Dimensionality Reduction and Clustering Strategies for Label Propagation in Partial Discharge Data Sets
"> Figure 1
<p>The proposed label propagation strategy.</p> "> Figure 2
<p>Effects of pre-processing on PRPDs: (<b>a</b>) original PRPD; (<b>b</b>) PRPD after amplitude scaling; (<b>c</b>) PRPD after amplitude scaling (detail); (<b>d</b>) scaled PRPD after grey-scale closing.</p> "> Figure 3
<p>Detailed view of the PRPD data set clustering procedure. The variables <span class="html-italic">d</span> and <span class="html-italic">k</span> denote the dimensionality of the latent space and the number of clusters, respectively.</p> "> Figure 4
<p>General experimental setup for acquisition and analysis of partial discharge data.</p> "> Figure 5
<p>Example of a PRPD pattern (<math display="inline"><semantics> <mrow> <mn>256</mn> <mspace width="3.33333pt"/> <mo>×</mo> <mspace width="3.33333pt"/> <mn>256</mn> </mrow> </semantics></math> matrix).</p> "> Figure 6
<p>Number of PRPD diagrams for each hydroelectric generator in our data set.</p> "> Figure 7
<p>Silhouette scores for each configuration. A grey bar refers to the weighted average of Silhouette scores (<math display="inline"><semantics> <msub> <mover accent="true"> <mi>α</mi> <mo>¯</mo> </mover> <mi>w</mi> </msub> </semantics></math>, left vertical axis) across hydroelectric generators, while the black dot indicates the corresponding standard deviation (<math display="inline"><semantics> <msub> <mi>σ</mi> <mi>α</mi> </msub> </semantics></math>, right vertical axis).</p> "> Figure 8
<p>Caliński–Harabasz scores for each configuration. A grey bar refers to the weighted average of Caliński–Harabasz scores (<math display="inline"><semantics> <msub> <mover accent="true"> <mi>β</mi> <mo>¯</mo> </mover> <mi>w</mi> </msub> </semantics></math>, left vertical axis) across hydroelectric generators, while the black dot indicates the corresponding standard deviation (<math display="inline"><semantics> <msub> <mi>σ</mi> <mi>β</mi> </msub> </semantics></math>, right vertical axis).</p> "> Figure 9
<p>Davies–Bouldin scores for each configuration. A grey bar refers to the weighted average of Davies–Bouldin scores (<math display="inline"><semantics> <msub> <mover accent="true"> <mi>γ</mi> <mo>¯</mo> </mover> <mi>w</mi> </msub> </semantics></math>, left vertical axis) across hydroelectric generators, while the black dot indicates the corresponding standard deviation (<math display="inline"><semantics> <msub> <mi>σ</mi> <mi>γ</mi> </msub> </semantics></math>, right vertical axis).</p> "> Figure 10
<p>Weighted average Silhouette scores (<math display="inline"><semantics> <msub> <mover accent="true"> <mi>α</mi> <mo>¯</mo> </mover> <mi>w</mi> </msub> </semantics></math>) vs. weighted average Chaliński–Harabasz scores (<math display="inline"><semantics> <msub> <mover accent="true"> <mi>β</mi> <mo>¯</mo> </mover> <mi>w</mi> </msub> </semantics></math>).</p> "> Figure 11
<p>Weighted average Silhouette scores (<math display="inline"><semantics> <msub> <mover accent="true"> <mi>α</mi> <mo>¯</mo> </mover> <mi>w</mi> </msub> </semantics></math>) vs. weighted average Davies–Bouldin scores (<math display="inline"><semantics> <msub> <mover accent="true"> <mi>γ</mi> <mo>¯</mo> </mover> <mi>w</mi> </msub> </semantics></math>).</p> "> Figure 12
<p>Representative PRPDs from clusters 0 (<b>a</b>) and 1 (<b>b</b>) obtained from the best configuration selected by the Silhouette score for the machine 12. Vertical and horizontal axes indicate the indices of a 256 × 256 PRPD matrix.</p> "> Figure 13
<p>Examples of two very distinct PRPDs associated to one cluster (cluster 0) obtained from the best configuration selected by the Davies–Bouldin score for the machine 12. Vertical and horizontal axes indicate the indices of a 256 × 256 PRPD matrix.</p> ">
Abstract
:1. Introduction
- The proposal of a functional label propagation technique tested in PRPDs obtained from online hydrogenerators;
- A complete methodology for setup optimization of the label propagation algorithm by assessing clustering performance;
- A pre-processing procedure to cope with PRPDs with different amplitude scales.
