Leveraging Explainable Artificial Intelligence in Solar Photovoltaic Mappings: Model Explanations and Feature Selection
<p>Proposed methodology for explaining PV production mappings using SHAP values.</p> "> Figure 2
<p>Proposed methodology for feature selection using SHAP values.</p> "> Figure 3
<p>Examples of domain and exogenous features for a period of 24 h.</p> "> Figure 4
<p>XGBoost and TabNet overall SHAP impact values. Each point represents an individual training example, with its color indicating the magnitude of a specific feature’s value. The horizontal position of each point reflects the impact of that feature on the model’s output.</p> "> Figure 5
<p>Model performances on a summer day for the testing set (4 August 2020).</p> ">
Abstract
:1. Introduction
- We present a methodological framework for applying XAI to PV forecasting algorithms using SHAP local explanations. This framework was applied to a real-world dataset comprising two years of PV forecasting data from Madeira, Portugal, to uncover how feature importance varied throughout the year. By focusing on seasonal variations, this research offers valuable insights into how different factors influence PV forecasting models over time, addressing a gap in the literature where XAI’s application across seasons has been largely underexplored. The results showed an improvement in the performance of the forecasting methods (accuracy and computational cost).
- A feature selection methodology for PV forecasting, based on SHAP techniques, aimed at reducing computational costs through an informed reduction in the feature space and consequently of the model size. This methodology was evaluated using the dataset mentioned in the previous contribution. A comparison with classic feature extraction methods, namely Spearman correlation and variance threshold, is also presented.
2. Background and Related Works
2.1. PV Production Forecasting
2.2. Explainable Artificial Intelligence (XAI)
2.3. PV Forecasting and XAI
2.4. Summary
3. Methods
3.1. Model Explanations with SHAP
3.1.1. PV Production Mapping Algorithms
XGBoost
TabNet
3.1.2. Training and Testing Procedures
3.1.3. SHAP Explainer
3.2. Feature Selection with SHAP
4. Evaluation Methodology
4.1. PV Production and Solar Irradiance Data
4.1.1. Data Pre-Processing
4.1.2. Input Features
4.2. Experiments
4.2.1. Year-Long and Seasonal Model Explanations
4.2.2. Feature Selection and Benchmark
5. Results and Discussion
5.1. Year-Long Effect of Input Features
5.2. Seasonal Effect of the Input Features
5.3. Feature Selection
5.4. Benchmark
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LIME | Local Interpretable Model-Agnostic Explanation |
ML | Machine Learning |
PV | Solar Photovoltaic |
RMSE | Root Mean Squared Error |
SHAP | SHapley Additive exPlanations |
XAI | Explainable Artificial Intelligence |
References
- Gandhi, O.; Kumar, D.S.; Rodríguez-Gallegos, C.D.; Srinivasan, D. Review of Power System Impacts at High PV Penetration Part I: Factors Limiting PV Penetration. Sol. Energy 2020, 210, 181–201. [Google Scholar] [CrossRef]
- Pierro, M.; De Felice, M.; Maggioni, E.; Moser, D.; Perotto, A.; Spada, F.; Cornaro, C. Photovoltaic Generation Forecast for Power Transmission Scheduling: A Real Case Study. Sol. Energy 2018, 174, 976–990. [Google Scholar] [CrossRef]
