Multi-Objective Structural Optimization Design for Electric Excavator-Specific Battery Packs with Impact Resistance and Fatigue Endurance
<p>Image of the battery pack: (<b>a</b>) Physical mage of the battery pack; (<b>b</b>) Finite element model diagram of the battery pack; (<b>c</b>) Battery pack structure diagram.</p> "> Figure 2
<p>Modal diagram of the battery pack: (<b>a</b>) First-order modalities; (<b>b</b>) Second-order modes; (<b>c</b>) Third-order modalities; (<b>d</b>) Fourth-order modes; (<b>e</b>) Fifth-order modalities; (<b>f</b>) Sixth-order modes.</p> "> Figure 3
<p>Load curve graph.</p> "> Figure 4
<p>Stress contour map under mechanical impact conditions: (<b>a</b>) +Z direction operating condition; (<b>b</b>) −Z direction operating condition.</p> "> Figure 5
<p>Frequency response diagram.</p> "> Figure 6
<p>Fatigue life contour map.</p> "> Figure 7
<p>Comprehensive contribution chart for components.</p> "> Figure 8
<p>Structural response <span class="html-italic">R</span><sup>2</sup> graph: (<b>a</b>) Mass <span class="html-italic">R</span><sup>2</sup> <span class="html-italic">chart</span>; (<b>b</b>) Fatigue life <span class="html-italic">R</span><sup>2</sup> <span class="html-italic">chart</span>; (<b>c</b>) First-order mode <span class="html-italic">R</span><sup>2</sup> <span class="html-italic">chart</span>; (<b>d</b>) Maximum stress in the +Z direction <span class="html-italic">R</span><sup>2</sup> <span class="html-italic">chart</span>; (<b>e</b>) Maximum stress in the −Z direction <span class="html-italic">R</span><sup>2</sup> <span class="html-italic">chart</span>.</p> "> Figure 8 Cont.
<p>Structural response <span class="html-italic">R</span><sup>2</sup> graph: (<b>a</b>) Mass <span class="html-italic">R</span><sup>2</sup> <span class="html-italic">chart</span>; (<b>b</b>) Fatigue life <span class="html-italic">R</span><sup>2</sup> <span class="html-italic">chart</span>; (<b>c</b>) First-order mode <span class="html-italic">R</span><sup>2</sup> <span class="html-italic">chart</span>; (<b>d</b>) Maximum stress in the +Z direction <span class="html-italic">R</span><sup>2</sup> <span class="html-italic">chart</span>; (<b>e</b>) Maximum stress in the −Z direction <span class="html-italic">R</span><sup>2</sup> <span class="html-italic">chart</span>.</p> "> Figure 9
<p>Pareto optimal solution set diagram.</p> "> Figure 10
<p>Structural responses after optimization: (<b>a</b>) Optimized frequency response diagram; (<b>b</b>) Optimized fatigue life contour map; (<b>c</b>) Post-optimization +Z mechanical impact maximum stress cloud diagram; (<b>d</b>) Post-optimization −Z mechanical impact maximum stress cloud diagram.</p> "> Figure 10 Cont.
<p>Structural responses after optimization: (<b>a</b>) Optimized frequency response diagram; (<b>b</b>) Optimized fatigue life contour map; (<b>c</b>) Post-optimization +Z mechanical impact maximum stress cloud diagram; (<b>d</b>) Post-optimization −Z mechanical impact maximum stress cloud diagram.</p> ">
Abstract
:1. Introduction
2. Establishment of Finite Element Model for Electric Excavator Battery Pack
3. Battery Pack Structural Simulation Analysis
3.1. Modal Analysis of Battery Pack Constraints
3.2. Simulation Analysis of Mechanical Impact on Battery Packs
3.3. Simulation Analysis of Battery Pack Fatigue Life
3.3.1. Frequency Response Analysis of Battery Packs
3.3.2. Prediction of Battery Pack Fatigue Life
4. Battery Pack Multi-Objective Optimization Design
4.1. Selection of Variables for Multi-Objective Optimization in Battery Packs
4.2. Box–Behnken Experimental Design
4.3. Establishment of Approximate Models and Error Verification
4.4. Establishment and Solution of the Optimization Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tong, Z.; Miao, J.; Li, Y.; Tong, S.; Zhang, Q. Development of electric construction machinery in China: A review of key technologies and future directions. J. Zhejiang Univ. Sci. A 2021, 22, 245–264. [Google Scholar] [CrossRef]
