Potential for Using Composts Produced from Agri-Food Industry Waste as Biocomponents of Liquid and Solid Fuels
<p>Fatty acid methyl ester composition of the analyzed composts obtained from agri-food industry waste.</p> "> Figure 2
<p>Biplot of FAME contents in the compost samples, showing the first two principal components (PC1 and PC2) of the PCA model that together explain 73.5% of the total variance, i.e., 41.85% and 31.64% for PC1 and PC2, respectively. The blue biplot vectors indicate the strength and direction of factor loading for all the analyzed fatty acids. 1—garden compost, 2—buckwheat husk compost, 3—organic compost, 4—organic compost-pellets.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composts
2.2. Fatty Acid Methyl Ester Analysis
2.3. Determination of Calorific Value and Heat of Combustion
- LHV—calorific value (lower heating value) [MJ∙kg−1];
- HHV—heat of combustion (higher heating value) [MJ∙kg−1];
- w—moisture content of the sample [%];
- Ha—hydrogen content of the sample [%];
- 24.43—coefficient accounting for the heat of water vaporization at 25 °C in pellets with a 1% water content;
- 8.94—coefficient accounting for the stoichiometry of the hydrogen combustion reaction (quantitative changes).
2.4. Statistical Analysis
3. Results and Discussion
3.1. Identification and Composition of the Fatty Acid Methyl Esters
3.2. Calorific Value and Heat of Combustion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.H.; Tee, K.; Elnahass, M.; Ahmed, R. Assessing the Environmental Impacts of Renewable Energy Sources: A Case Study on Air Pollution and Carbon Emissions in China. J. Environ. Manag. 2023, 345, 118525. [Google Scholar] [CrossRef] [PubMed]
- Rogulska, M.; Grzybek, A.; Szlachta, J.; Tys, J.; Krasuska, E.; Biernat, K.; Bajdor, K. Linking Agriculture and Energy in the Context of Achieving Low-Emission Economy Goals in Poland. Pol. J. Agron. 2011, 7, 92–101. [Google Scholar]
- Angulo-Mosquera, L.S.; Alvarado-Alvarado, A.A.; Rivas-Arrieta, M.J.; Cattaneo, C.R.; Rene, E.R.; García-Depraect, O. Production of Solid Biofuels from Organic Waste in Developing Countries: A Review from Sustainability and Economic Feasibility Perspectives. Sci. Total Environ. 2021, 795, 148816. [Google Scholar] [CrossRef] [PubMed]
- Jameel, M.K.; Mustafa, M.A.; Ahmed, H.S.; jassim Mohammed, A.; Ghazy, H.; Shakir, M.N.; Lawas, A.M.; khudhur Mohammed, S.; Idan, A.H.; Mahmoud, Z.H.; et al. Biogas: Production, Properties, Applications, Economic and Challenges: A Review. Results Chem. 2024, 7, 101549. [Google Scholar] [CrossRef]
- Rajak, A.K.; Madiga, H.; Mahato, D.L.; Pothu, R.; Periyasami, G.; Sarangi, P.K.; Boddula, R.; SL, K.M. Exploring the Peel Ash of Musa Acuminate as a Heterogeneous Green Catalyst for Producing Biodiesel from Niger Oil: A Sustainable and Circular Bio Economic Approach. Sustain. Chem. Pharm. 2024, 39, 101622. [Google Scholar] [CrossRef]