- Machado, E.; Pinto, T.; Guedes, V.; Morais, H. Electrical Load Demand Forecasting Using Feed-Forward Neural Networks. Energies 2021, 14, 7644. [Google Scholar] [CrossRef]
- Rozas, W.; Pastor-Vargas, R.; García-Vico, A.M.; Carpio, J. Consumption–Production Profile Categorization in Energy Communities. Energies 2023, 16, 6996. [Google Scholar] [CrossRef]
- Chaudhary, P.; Rizwan, M. Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system. Renew. Energy 2018, 118, 928–946. [Google Scholar] [CrossRef]
- Sheik Mohammed, S.; Titus, F.; Thanikanti, S.B.; Sulaiman, S.M.; Deb, S.; Kumar, N.M. Charge Scheduling Optimization of Plug-In Electric Vehicle in a PV Powered Grid-Connected Charging Station Based on Day-Ahead Solar Energy Forecasting in Australia. Sustainability 2022, 14, 3498. [Google Scholar] [CrossRef]
- Gunning, D.; Aha, D. DARPA’s Explainable Artificial Intelligence (XAI) Program. AI Mag. 2019, 40, 44–58. [Google Scholar] [CrossRef]
- Machlev, R.; Heistrene, L.; Perl, M.; Levy, K.Y.; Belikov, J.; Mannor, S.; Levron, Y. Explainable Artificial Intelligence (XAI) techniques for energy and power systems: Review, challenges and opportunities. Energy AI 2022, 9, 100169. [Google Scholar] [CrossRef]
- Mitrentsis, G.; Lens, H. An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting. Appl. Energy 2022, 309, 118473. [Google Scholar] [CrossRef]
- Nallakaruppan, M.K.; Shankar, N.; Bhuvanagiri, P.B.; Padmanaban, S.; Bhatia Khan, S. Advancing solar energy integration: Unveiling XAI insights for enhanced power system management and sustainable future. Ain Shams Eng. J. 2024, 15, 102740. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; Abouelmagd, L.M.; Darwish, A.; Snasel, V.; Hassanien, A.E. Explainable AI and optimized solar power generation forecasting model based on environmental conditions. PLoS ONE 2024, 19, e0308002. [Google Scholar] [CrossRef] [PubMed]
- Petrosian, O.; Zhang, Y. Solar Power Generation Forecasting in Smart Cities and Explanation Based on Explainable AI. Smart Cities 2024, 7, 3388–3411. [Google Scholar] [CrossRef]
- Utama, C.; Meske, C.; Schneider, J.; Schlatmann, R.; Ulbrich, C. Explainable artificial intelligence for photovoltaic fault detection: A comparison of instruments. Sol. Energy 2023, 249, 139–151. [Google Scholar] [CrossRef]
- Kuzlu, M.; Cali, U.; Sharma, V.; Guler, O. Gaining Insight Into Solar Photovoltaic Power Generation Forecasting Utilizing Explainable Artificial Intelligence Tools. IEEE Access 2020, 8, 187814–187823. [Google Scholar] [CrossRef]
- Sarp, S.; Kuzlu, M.; Cali, U.; Elma, O.; Guler, O. An Interpretable Solar Photovoltaic Power Generation Forecasting Approach Using An Explainable Artificial Intelligence Tool. In Proceedings of the 2021 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16–18 February 2021. [Google Scholar] [CrossRef]
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- Al-Shahri, O.A.; Ismail, F.B.; Hannan, M.A.; Lipu, M.S.H.; Al-Shetwi, A.Q.; Begum, R.A.; Al-Muhsen, N.F.O.; Soujeri, E. Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. J. Clean. Prod. 2021, 284, 125465. [Google Scholar] [CrossRef]