2. The Proposed Label Propagation Algorithm
2.1. Pre-Processing
2.2. Dimensionality Reduction
- Principal component analysis (PCA): It is a well-known mapping based on projecting data points onto directions given by the eigenvectors of the data covariance matrix. Such eigenvectors can be ordered according to their importance in terms of representing the data [18]. Despite the time of its proposal, the technique and its variants are still used in several current applications [19].
- Kernel PCA: This technique can be considered an extension of PCA, where data are subjected to a kernel transformation before the application of PCA. Such data preprocessing helps PCA capture nonlinear relations in data points [20]. The kernels tested so far in this work are the following: radial basis function (RBF) and cosine.
- Pairwise controlled manifold approximation projection (PaCMAP): This recent algorithm aims to preserve local and global structures of the original data points in the process of reducing dimensionality. The technique considers three types of data pairs—near, mid, and further pairs—to each of which a loss function is associated. A total loss, defined as the linear combination of the three loss functions, guides the optimization process, favoring better control over the attractive and repulsive forces between data points [21].
2.3. Clustering
Algorithm 1: K-means |
Input: number of clusters , data set Output: data set labels Choose randomly k centroids among data points; |
repeat |
Assign each data point to the nearest cluster centroid; |
Recalculate the cluster centroids based on the mean Euclidian distance of all data points assigned to each cluster; |
until Cluster assignments no longer change significantly |
Algorithm 2: K-means++ |
Input: number of clusters , data set Output: data set labels Select the first centroid randomly from the data points; repeat |
Compute the Euclidian distance of each data point from the nearest centroid; |
Determine a new centroid, by using a weighted probability distribution, where each data point can be chosen with a probability proportional to the square of its Euclidian distance to the corresponding centroid; |
until k centroids have been chosen |
Run the standard k-means algoritm, skipping the first step (Choose randomly k centroids). |
2.4. Feature Scaling
3. Evaluation Methodology
3.1. PRPD Data Set
3.2. Amplitude Scaling Factor
3.3. Number of Reduced Dimensions
- Number of components: integers in the interval .
- Number of neighbors: 10 (default value in the reference code (https://github.com/YingfanWang/PaCMAP, accessed on 17 November 2024)).
- MN_ratio: ten equally spaced samples in the interval .
- FP_ratio: integers in the interval .
3.4. Number of Clusters
3.5. Performance Assessment of the Clustering System
3.5.1. Silhouette Score [26]
3.5.2. Caliński–Harabasz Score [27]
3.5.3. Davies–Bouldin Score [28]
3.5.4. Fowlkes-Mallows Index [29,30]
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raymond, W.J.K.; Illias, H.A.; Bakar, A.H.A.; Mokhlis, H. Partial discharge classifications: Review of recent progress. Measurement 2015, 68, 164–181. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Z.; Wang, H. A Review of Online Partial Discharge Measurement of Large Generators. Energies 2017, 10, 1694. [Google Scholar] [CrossRef]
- Angrisani, L.; Daponte, P.; Lupò, G.; Petrarca, C.; Vitelli, M. Analysis of ultrawide-band detected partial discharges by means of a multiresolution digital signal-processing method. Measurement 2000, 27, 207–221. [Google Scholar] [CrossRef]
- IEC-60034-27-2; Rotating Electrical Machines—Part 27-2: Online Partial Discharge Measurements on Stator Winding Insulation of Rotating Electrical Machines. Technical Report; International Electrotechnical Commission: Geneva, Switzerland, 2012.
- Satish, L.; Gururaj, B. Use of hidden Markov models for partial discharge pattern classification. IEEE Trans. Electr. Insul. 1993, 28, 172–182. [Google Scholar] [CrossRef]
- Salama, M.; Bartnikas, R. Fuzzy logic applied to PD pattern classification. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 118–123. [Google Scholar] [CrossRef]
- Hunter, J.A.; Lewin, P.L.; Hao, L.; Walton, C.; Michel, M. Autonomous classification of PD sources within three-phase 11 kV PILC cables. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2117–2124. [Google Scholar] [CrossRef]
- Satish, L.; Gururaj, B.I. Partial discharge pattern classification using multilayer neural networks. IEE Proc. A (Sci. Meas. Technol.) 1993, 140, 323–330. [Google Scholar] [CrossRef]
- Catterson, V.M.; Sheng, B. Deep neural networks for understanding and diagnosing partial discharge data. In Proceedings of the 2015 IEEE Electrical Insulation Conference (EIC), Seattle, WA, USA, 7–10 June 2015; pp. 218–221. [Google Scholar] [CrossRef]
- Barrios, S.; Buldain, D.; Comech, M.P.; Gilbert, I.; Orue, I. Partial Discharge Classification Using Deep Learning Methods—Survey of Recent Progress. Energies 2019, 12, 2485. [Google Scholar] [CrossRef]
- Karimi, M.; Majidi, M.; MirSaeedi, H.; Arefi, M.M.; Oskuoee, M. A Novel Application of Deep Belief Networks in Learning Partial Discharge Patterns for Classifying Corona, Surface, and Internal Discharges. IEEE Trans. Ind. Electron. 2020, 67, 3277–3287. [Google Scholar] [CrossRef]
- Mantach, S.; Ashraf, A.; Janani, H.; Kordi, B. A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set. Energies 2021, 14, 1355. [Google Scholar] [CrossRef]
- Lu, S.; Chai, H.; Sahoo, A.; Phung, B.T. Condition Monitoring Based on Partial Discharge Diagnostics Using Machine Learning Methods: A Comprehensive State-of-the-Art Review. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1861–1888. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 24 November 2024).