- Prasad, S.; Yadav, K.K.; Kumar, S.; Pandita, P.; Bhutto, J.K.; Alreshidi, M.A.; Ravindran, B.; Yaseen, Z.M.; Osman, S.M.; Cabral-Pinto, M.M.S. Review on Biofuel Production: Sustainable Development Scenario, Environment, and Climate Change Perspectives—A Sustainable Approach. J. Environ. Chem. Eng. 2024, 12, 111996. [Google Scholar] [CrossRef]
- Honcharuk, I.; Tokarchuk, D.; Gontaruk, Y.; Kolomiiets, T. Production and Use of Biogas and Biomethane from Waste for Climate Neutrality and Development of Green Economy. J. Ecol. Eng. 2024, 25, 20–32. [Google Scholar] [CrossRef]
- Hassan, N.Y.I.; Badawi, E.Y.M.; Mostafa, D.; Wahed, N.A.; Mohamed, M.S.; Abdelhamid, A.N.; Ashraf, M.; Asry, H.; Bassiony, D. Compositing: An Eco-Friendly Solution for Organic Waste Management to Mitigate the Effects of Climate Change. Innovare J. Soc. Sci. 2023, 11, 1–7. [Google Scholar] [CrossRef]
- Krasowska, M.; Kowczyk-Sadowy, M. Assessment of the Possibility of Using Waste from Agri-Food Processing for Fertilization Purposes. Stud. Quat. 2022, 39, 41–47. [Google Scholar] [CrossRef]
- Vasileiadou, A.; Zoras, S.; Iordanidis, A. Biofuel Potential of Compost-like Output from Municipal Solid Waste: Multiple Analyses of Its Seasonal Variation and Blends with Lignite. Energy 2021, 236, 121457. [Google Scholar] [CrossRef]
- Kucbel, M.; Raclavská, H.; Růžičková, J.; Švédová, B.; Sassmanová, V.; Drozdová, J.; Raclavský, K.; Juchelková, D. Properties of Composts from Household Food Waste Produced in Automatic Composters. J. Environ. Manag. 2019, 236, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Sienkiewicz, A.; Piotrowska-Niczyporuk, A.; Bajguz, A. Fatty Acid Methyl Esters from the Herbal Industry Wastes as a Potential Feedstock for Biodiesel Production. Energies 2020, 13, 3702. [Google Scholar] [CrossRef]
- Tanwar, M.D.; Tanwar, P.K.; Bhand, Y.; Bhand, S.; Jadhav, K.; Bhand, S. Biofuels: Production and Properties as Substitute Fuels. In Advanced Biodiesel-Technological Advances, Challenges, and Sustainability Considerations; IntechOpen: London, UK, 2023. [Google Scholar]
- Piotrowska-Cyplik, A.; Chrzanowski, Ł.; Cyplik, P.; Dach, J.; Olejnik, A.; Staninska, J.; Czarny, J.; Lewicki, A.; Marecik, R.; Powierska-Czarny, J. Composting of Oiled Bleaching Earth: Fatty Acids Degradation, Phytotoxicity and Mutagenicity Changes. Int. Biodeterior. Biodegrad. 2013, 78, 49–57. [Google Scholar] [CrossRef]
- Plachá, D.; Raclavská, H.; Kučerová, M.; Kuchařová, J. Volatile Fatty Acid Evolution in Biomass Mixture Composts Prepared in Open and Closed Bioreactors. Waste Manag. 2013, 33, 1104–1112. [Google Scholar] [CrossRef]
- Zajonc, O.; Frydrych, J.; Jezerska, L. Pelletization of Compost for Energy Utilization. IERI Procedia 2014, 8, 2–10. [Google Scholar] [CrossRef]