- Huang, X.; Huang, Q.; Cao, H.; Cao, H. Battery capacity selection for electric construction machinery considering variable operating conditions and multiple interest claims. Energy 2023, 275, 127454. [Google Scholar] [CrossRef]
- Lin, T.; Wang, L.; Huang, W.; Ren, H. Performance analysis of an automatic idle speed control system with a hydraulic accumulator for pure electric construction machinery. Autom. Constr. 2017, 84, 184–194. [Google Scholar] [CrossRef]
- Huang, X.; Yan, W.; Cao, H.; Chen, S. Prospects for purely electric construction machinery: Mechanical components, control strategies and typical machines. Autom. Constr. 2024, 164, 105477. [Google Scholar] [CrossRef]
- Daniele, B.; Iora, P.; Tribioli, L.; Uberti, S. Electrification of Compact Off-Highway Vehicles-Overview of the Current State of the Art and Trends. Energies 2021, 14, 5565. [Google Scholar] [CrossRef]
- Lin, T.; Lin, Y.; Ren, H.; Chen, H.; Chen, Q.; Li, Z. Development and key technologies of pure electric construction machinery. Renew. Sustain. Energy Rev. 2020, 132, 110080. [Google Scholar] [CrossRef]
- Li, L.; Zhang, T.; Wu, K.; Lu, L.; Lin, L.; Xu, H. Design and Research on Electro-Hydraulic Drive and Energy Recovery System of the Electric Excavator Boom. Energies 2022, 15, 4757. [Google Scholar] [CrossRef]
- Ge, L.; Quan, L.; Zhang, X.; Zhao, B.; Yang, J. Efficiency improvement and evaluation of electric hydraulic excavator with speed and displacement variable pump. Energy Convers. Manag. 2017, 150, 62–71. [Google Scholar] [CrossRef]
- Kaliaperumal, M.; Dharanendrakumar, M.S.; Prasanna, S.; Abhishek, K.V.; Chidambaram, R.K.; Adams, S.; Zaghib, K.; Reddy, M.V. Cause and Mitigation of Lithium-Ion Battery Failure—A Review. Materials 2021, 14, 5676. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Shen, W.; Kapoor, A. Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles. Renew. Sustain. Energy Rev. 2016, 60, 1319–1331. [Google Scholar] [CrossRef]
- Hendricks, C.; Williard, N.; Mathew, S.; Pecht, M. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries. J. Power Sources 2015, 297, 113–120. [Google Scholar] [CrossRef]
- Kin, H.; Kim, G.; Ji, W.; Lee, Y.; Jang, S.; Shin, C. Random vibration fatigue analysis of a multi-material battery pack structure for an electric vehicle. Funct. Compos. Struct. 2021, 3, 025006. [Google Scholar]
- Shui, L.; Chen, F.; Garg, A.; Peng, X.; Bao, N.; Zhang, J. Design optimization of battery pack enclosure for electric vehicle. Struct. Multidiscip. Optim. 2018, 58, 331–347. [Google Scholar] [CrossRef]
- Pan, Y.; Xiong, Y.; Dai, W.; Diao, K.; Wu, L.; Wang, J. Crush and crash analysis of an automotive battery-pack enclosure for lightweight design. Int. J. Crashworthiness 2022, 27, 500–509. [Google Scholar] [CrossRef]
- Zhang, X.; Yue, X.; Pan, Y.; Du, H.; Liu, B. Crushing stress and vibration fatigue-life optimization of a battery-pack system. Struct. Multidiscip. Optim. 2023, 66, 48. [Google Scholar] [CrossRef]
- Pan, Y.; Xiong, Y.; Wu, L.; Diao, K.; Guo, W. Lightweight Design of an Automotive Battery-Pack Enclosure via Advanced High-Strength Steels and Size Optimization. Int. J. Automot. Technol. 2021, 22, 1279–1290. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, Y.; Pan, Y.; Xu, D.; Kawsar, I.; Liu, B.; Hou, L. Deep-learning-based inverse structural design of a battery-pack system. Reliab. Eng. Syst. Saf. 2023, 238, 109464. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, W.; Li, S.; Xu, M.; Huang, W.; Qing, Z. Finite Element Analysis and Optimization of Hydrogen Fuel Cell City Bus Body Frame Structure. Appl. Sci. 2023, 13, 10964. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Y.; Liu, X. Vibration Analysis and Control of the Hydraulic Excavator’s Power System. Noise Vib. Control 2017, 37, 203–206. [Google Scholar]
- GB/T 44257.1-2024; Traction Battery of Electric Earth-Moving Machinery-Part 1: Safety Requirements. The National Standardization Administration of China: Beijing, China, 2024.