- Dimitropoulos, N.; Sofias, N.; Kapsalis, P.; Mylona, Z.; Marinakis, V.; Primo, N.; Doukas, H. Forecasting of short-term PV production in energy communities through Machine Learning and Deep Learning algorithms. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems Applications (IISA), Chania Crete, Greece, 12–14 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Li, M.; Wang, W.; He, Y.; Wang, Q. Deep learning model for short-term photovoltaic power forecasting based on variational mode decomposition and similar day clustering. Comput. Electr. Eng. 2024, 115, 109116. [Google Scholar] [CrossRef]
- Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Van Deventer, W.; Horan, B.; Stojcevski, A. Forecasting of photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [Google Scholar] [CrossRef]
- Reindl, T.; Walsh, W.; Yanqin, Z.; Bieri, M. Energy meteorology for accurate forecasting of PV power output on different time horizons. Energy Procedia 2017, 130, 130–138. [Google Scholar] [CrossRef]
- Gomes, L.; Morais, H.; Gonçalves, C.; Gomes, E.; Pereira, L.; Vale, Z. Impact of Forecasting Models Errors in a Peer-to-Peer Energy Sharing Market. Energies 2022, 15, 3543. [Google Scholar] [CrossRef]
- Bae, K.Y.; Jang, H.S.; Jung, B.C.; Sung, D.K. Effect of Prediction Error of Machine Learning Schemes on Photovoltaic Power Trading Based on Energy Storage Systems. Energies 2019, 12, 1249. [Google Scholar] [CrossRef]
- De Hoog, J.; Perera, M.; Ilfrich, P.; Halgamuge, S. Characteristic profile: Improved solar power forecasting using seasonality models. ACM Sigenergy Energy Inform. Rev. 2021, 1, 95–106. [Google Scholar] [CrossRef]
- Huang, C.J.; Kuo, P.H. Multiple-Input Deep Convolutional Neural Network Model for Short-Term Photovoltaic Power Forecasting. IEEE Access 2019, 7, 74822–74834. [Google Scholar] [CrossRef]
- Limouni, T.; Yaagoubi, R.; Bouziane, K.; Guissi, K.; Baali, E.H. Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model. Renew. Energy 2023, 205, 1010–1024. [Google Scholar] [CrossRef]
- Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Hosain, M.T.; Jim, J.R.; Mridha, M.; Kabir, M.M. Explainable AI approaches in deep learning: Advancements, applications and challenges. Comput. Electr. Eng. 2024, 117, 109246. [Google Scholar] [CrossRef]
- Rožanec, J.; Trajkova, E.; Kenda, K.; Fortuna, B.; Mladenić, D. Explaining Bad Forecasts in Global Time Series Models. Appl. Sci. 2021, 11, 9243. [Google Scholar] [CrossRef]
- Jaakkola, T.; Alvarez Melis, D. Towards robust interpretability with self-explaining neural networks. Neural Inf. Process. Syst. (NIPS) 2018, 31. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. arXiv 2016, arXiv:1602.04938. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Arik, S.O.; Pfister, T. TabNet: Attentive Interpretable Tabular Learning. arXiv 2020, arXiv:1908.07442. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. arXiv 2019, arXiv:1907.10902. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Pereira, L.; Cavaleiro, J.; Morais, H. Understanding the Role of Solar PV and Battery Energy Storage in a Snack Bar: A Case Study in Madeira Island. In Proceedings of the 2023 IEEE 21st International Conference on Industrial Informatics (INDIN), Lemgo, Germany, 18–20 July 2023; pp. 1–7. [Google Scholar] [CrossRef]
- PRSMA; M-ITI; EEM; ACIF-CCIM. Installation Report of the DSM Demo (Final Version); Technical Report 4.11; European Commission: Funchal, Portugal, 2021.