- Hafid, H.S.; Omar, F.N.; Abdul Rahman, N.; Wakisaka, M. Innovative Conversion of Food Waste into Biofuel in Integrated Waste Management System. Crit. Rev. Environ. Sci. Technol. 2022, 52, 3453–3492. [Google Scholar] [CrossRef]
- Ryms, M.; Lewandowski, W.M.; Januszewicz, K.; Klugmann-Radziemska, E.; Ciunel, K. Methods of Liquid Biofuel Production-the Biodiesel Example. Proc. ECOpole 2013, 7, 511–516. [Google Scholar]
- Ali Ijaz Malik, M.; Zeeshan, S.; Khubaib, M.; Ikram, A.; Hussain, F.; Yassin, H.; Qazi, A. A Review of Major Trends, Opportunities, and Technical Challenges in Biodiesel Production from Waste Sources. Energy Convers. Manag. X 2024, 23, 100675. [Google Scholar] [CrossRef]
- Cardinali, A.; Pizzeghello, D.; Zanin, G. Fatty Acid Methyl Ester (FAME) Succession in Different Substrates as Affected by the Co-Application of Three Pesticides. PLoS ONE 2015, 10, e0145501. [Google Scholar] [CrossRef]
- Hawrot-Paw, M.; Koniuszy, A.; Sędłak, P.; Seń, D. Functional Properties and Microbiological Stability of Fatty Acid Methyl Esters (FAME) under Different Storage Conditions. Energies 2020, 13, 5632. [Google Scholar] [CrossRef]
- Sendzikiene, E.; Makareviciene, V.; Janulis, P. Influence of Composition of Fatty Acid Methyl Esters on Smoke Opacity and Amount of Polycyclic Aromatic Hydrocarbons in Engine Emissions. Pol. J. Environ. Stud. 2007, 16, 259–265. [Google Scholar]
- Manea, E.E.; Bumbac, C.; Dinu, L.R.; Bumbac, M.; Nicolescu, C.M. Composting as a Sustainable Solution for Organic Solid Waste Management: Current Practices and Potential Improvements. Sustainability 2024, 16, 6329. [Google Scholar] [CrossRef]
- Ribeiro, L.F.; Ribani, R.H.; Francisco, T.M.G.; Soares, A.A.; Pontarolo, R.; Haminiuk, C.W.I. Profile of Bioactive Compounds from Grape Pomace (Vitis vinifera and Vitis labrusca) by Spectrophotometric, Chromatographic and Spectral Analyses. J. Chromatogr. B 2015, 1007, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Kolláthová, R.; Hanušovskỳ, O.; Gálik, B.; Bíro, D.; Šimko, M.; Juráček, M.; Gierus, M. Fatty Acid Profile Analysis of Grape By-Products from Slovakia and Austria. Acta Fytotech. Zootech. 2020, 23, 78–84. [Google Scholar] [CrossRef]
- Samotyja, U. Potato Peel as a Sustainable Resource of Natural Antioxidants for the Food Industry. Potato Res. 2019, 62, 435–451. [Google Scholar] [CrossRef]
- Ferreira, R.; Lourenço, S.; Lopes, A.; Andrade, C.; Câmara, J.S.; Castilho, P.; Perestrelo, R. Evaluation of Fatty Acids Profile as a Useful Tool towards Valorization of By-Products of Agri-Food Industry. Foods 2021, 10, 2867. [Google Scholar] [CrossRef]
- Rajak, A.K.; Harikrishna, M.; Mahato, D.L.; Anandamma, U.; Pothu, R.; Sarangi, P.K.; Sahoo, U.K.; Vennu, V.; Boddula, R.; Karuna, M.S. Valorising Orange and Banana Peels: Green Catalysts for Transesterification and Biodiesel Production in a Circular Bioeconomy. J. Taiwan Inst. Chem. Eng. 2024, 105804. [Google Scholar] [CrossRef]
