Solos Tropicais; Instituto Agronomico: Campinas, Brazil, 2001. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.4.1, R Foundation for Statistical Computing, Vienna. 2024. Available online: https://www.R-project.org/ (accessed on 29 August 2023).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; Mcglinn, D.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P. Package ‘Vegan’, Community Ecology Package, Version 2.5; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- De Cáseres, M.; Jasen, F. Package ‘indicspecies’, Relationship Between Species and Groups of Sites; Version 1.7.7; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Nelder, J.A.; Wedderburn, R.W. Generalized linear models. J. R. Statistical Soc. A 1972, 135, 370–384. [Google Scholar] [CrossRef]
- Westfall, P.H.; Tobias, R.D.; Rom, D.; Wolfinger, R.D.; Hochberg, Y. Multiple Comparisons and Multiple Tests Using the SAS System; SAS Institute Inc.: Cary, NC, USA, 1999. [Google Scholar]
- Chust, G.; Chave, J.; Condit, R.; Aguilar, S.; Lao, S.; Pérez, R. Determinants and spatial modeling of tree β-diversity in a tropical forest landscape in Panama. J. Veg. Sci. 2006, 17, 83–92. [Google Scholar] [CrossRef]
- Legendre, P.; Borcard, D.; Peres-Neto, P. Analyzing beta diversity partitioning the spatial variation of community composition data. Ecol. Monogr. 2005, 75, 435–450. [Google Scholar] [CrossRef]
- Dray, S.; Legendre, P.; Peres-Neto, P. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol. Model. 2006, 196, 483–493. [Google Scholar] [CrossRef]
- Souza, V.; Toledo, C.; Sampio, D.; Bígio, N.; Colletta, G.; Ivanauskas, N.; Flores, T. Guia das Plantas da Mata Atlântica Floresta Estacional; LPE Editora: Piracicaba/São Paulo, Brasil, 2019. [Google Scholar]
- Durigan, G.; Ramos, V.; Ivanauskas, N.; Franco, G. Espécies Indicadoras de Fitofisionomias na Transição Cerrado-Mata Atlântica no Estado de São Paulo; Secretaria do Meio Ambiente do Estado de São Paulo: São Paulo, Brasil, 2012. [Google Scholar]
- Finegan, B. The management potential of neotropical secondary lowland rain forest. For. Ecol. Manag. 1992, 47, 295–321. [Google Scholar] [CrossRef]
- Toniato, M.T.Z.; Oliveira-Filho, A.T. Variations in tree community composition and structure in a fragment of tropical semideciduous forest in southeastern Brazil related to different human disturbance histories. For. Ecol. Manag. 2004, 198, 319–339. [Google Scholar] [CrossRef]
- Liebsch, D.; Marques, M.C.M.; Goldenberg, R. How long does the Atlantic Rain Forest take to recover after a disturbance? Changes in species composition and ecological features during secondary succession. Biol. Conserv. 2008, 141, 1717–1725. [Google Scholar] [CrossRef]
- Martin, P.; Newton, A.C.; Bullock, J.M. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc. R. Soc. B. Biol Sci. 2013, 280, 2236. [Google Scholar] [CrossRef] [PubMed]
- Derroire, G.; Balvanera, P.; Castellanos-Castro, C.; Decocq, G.; Kennard, D.K.; Lebrija-Trejos, E.; Leiva, J.A.; Odén, P.C.; Powers, J.; Rico-Gray, V.; et al. Resilience of tropical dry forests—A meta-analysis of changes in species diversity and composition during secondary succession. Oikos 2016, 125, 1386–1397. [Google Scholar] [CrossRef]
- Martin, P.; Fahey, T.; Sherman, R. Vegetation zonation in a neotropical montane forest: Environment, disturbance and ecotones. Biotropica 2011, 43, 533–543. [Google Scholar] [CrossRef]
- Mathieu, J.; Rossi, J.P.; Mora, P.; Lavelle, P.; Martins, P.; Rouland, C.; Grimaldi, M. Recovery of soil macrofauna communities after forest clearance in Eastern Amazonia, Brazil. Conserv. Biol. 2005, 19, 1598–1605. [Google Scholar] [CrossRef]
- Schilling, A.C.; Batista, J.L.F. Curva de acumulação de espécies e suficiência amostral em florestas tropicais. Rev. Bras. Bot. 2008, 31, 179–187. [Google Scholar] [CrossRef]
- Potts, M.; Ashton, P.; Kaufman, L.; Plotkin, J. Habitat patterns in tropical rain forests: A comparison of 105 plots in northwest Borneo. Ecology 2002, 83, 2782–2797. [Google Scholar] [CrossRef]
- Ruokolainen, K.; Tuomisto, H.; Macía, M.; Higgins, M.; Yli-Halla, M. Are floristic and edaphic patterns in Amazonian rain forest congruent for trees, pteridophytes and Melastomataceae? J. Trop. Ecology 2007, 23, 13–25. [Google Scholar] [CrossRef]