- Dai, J.; Xiong, F.; Liu, J.; Chen, C.; Chen, H.; Yang, Y. Random vibration fatigue analysis and structural design improvement of battery pack based on an vehicle. J. Mech. Strength 2020, 42, 1266–1270. [Google Scholar]
- Li, J.; Hu, G.; Chen, J. Analysis and Optimization of Fatigue Caused by Vibrations in the Quick-Replacement Battery Box for Electric Vehicles. World Electr. Veh. J. 2023, 14, 226. [Google Scholar] [CrossRef]
- Debnath, D.; Ray, S.; Chakraborty, K. Development of a statistical model for reliability analysis of hybrid off-grid power system (HOPS). Energy Strategy Rev. 2016, 13–14, 213–221. [Google Scholar] [CrossRef]
- Li, M.; He, X.; Zhu, G.; Liu, J.; Gou, K.; Wang, X. Modeling and Parameter Calibration of Morchella Seed Based on Discrete Element Method. Appl. Sci. 2024, 14, 11134. [Google Scholar] [CrossRef]
- Gao, F.; Wang, H.; Li, Y.; Zio, E. Distributed-collaborative surrogate modeling approach for creep-fatigue reliability assessment of turbine blades considering multi-source uncertainty. Reliab. Eng. Syst. Saf. 2024, 250, 110316. [Google Scholar] [CrossRef]
- Kwon, H.; Choi, S. A trended Kriging model with R 2 indicator and application to design optimization. Aerosp. Sci. Technol. 2015, 43, 111–125. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Xiong, Y.; Pan, Y.; Wu, L.; Liu, B. Effective weight-reduction- and crashworthiness-analysis of a vehicle’s battery-pack system via orthogonal experimental design and response surface methodology. Eng. Fail. Anal. 2021, 128, 105635. [Google Scholar] [CrossRef]
Material Name | Elastic Modulus/(MPa) | Poisson’s Ratio | Yield Strength/(MPa) | Density/(kg·m−3) |
---|---|---|---|---|
3003-H18 | 68,948 | 0.33 | 181 | 2740 |
3004-H38 | 68,948 | 0.33 | 240 | 2740 |
Q235 | 210,000 | 0.274 | 235 | 7830 |
Q345 | 210,000 | 0.31 | 345 | 7870 |
Modal Order | First-Order Modalities | Second-Order Modes | Third-Order Modalities | Fourth-Order Modes | Fifth-Order Modalities | Sixth-Order Modes |
---|---|---|---|---|---|---|
Frequency (Hz) | 21.50 | 21.59 | 21.60 | 23.17 | 23.23 | 23.24 |
Response Variable | Initial Value | Pareto Value | Simulation Value | Error/% |
---|---|---|---|---|
M/kg | 987.80 | 922 | 931 | 0.98 |
L/cycle | 746,200 | 2,018,334 | 1,981,000 | 1.85 |
Q/Hz | 21.50 | 22.23 | 22.51 | 1.26 |
S1/MPa | 183.30 | 166.60 | 157.70 | 5.34 |
S2/MPa | 68.29 | 63.20 | 63.90 | 1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Qin, J.; Zhao, M.; Xu, M.; Huang, W.; Wu, F. Multi-Objective Structural Optimization Design for Electric Excavator-Specific Battery Packs with Impact Resistance and Fatigue Endurance. Energies 2025, 18, 669. https://doi.org/10.3390/en18030669
Li Z, Qin J, Zhao M, Xu M, Huang W, Wu F. Multi-Objective Structural Optimization Design for Electric Excavator-Specific Battery Packs with Impact Resistance and Fatigue Endurance. Energies. 2025; 18(3):669. https://doi.org/10.3390/en18030669
Chicago/Turabian StyleLi, Zihang, Jiao Qin, Ming Zhao, Minmin Xu, Wei Huang, and Fangming Wu. 2025. "Multi-Objective Structural Optimization Design for Electric Excavator-Specific Battery Packs with Impact Resistance and Fatigue Endurance" Energies 18, no. 3: 669. https://doi.org/10.3390/en18030669
APA StyleLi, Z., Qin, J., Zhao, M., Xu, M., Huang, W., & Wu, F. (2025). Multi-Objective Structural Optimization Design for Electric Excavator-Specific Battery Packs with Impact Resistance and Fatigue Endurance. Energies, 18(3), 669. https://doi.org/10.3390/en18030669