- Fărcaş, A.C.; Socaci, S.A.; Dulf, F.V.; Tofană, M.; Mudura, E.; Diaconeasa, Z. Volatile Profile, Fatty Acids Composition and Total Phenolics Content of Brewers’ Spent Grain by-Product with Potential Use in the Development of New Functional Foods. J. Cereal Sci. 2015, 64, 34–42. [Google Scholar] [CrossRef]
- da Rosa Almeida, A.; Geraldo, M.R.F.; Ribeiro, L.F.; Silva, M.V.; Maciel, M.V.d.O.B.; Haminiuk, C.W.I. Bioactive Compounds from Brewer’s Spent Grain: Phenolic Compounds, Fatty Acids and in Vitro Antioxidant Capacity. Acta Sci. Technol. 2017, 39, 269–277. [Google Scholar] [CrossRef]
- Bekier, J.; Drozd, J.; Jamroz, E.; Jarosz, B.; Kocowicz, A.; Walenczak, K.; Weber, J. Changes in Selected Hydrophobic Components during Composting of Municipal Solid Wastes. J. Soils Sediments 2014, 14, 305–311. [Google Scholar] [CrossRef]
- Witaszek, K.; Pilarski, K.; Janczak, D.; Czekała, W.; Lewicki, A.; Carmona, P.C.R.; Dach, J.; Mazur, R. The Possibilities of Green Wastes from Urban Areas Management for Energetic and Fertilizer Purposes. Arch. Waste Manag. Environ. Prot. 2013, 15, 21–28. [Google Scholar]
- Skanderová, K.; Malat’ák, J.; Bradna, J. Energy Use of Compost Pellets for Small Combustion Plants. Agron. Res. 2015, 13, 413–419. [Google Scholar]
- Chia, W.Y.; Chew, K.W.; Le, C.F.; Lam, S.S.; Chee, C.S.C.; Ooi, M.S.L.; Show, P.L. Sustainable Utilization of Biowaste Compost for Renewable Energy and Soil Amendments. Environ. Pollut. 2020, 267, 115662. [Google Scholar] [CrossRef]
- Sienkiewicz, A.; Krasowska, M.; Kowczyk-Sadowy, M.; Obidziński, S.; Piotrowska-Niczyporuk, A.; Bajguz, A. Occurrence of Plant Hormones in Composts Made from Organic Fraction of Agri-Food Industry Waste. Sci. Rep. 2024, 14, 6808. [Google Scholar] [CrossRef]
- PN-EN ISO 1928:2002; Solid Mineral Fuels—Determination of Gross Calorific Value by the Bomb Calorimetric Method, and Calculation of Net Calorific Value. ISO: Geneva, Switzerland, 2002.
- Mashek, D.G.; Wu, C. MUFAs. Adv. Nutr. 2015, 6, 276–277. [Google Scholar] [CrossRef]
- Hachicha, R.; Hachicha, S.; Trabelsi, I.; Woodward, S.; Mechichi, T. Evolution of the Fatty Fraction during Co-Composting of Olive Oil Industry Wastes with Animal Manure: Maturity Assessment of the End Product. Chemosphere 2009, 75, 1382–1386. [Google Scholar] [CrossRef]
- Kniepkamp, K.; Errico, M.; Yu, M.; Roda-Serrat, M.C.; Eilers, J.; Wark, M.; Van Haren, R. Lipid Extraction of High-moisture Sour Cherry (Prunus cerasus L.) Stones by Supercritical Carbon Dioxide. J. Chem. Technol. Biotechnol. 2024, 99, 810–819. [Google Scholar] [CrossRef]