- Zhu, X.; Ghahramani, Z. Learning from Labeled and Unlabeled Data with Label Propagation; Technical Report CMU-CALD-02-107; Carnegie Mellon University: Pittsburgh, PA, USA, 2002. [Google Scholar]
- Arthur, D.; Vassilvitskii, S. K-means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- Soille, P. Morphological Image Analysis: Principles and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Pearson, K. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A.; Müller, K.R. Kernel principal component analysis. In Artificial Neural Networks—ICANN’97, Proceedings of the 7th International Conference, Lausanne, Switzerland, 8–10 October 1997; Gerstner, W., Germond, A., Hasler, M., Nicoud, J.D., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 583–588. [Google Scholar]
- Wang, Y.; Huang, H.; Rudin, C.; Shaposhnik, Y. Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMap, and PaCMAP for Data Visualization. J. Mach. Learn. Res. 2021, 22, 1–73. [Google Scholar]
- MacQueen, J.B. Some Methods for classification and Analysis of Multivariate Observations. Proc. Fifth Berkeley Symp. Math. Stat. Probab. 1967, 1, 281–297. [Google Scholar]
- Amorim, H.P.; De Carvalho, A.T.; de Oliveira Fo, O.B.; Levy, A.S.F.; Sans, J. Instrumentation for Monitoring and Analysis of Partial Discharges Based on Modular Architecture. In Proceedings of the 2008 International Conference on High Voltage Engineering and Application, Chongqing, China, 9–12 November 2008; pp. 596–599. [Google Scholar] [CrossRef]
- Zhu, M.; Ghodsi, A. Automatic dimensionality selection from the scree plot via the use of profile likelihood. Comput. Stat. Data Anal. 2006, 51, 918–930. [Google Scholar] [CrossRef]
- Murphy, K.P. Probabilistic Machine Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [Google Scholar] [CrossRef]
- Fowlkes, E.B.; Mallows, C.L. A Method for Comparing Two Hierarchical Clusterings. J. Am. Stat. Assoc. 1983, 78, 553–569. [Google Scholar] [CrossRef]
- Meilă, M. Comparing clusterings—An information based distance. J. Multivar. Anal. 2007, 98, 873–895. [Google Scholar] [CrossRef]
- Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
ID | ||||
---|---|---|---|---|
0.5791 | 0.1078 | 10 | 7 | 64 |
0.5775 | 0.1213 | 10 | 8 | 42 |
0.5766 | 0.1283 | 10 | 8 | 10 |
0.5711 | 0.1162 | 10 | 9 | 32 |
0.5626 | 0.1331 | 10 | 7 | 20 |
0.5580 | 0.1693 | 10 | 9 | 54 |
0.5481 | 0.0908 | 10 | 9 | 55 |
0.5464 | 0.0927 | 10 | 6 | 33 |
0.5441 | 0.0893 | 10 | 7 | 21 |
0.5411 | 0.0986 | 10 | 7 | 43 |
ID | ||||
---|---|---|---|---|
3.1184 × 103 | 2.4845 × 10−1 | 35 | 19 | 2 |
2.7782 × 103 | 2.7054 × 10−1 | 35 | 25 | 3 |
2.7754 × 103 | 2.4850 × 10−1 | 19 | 14 | 4 |
2.2416 × 103 | 2.5429 × 10−1 | 19 | 15 | 5 |
1.6682 × 103 | 2.2756 × 10−1 | 25 | 17 | 14 |
1.5380 × 103 | 2.2156 × 10−1 | 25 | 15 | 15 |
4.3822 × 102 | 1.2832 × 10−1 | 10 | 8 | 10 |
4.2722 × 102 | 1.3319 × 10−1 | 10 | 7 | 20 |
ID | ||||
---|---|---|---|---|
0.5023 | 0.2048 | 27 | 17 | 37 |
0.5078 | 0.2073 | 27 | 16 | 36 |
0.5837 | 0.2215 | 25 | 15 | 15 |
0.6126 | 0.1213 | 10 | 8 | 42 |