- Bright, J.M. Solcast: Validation of a satellite-derived solar irradiance dataset. Sol. Energy 2019, 189, 435–449. [Google Scholar] [CrossRef]
- Pedro, A.; Krutnik, M.; Yadack, V.M.; Pereira, L.; Morais, H. Opportunities and Challenges for Small-Scale Flexibility in European Electricity Markets. Util. Policy 2023, 80, 101477. [Google Scholar] [CrossRef]
- Faustine, A.; Pereira, L. FPSeq2Q: Fully Parameterized Sequence to Quantile Regression for Net-Load Forecasting with Uncertainty Estimates. IEEE Trans. Smart Grid 2022, 13, 2440–2451. [Google Scholar] [CrossRef]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
XGBoost | TabNet |
---|---|
Number of Estimators (50–5000) | Feature Dimension Space (32–72) |
Maximum Depth (10–5000) | Output Dimension Space (4–12) |
Alpha regularizer (–) | Number of Decision Steps (1–4) |
Lambda regularizer (–) |
Input Type | Features |
---|---|
Domain | AirTemp, AlbedoDaily, Azimuth, CloudOpacity, DewpointTemp, Dhi, Dni, Ebh, Ghi, GtiFixedTilt, GtiTracking, PrecipitableWater, RelativeHumidity, SnowDepth, SurfacePressure, WindDirection10m, WindSpeed10m, Zenith |
Exogenous | Day X, Day Y, Day Z, Year X, Year Y |
XGBoost | TabNet | |||
---|---|---|---|---|
Rank | Feature | Value | Feature | Value |
1 | GtiFixedTilt | 0.1316 | Day X | 0.0641 |
2 | GtiTracking | 0.0356 | Dhi | 0.0206 |
3 | Day Y | 0.0234 | GtiTracking | 0.0181 |
4 | Ebh | 0.0143 | GtiFixedTilt | 0.0173 |
5 | Day X | 0.0065 | Day Y | 0.0167 |
6 | Ghi | 0.0061 | Ghi | 0.0145 |
7 | Dhi | 0.0057 | CloudOpacity | 0.0118 |
8 | Zenith | 0.0048 | Ebh | 0.0113 |
9 | CloudOpacity | 0.0044 | Dni | 0.0057 |
10 | Azimuth | 0.0038 | Zenith | 0.0052 |
11 | AirTemp | 0.0036 | Azimuth | 0.0051 |
12 | Year X | 0.0035 | Year X | 0.0045 |
13 | Year Y | 0.0030 | Year Y | 0.0040 |
14 | DewpointTemp | 0.0027 | AirTemp | 0.0036 |
15 | SurfacePressure | 0.0026 | AlbedoDaily | 0.0036 |
16 | PrecipitableWater | 0.0023 | WindSpeed10m | 0.0028 |
17 | Dni | 0.0022 | WindDirection10m | 0.0027 |
18 | WindSpeed10m | 0.0021 | PrecipitableWater | 0.0023 |
19 | WindDirection10m | 0.0016 | DewpointTemp | 0.0021 |
20 | RelativeHumidity | 0.0013 | RelativeHumidity | 0.0015 |
21 | AlbedoDaily | 0.0005 | SurfacePressure | 0.0007 |
22 | SnowDepth | 0.0000 | SnowDepth | 0.0000 |
Feature | Overall | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|
GtiFixedTilt | 1 | 1 (-) | 1 (-) | 1 (-) | 1 (-) |
GtiTracking | 2 | 2 (-) | 2 (-) | 2 (-) | 2 (-) |
Day Y | 3 | 3 (-) | 3 (-) | 3 (-) | 3 (-) |
Ebh | 4 | 4 (-) | 4 (-) | 4 (-) | 4 (-) |
Day X | 5 | 6 (↓) | 6 (↓) | 5 (-) | 5 (-) |
Ghi | 6 | 5 (↑) | 5 (↑) | 7 (↓) | 7 (↓) |
Dhi | 7 | 7 (-) | 8 (↓) | 6 (↑) | 6 (↑) |
Zenith | 8 | 8 (-) | 9 (↓) | 8 (-) | 9 (↓) |
CloudOpacity | 9 | 9 (-) | 7 (↑) | 9 (-) | 10 (↓) |
Azimuth | 10 | 11 (↓) | 10 (-) | 10 (-) | 11 (↓) |
AirTemp | 11 | 15 (↓) | 12 (↓) | 12 (↓) | 8 (↑) |
Year X | 12 | 10 (↑) | 11 (↑) | 11 (↑) | 14 (↓) |
Year Y | 13 | 12 (↑) | 13 (-) | 14 (↓) | 13 (-) |
DewpointTemp | 14 | 13 (↑) | 18 (↓) | 19 (↓) | 12 (↑) |
SurfacePressure | 15 | 14 (↑) | 15 (-) | 13 (↑) | 18 (↓) |
PrecipitableWater | 16 | 16 (-) | 16 (-) | 15 (↑) | 15 (↑) |
Dni | 17 | 17 (-) | 14 (↑) | 16 (↑) | 16 (↑) |
WindSpeed10m | 18 | 18 (-) | 17 (↑) | 17 (↑) | 17 (↑) |
WindDirection10m | 19 | 19 (-) | 19 (-) | 18 (↑) | 19 (-) |
RelativeHumidity | 20 | 20 (-) | 20 (-) | 20 (-) | 20 (-) |
AlbedoDaily | 21 | 21 (-) | 21 (-) | 21 (-) | 21 (-) |