- Joka Yildiz, M.; Cwalina, P.; Obidziński, S. A Comprehensive Study of Buckwheat Husk Co-Pelletization for Utilization via Combustion. Biomass Convers. Biorefinery 2024, 14, 27925–27942. [Google Scholar] [CrossRef]
- Kulokas, M.; Praspaliauskas, M.; Pedišius, N. Investigation of Buckwheat Hulls as Additives in the Production of Solid Biomass Fuel from Straw. Energies 2021, 14, 265. [Google Scholar] [CrossRef]
- Scarlat, N.; Motola, V.; Dallemand, J.F.; Monforti-Ferrario, F.; Mofor, L. Evaluation of Energy Potential of Municipal Solid Waste from African Urban Areas. Renew. Sustain. Energy Rev. 2015, 50, 1269–1286. [Google Scholar] [CrossRef]
- Fetene, Y.; Addis, T.; Beyene, A.; Kloos, H. Valorisation of Solid Waste as Key Opportunity for Green City Development in the Growing Urban Areas of the Developing World. J. Environ. Chem. Eng. 2018, 6, 7144–7151. [Google Scholar] [CrossRef]
- Budzynski, W.; Bielski, S. Energy Raw Materials of Agricultural Origin. Part I. Biocomponents of Liquid Fuels. (Review Article). Acta Sci. Pol. Agric. 2004, 3, 15–26. [Google Scholar]
Compost | Composition |
Produced in a bioreactor | |
Garden compost | Green waste (grass, leaves, branches) |
Compost from agricultural and food processing residues | Grass, buckwheat husk, fruit pomace |
Obtained from company | |
Organic compost | Green waste |
Organic compost-pellets | Green waste |
Type of Fatty Acid | Systematic Name | Common Name of FAME | Abbreviation |
---|---|---|---|
MUFA | Myristoleic acid methyl ester | Myristoleic acid | C14:1 |
cis-10-Pentadecanoic acid methyl ester | Pentadecanoic acid | C15:1 | |
9-Hexadecenoic acid methyl ester | Palmitoleic acid | C16:1 | |
cis-10-Heptadecenoic acid methyl ester | Heptadecenoic acid | C17:1 | |
trans-9-Octadecenoic acid methyl ester (Z) | Elaidic acid | C18:1n9t | |
9-Octadecenoic acid methyl ester I | Oleic acid | C18:1n9c | |
cis-11-Eicosenoic acid methyl ester | Gondoic acid | C20:1 | |
13-Docosenoic acid methyl ester (Z) | Erucic acid | C22:1n9 | |
15-Tetracosenoic acid methyl ester (Z) | Nervonic acid | C24:1n9 | |
PUFA | 9,12-Octadecadienoic acid methyl ester (E,E) | Linolelaidic acid | C18:2n6t |
9,12-Octadecadienoic acid methyl ester (Z,Z) | Linoleic acid | C18:2n6c | |
all-cis-6,9,12-Octadecatrienoic acid | γ-Linolenic acid | C18:3n6 | |
9,12,15-Octadecatrienoic acid methyl ester (Z,Z,Z) | Linolenic acid | C18:3n3 | |
cis-11,14-Eicosadienoic acid methyl ester | Eicosadienoic acid | C20:2 | |
cis-11,14,17-Eicosatrienoic acid methyl ester | Eicosatrienoic acid | C20:3n3 | |
cis-8,11,14-Eicosatrienoic acid methyl ester | Dihomo-γ-linolenic acid | C20:3n6 | |
5,8,11,14-Eicosatetraenoic acid methyl ester (all-Z) | Arachidonic acid | C20:4n6 | |
cis-5,8,11,14,17-Eicosapentaenoic acid methyl ester | Eicosapentaenoic acid | C20:5n3 | |
cis-13,16-Docasadienoic acid methyl ester | Docosadienoic acid | C22:2n6 | |