0.6165 | 0.1078 | 10 | 7 | 64 |
0.6220 | 0.1283 | 10 | 8 | 10 |
0.6241 | 0.1162 | 10 | 9 | 32 |
0.6396 | 0.1693 | 10 | 9 | 54 |
0.6522 | 0.1331 | 10 | 7 | 20 |
0.6560 | 0.2094 | 96 | 36 | 35 |
Configuration | SIL | CHA | DBO |
---|---|---|---|
ID | 64 | 2 | 37 |
AS | Yes | No | Yes |
Closing | Yes | No | No |
DR | PaCMAP | PCA | PCA |
Clustering | k-means++ | k-means++ | k-means++ |
FS–DR | Yes | No | Yes |
FS–CL | No | No | Yes |
ID | AS | Closing | DR | Clustering | FS–DR | FS–CL |
---|---|---|---|---|---|---|
42 | Yes | No | PaCMAP | k-means++ | Yes | No |
10 | No | No | PaCMAP | k-means++ | No | No |
20 | No | No | PaCMAP | k-means++ | Yes | No |
54 | Yes | Yes | PaCMAP | k-means++ | No | No |
1.0000 | 0.7731 | −0.7553 | |
0.7731 | 1.0000 | −0.4100 | |
−0.7553 | −0.4100 | 1.0000 |
Statistics | ID 02 | ID 37 | ID 64 |
---|---|---|---|
0.6394 | 0.6462 | 0.6504 | |
0.1727 | 0.1344 | 0.0864 | |
0.3262 | 0.4113 | 0.4667 | |
0.9276 | 0.9171 | 0.8604 |
Machine | Reduction | |||
---|---|---|---|---|
1 | 268 | 3 | 0.0112 | 98.8806% |
2 | 192 | 2 | 0.0104 | 98.9583% |
3 | 230 | 2 | 0.0087 | 99.1304% |
4 | 94 | 2 | 0.0213 | 97.8723% |
5 | 314 | 3 | 0.0096 | 99.0446% |
6 | 338 | 2 | 0.0059 | 99.4083% |
7 | 338 | 2 | 0.0059 | 99.4083% |
8 | 68 | 2 | 0.0294 | 97.0588% |
9 | 268 | 5 | 0.0187 | 98.1343% |
10 | 104 | 2 | 0.0192 | 98.0769% |
11 | 254 | 2 | 0.0079 | 99.2126% |
12 | 128 | 2 | 0.0156 | 98.4375% |
13 | 69 | 2 | 0.0290 | 97.1014% |
14 | 118 | 2 | 0.0169 | 98.3051% |
15 | 144 | 2 | 0.0139 | 98.6111% |
16 | 143 | 2 | 0.0140 | 98.6014% |
17 | 144 | 4 | 0.0278 | 97.2222% |
18 | 96 | 2 | 0.0208 | 97.9167% |
19 | 120 | 2 | 0.0167 | 98.3333% |
20 | 72 | 2 | 0.0278 | 97.2222% |
21 | 120 | 2 | 0.0167 | 98.3333% |
22 | 96 | 2 | 0.0208 | 97.9167% |
23 | 120 | 2 | 0.0167 | 98.3333% |
24 | 121 | 2 | 0.0165 | 98.3471% |
25 | 120 | 2 | 0.0167 | 98.3333% |
Total | 4079 | 57 | 0.0140 | 98.6026% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zampolo, R.F.; Lopes, F.H.R.; de Oliveira, R.M.S.; Fernandes, M.F.; Dmitriev, V. Dimensionality Reduction and Clustering Strategies for Label Propagation in Partial Discharge Data Sets. Energies 2024, 17, 5936. https://doi.org/10.3390/en17235936
Zampolo RF, Lopes FHR, de Oliveira RMS, Fernandes MF, Dmitriev V. Dimensionality Reduction and Clustering Strategies for Label Propagation in Partial Discharge Data Sets. Energies. 2024; 17(23):5936. https://doi.org/10.3390/en17235936
Chicago/Turabian StyleZampolo, Ronaldo F., Frederico H. R. Lopes, Rodrigo M. S. de Oliveira, Martim F. Fernandes, and Victor Dmitriev. 2024. "Dimensionality Reduction and Clustering Strategies for Label Propagation in Partial Discharge Data Sets" Energies 17, no. 23: 5936. https://doi.org/10.3390/en17235936
APA StyleZampolo, R. F., Lopes, F. H. R., de Oliveira, R. M. S., Fernandes, M. F., & Dmitriev, V. (2024). Dimensionality Reduction and Clustering Strategies for Label Propagation in Partial Discharge Data Sets. Energies, 17(23), 5936. https://doi.org/10.3390/en17235936