- Cavatore, C.; Haury, C. Woody Encroachment Impacts on Soil Properties; Université de Tours: Tours, France, 2016. [Google Scholar]
- Deng, F.; Zang, R.; Chen, B. Identification of functional groups in an old-growth tropical montane rain forest on Hainan Island, China. For. Ecol. Manag. 2008, 255, 1820–1830. [Google Scholar] [CrossRef]
- Silva, V.E.; Nogueira, T.A.R.; Abreu-Junior, C.H.; He, Z.; Buzetti, S.; Laclau, J.-P.; Filho, M.C.M.T.; Grilli, E.; Murgia, I.; Capra, G.F. Influences of edaphoclimatic conditions on deep rooting and soil water availability in Brazilian Eucalyptus plantations. For. Ecol. Manag. 2020, 455, 117673. [Google Scholar] [CrossRef]
- DeWalt, S.; Maliakal, S.; Denslow, J. Changes in vegetation structure and composition along a tropical forest chronosequence: Implications for wildlife. For. Ecol. Manag. 2003, 182, 139–151. [Google Scholar] [CrossRef]
- Zanini, K.J.; Bergamin, R.S.; Machado, R.E.; Pillar, V.D.; Müller, S.C. Atlantic rain forest recovery: Successional drivers of floristic and structural patterns of secondary forest in Southern Brazil. J. Veg. Sci. 2014, 25, 1056–1068. [Google Scholar] [CrossRef]
- Marques, M.C.M.; Swaine, M.D.; Liebsch, D. Diversity distribution and floristic differentiation of the coastal lowland vegetation: Implications for the conservation of the Brazilian Atlantic Forest. Biodivers. Conserv. 2011, 20, 153–168. [Google Scholar] [CrossRef]
- Marques, M.C.M.; Grelle, C.E.V. The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-Diverse Forest; Springer: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Castellanos-Castro, C.; Newton, A. Environmental heterogeneity influences successional trajectories in Colombian seasonally dry tropical forests. Biotropica 2015, 47, 660–671. [Google Scholar] [CrossRef]
Family | Indicators Species | Indicator Value | ||
---|---|---|---|---|
>40 y 1 | 30 y 2 | 20 y 3 | ||
Apocynaceae | Aspidosperma polyneuron Müll. Arg. | 0.89 | 0.89 | |
Salicaceae | Casearia gossypiosperma Briq. | 0.94 | 0.94 | |
Salicaceae | Casearia sylvestris Sw. | 0.90 | ||
Sapindaceae | Diatenopteryx sorbifolia Radlk. | 0.77 | ||
Rutaceae | Esenbeckia densiflora (Chodat and Hassl.) Hassl. | 0.71 | ||
Fabaceae | Holocalyx balansae Micheli | 0.90 | ||
Caricaceae | Jacaratia spinosa (Aubl.) A.DC. | 0.78 | ||
Fabaceae | Machaerium brasiliense Vogel | 0.86 | 0.86 | |
Fabaceae | Machaerium villosulum Mart. | 0.87 | ||
Rutaceae | Metrodorea nigra A. St.-Hil. | 0.88 | 0.88 | |
Fabaceae | Pterogyne nitens Tul. | 0.68 | ||
Moraceae | Sorocea bonplandii (Baill.) W.C.Burger et al. | 0.82 | ||
Meliaceae | Trichilia claussenii C. DC. | 0.79 | ||
Urticaceae | Urera baccifera (L.) Gaudich. ex Wedd. | 0.89 | 0.89 |
Environmental Variables | Floristic Composition | |||
---|---|---|---|---|
Variable | % Variation | F | p-Value | |
Soil | P, Al, BS 1 | 0.37 | 2.70 | 0.001 *** |
Geographic | UTM Coordinates | 0.09 | 1.66 | 0.048 * |
Elevation | Altitude | 0.11 | 2.01 | 0.017 * |
Topographic | Slope, TMI 2 | 0.10 | 1.77 | 0.027 * |
All | 0.40 | 1.19 | 0.033 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivisaca, D.C.L.; Puglla, C.A.Y.; Passos, J.R.d.S.; Fonseca, R.C.B.; Ganga, A.; Capra, G.F.; Guerrini, I.A. Atlantic Forest Regeneration Dynamics Following Human Disturbance Cessation in Brazil. Environments 2024, 11, 243. https://doi.org/10.3390/environments11110243
Sivisaca DCL, Puglla CAY, Passos JRdS, Fonseca RCB, Ganga A, Capra GF, Guerrini IA. Atlantic Forest Regeneration Dynamics Following Human Disturbance Cessation in Brazil. Environments. 2024; 11(11):243. https://doi.org/10.3390/environments11110243
Chicago/Turabian StyleSivisaca, Deicy Carolina Lozano, Celso Anibal Yaguana Puglla, José Raimundo de Souza Passos, Renata Cristina Batista Fonseca, Antonio Ganga, Gian Franco Capra, and Iraê Amaral Guerrini. 2024. "Atlantic Forest Regeneration Dynamics Following Human Disturbance Cessation in Brazil" Environments 11, no. 11: 243. https://doi.org/10.3390/environments11110243
APA StyleSivisaca, D. C. L., Puglla, C. A. Y., Passos, J. R. d. S., Fonseca, R. C. B., Ganga, A., Capra, G. F., & Guerrini, I. A. (2024). Atlantic Forest Regeneration Dynamics Following Human Disturbance Cessation in Brazil. Environments, 11(11), 243. https://doi.org/10.3390/environments11110243