4,7,10,13,16,19-Docosahexaenoic acid methyl ester (all-Z) | Cervonic acid | C22:6n3 | |
SFA | Butyric acid methyl ester | Butyric acid | C4:0 |
Hexanoic acid methyl ester | Caproic acid | C6:0 | |
Octanoic acid methyl ester | Caprylic acid | C8:0 | |
Decanoic acid methyl ester | Capric acid | C10:0 | |
Undecanoic acid methyl ester | Undecylic acid | C11:0 | |
Dodecanoic acid methyl ester | Lauric acid | C12:0 | |
Tridecanoic acid methyl ester | Tridecylic acid | C13:0 | |
Tetradecanoic acid methyl ester | Myristic acid | C14:0 | |
Pentadecanoic acid methyl ester | Pentadecylic acid | C15:0 | |
Hexadecanoic acid methyl ester | Palmitic acid | C16:0 | |
Heptadecanoic acid methyl ester | Margaric acid | C17:0 | |
Octadecanoic acid methyl ester | Stearic acid | C18:0 | |
Eicosanoic acid methyl ester | Arachidic acid | C20:0 | |
Heneicosanoic acid methyl ester | Heneicosylic acid | C21:0 | |
Docosanoic acid methyl ester | Behenic acid | C22:0 | |
Tricosanoic acid methyl ester | Tricosylic acid | C23:0 | |
Tetracosanoic acid methyl ester | Lignoceric acid | C24:0 |
MUFA | Garden Compost | Buckwheat Husk Compost | Organic Compost | Organic Compost-Pellets |
---|---|---|---|---|
[µg∙g−1 dw] | ||||
C14:1 | 30.97 ± 1.35 a | 48.58 ± 1.46 b | 38.22 ± 6.88 a | 32.18 ± 0.72 a |
C15:1 | 120.66 ± 2.92 c | 5.90 ± 0.61 a | 80.18 ± 3.93 b | 6.55 ± 0.51 a |
C16:1 | 252.56 ± 5.63 d | 4.30 ± 0.16 a | 28.19 ± 3.56 b | 97.16 ± 3.69 c |
C17:1 | 15.56 ± 0.30 c | 3.44 ± 0.04 a | 3.75 ± 0.42 a | 4.97 ± 0.28 b |
C18:1n9t | 60.17 ± 2.78 d | 10.09 ± 0.50 b | 6.34 ± 0.59 a | 22.55 ± 0.55 c |
C18:1n9c | 50.63 ± 1.73 b | 21.83 ± 3.23 a | 200.36 ± 10.91 c | 879.25 ± 16.83 d |
C20:1 | 104.65 ± 2.66 c | 4.04 ± 0.19 a | 93.49 ± 5.28 b | 4.26 ± 0.18 a |
C22:1n9 | 4.01 ± 0.11 a | 4.48 ± 0.80 a | 2.55 ± 0.06 b | 3.86 ± 0.74 a |
C24:1n9 | 28.24 ±1.79 c | 19.19 ± 0.26 b | 12.54 ± 0.76 a | 13.16 ± 0.32 a |
PUFA | Garden Compost | Buckwheat Husk Compost | Organic Compost | Organic Compost-Pellets |
---|---|---|---|---|
[µg∙g−1 dw] | ||||
C18:2n6t | 49.03 ± 3.54 c | 7.59 ± 0.22 a | 18.27 ± 2.17 b | 142.16 ± 3.83 d |
C18:2n6c | 59.63 ± 3.26 c | 7.85 ± 0.28 a | 17.79 ± 1.26 b | 138.34 ± 5.66 d |
C18:3n6 | 393.89 ± 7.50 a | 4.20 ± 0.38 b | 476.63 ± 49.11 a | 355.69 ± 163.13 a |
C18:3n3 | 118.85 ± 5.45 c | 4.59 ± 0.60 a | 35.41 ± 2.73 b | 5.17 ± 0.30 a |
C20:2 | 1.75 ± 0.08 a | 2.13 ± 0.24 a | 1.52 ± 0.35 a | 10.15 ± 1.15 b |
C20:3n6 | 3.86 ± 0.15 a | 3.95 ± 0.10 a | 2.82 ± 0.22 b | 3.36 ± 0.35 c |
C20:4n6 | 14.23 ± 0.97 a | 22.34 ± 0.40 c | 15.89 ± 0.68 b | 14.84 ± 0.43 a |
C20:5n3 | 1.82 ± 0.11 ab | 2.22 ± 0.03 b | 1.64 ± 0.16 ab | 1.61 ± 0.04 ab |
C22:2n6 | 16.53 ± 0.87 a | 19.47 ± 0.17 a | 12.37 ± 0.41 a | 12.99 ± 0.53 a |
C22:6n3 | 20.81 ± 1.50 b | 28.53 ± 0.10 c | 19.02 ± 0.20 a | 19.15 ± 0.28 a |
SFA | Garden Compost | Buckwheat Husk Compost | Organic Compost | Organic Compost-Pellets |