nowDepth | 22 | 22 (-) | 22 (-) | 22 (-) | 22 (-) |
Feature | Overall | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|
Day X | 1 | 1 (-) | 1 (-) | 1 (-) | 1 (-) |
Dhi | 2 | 2 (-) | 3 (↓) | 2 (-) | 2 (-) |
GtiTracking | 3 | 3 (-) | 2 (↑) | 5 (↓) | 5 (↓) |
GtiFixedTilt | 4 | 5 (↓) | 6 (↓) | 4 (-) | 3 (↑) |
Day Y | 5 | 4 (↑) | 4 (↑) | 6 (↓) | 4 (↑) |
Ghi | 6 | 6 (-) | 5 (↑) | 7 (↓) | 6 (-) |
CloudOpacity | 7 | 7 (-) | 8 (↓) | 3 (↑) | 7 (-) |
Ebh | 8 | 8 (-) | 7 (↑) | 9 (↓) | 8 (-) |
Dni | 9 | 10 (↓) | 9 (-) | 14 (↓) | 12 (↓) |
Zenith | 10 | 9 (↑) | 10 (-) | 13 (↓) | 11 (↓) |
Azimuth | 11 | 12 (↓) | 15 (↓) | 8 (↑) | 9 (↑) |
Year X | 12 | 13 (↓) | 14 (↓) | 10 (↑) | 10 (↑) |
Year Y | 13 | 11 (↑) | 12 (↑) | 11 (↑) | 15 (↓) |
AirTemp | 14 | 16 (↓) | 11 (↑) | 16 (↓) | 14 (-) |
AlbedoDaily | 15 | 17 (↓) | 13 (↑) | 12 (↑) | 13 (↑) |
WindSpeed10m | 16 | 15 (↑) | 19 (↓) | 15 (↑) | 16 (-) |
WindDirection10m | 17 | 14 (↑) | 17 (-) | 18 (↓) | 17 (-) |
PrecipitableWater | 18 | 18 (-) | 18 (-) | 17 (↑) | 18 (-) |
DewpointTemp | 19 | 19 (-) | 16 (↑) | 19 (-) | 19 (-) |
RelativeHumidity | 20 | 20 (-) | 20 (-) | 20 (-) | 20 (-) |
SurfacePressure | 21 | 21 (-) | 21 (-) | 21 (-) | 21 (-) |
SnowDepth | 22 | 22 (-) | 22 (-) | 22 (-) | 22 (-) |
Library | Overall | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|
XGBoost (baseline) | 430.4 | 466.1 | 420.1 | 410.4 | 423.8 |
XGBoost (it. 1) | 413.4 | 451.4 | 417.1 | 407.6 | 375.0 |
XGBoost (it. 2) | 433.3 | 475.7 | 413.9 | 424.4 | 417.7 |
TabNet (baseline) | 390.7 | 421.1 | 395.3 | 369.6 | 375.2 |
TabNet (it. 1) | 361.8 | 391.9 | 315.8 | 373.4 | 363.4 |
TabNet (it. 2) | 368.7 | 389.6 | 324.4 | 381.2 | 377.5 |
Library | Average RAM (MB) |
---|---|
XGBoost (baseline) | 55.4 |
XGBoost (it. 1) | 44.9 |
XGBoost (it. 2) | 12.5 |
TabNet (baseline) | 25.5 |
TabNet (it. 1) | 45.0 |
TabNet (it. 2) | 17.8 |
Library | Overall | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|
XGBoost (baseline) | 430.4 | 466.1 | 420.1 | 410.4 | 423.8 |
XGBoost (corr) | 509.6 | 528.4 | 523.3 | 497.0 | 490.0 |
XGBoost (var) | 1023.8 | 1168.6 | 931.2 | 890.5 | 1107.9 |
TabNet (baseline) | 390.7 | 421.1 | 395.3 | 369.6 | 375.2 |
TabNet (corr) | 398.6 | 410.2 | 394.7 | 392.9 | 397.0 |
TabNet (var) | 988.8 | 1068.5 | 1140.8 | 843.8 | 890.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, E.; Esteves, A.; Morais, H.; Pereira, L. Leveraging Explainable Artificial Intelligence in Solar Photovoltaic Mappings: Model Explanations and Feature Selection. Energies 2025, 18, 1282. https://doi.org/10.3390/en18051282
Gomes E, Esteves A, Morais H, Pereira L. Leveraging Explainable Artificial Intelligence in Solar Photovoltaic Mappings: Model Explanations and Feature Selection. Energies. 2025; 18(5):1282. https://doi.org/10.3390/en18051282
Chicago/Turabian StyleGomes, Eduardo, Augusto Esteves, Hugo Morais, and Lucas Pereira. 2025. "Leveraging Explainable Artificial Intelligence in Solar Photovoltaic Mappings: Model Explanations and Feature Selection" Energies 18, no. 5: 1282. https://doi.org/10.3390/en18051282
APA StyleGomes, E., Esteves, A., Morais, H., & Pereira, L. (2025). Leveraging Explainable Artificial Intelligence in Solar Photovoltaic Mappings: Model Explanations and Feature Selection. Energies, 18(5), 1282. https://doi.org/10.3390/en18051282