---|---|---|---|---|
[µg∙g−1 dw] | ||||
C10:0 | 24.41 ± 0.69 a | 36.26 ± 0.85 b | 23.78 ± 0.55 a | 24.10 ± 0.12 a |
C11:0 | 10.22 ± 0.25 a | 14.89 ± 0.19 b | 10.66 ± 0.46 a | 10.53 ± 0.41 a |
C12:0 | 19.93 ± 0.47 a | 30.21 ± 0.79 b | 21.32 ± 0.92 a | 21.06 ± 0.81 a |
C13:0 | 9.50 ± 0.34 a | 13.80 ± 0.25 c | 10.15 ± 0.57 a | 11.91 ± 0.22 b |
C14:0 | 19.42 ± 0.55 a | 28.04 ± 0.90 c | 23.33 ± 0.94 b | 18.77 ± 0.27 a |
C15:0 | 1.55 ± 0.11 a | 0.12 ± 0.01 a | 34.77 ± 18.89 b | 2.39 ± 0.12 a |
C16:0 | 57.60 ± 2.86 c | 1.37 ± 0.39 a | 4.72 ± 0.54 b | 1.12 ± 0.03 a |
C17:0 | 167.51 ± 7.19 c | 2.86 ± 0.05 a | 483.90 ± 16.23 d | 55.83 ± 25.24 b |
C18:0 | 4.04 ± 0.14 c | 1.17 ± 0.03 b | 0.65 ± 0.20 a | 12.70 ± 0.35 d |
C20:0 | 35.44 ± 1.89 a | 50.32 ± 0.89 c | 43.81 ± 2.18 b | 58.18 ± 0.89 d |
C21:0 | 14.49 ± 0.53 a | 23.12 ± 1.49 c | 19.71 ± 1.12 b | 37.18 ± 0.89 d |
C22:0 | 7.34 ± 0.67 a | 9.86 ± 0.54 b | 7.39 ± 0.84 a | 6.16 ± 0.43 a |
C23:0 | 0.86 ± 0.11 a | 1.46 ± 0.03 b | 0.97 ± 0.13 a | 1.01 ± 0.18 a |
C24:0 | 5.45 ± 0.20 a | 5.48 ± 0.30 a | 6.10 ± 0.25 a | 27.01 ± 1.65 b |
Composts | ∑ MUFAs ± SD | ∑ PUFAs ± SD | ∑ SFAs ± SD | ∑ FAMEs ± SD |
---|---|---|---|---|
[µg∙g−1 dw] | ||||
Garden compost | 667.46 ± 19.29 | 680.40 ± 23.43 | 377.75 ± 15.99 | 1725.61 ± 58.71 |
Buckwheat husk compost | 121.85 ± 7.25 | 102.87 ± 2.53 | 218.96 ± 6.79 | 443.68 ± 16.57 |
Organic compost | 465.61 ± 32.38 | 601.35 ± 57.28 | 691.27 ± 43.81 | 1758.23 ± 133.47 |
Organic compost-pellets | 1063.93 ± 23.80 | 703.45 ± 175.70 | 287.95 ± 31.60 | 2055.33 ± 231.10 |
Type of Raw Material | HHV [MJ∙kgd.m.−1] | LHV [MJ∙kgd.m.−1] | Ash Content [%] |
---|---|---|---|
Garden compost | 8.81 ± 0.11 a | 8.32 ± 0.03 a | 65.23 ± 0.05 c |
Buckwheat husk compost | 18.8 ± 0.1 c | 17.24 ± 0.09 c | 4.66 ± 0.06 a |
Organic compost | 10.09 ± 0.07 b | 9.54 ± 0.07 b | 58.97 ± 0.06 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sienkiewicz, A.; Cwalina, P.; Obidziński, S.; Krasowska, M.; Kowczyk-Sadowy, M.; Piotrowska-Niczyporuk, A.; Bajguz, A. Potential for Using Composts Produced from Agri-Food Industry Waste as Biocomponents of Liquid and Solid Fuels. Energies 2024, 17, 6412. https://doi.org/10.3390/en17246412
Sienkiewicz A, Cwalina P, Obidziński S, Krasowska M, Kowczyk-Sadowy M, Piotrowska-Niczyporuk A, Bajguz A. Potential for Using Composts Produced from Agri-Food Industry Waste as Biocomponents of Liquid and Solid Fuels. Energies. 2024; 17(24):6412. https://doi.org/10.3390/en17246412
Chicago/Turabian StyleSienkiewicz, Aneta, Paweł Cwalina, Sławomir Obidziński, Małgorzata Krasowska, Małgorzata Kowczyk-Sadowy, Alicja Piotrowska-Niczyporuk, and Andrzej Bajguz. 2024. "Potential for Using Composts Produced from Agri-Food Industry Waste as Biocomponents of Liquid and Solid Fuels" Energies 17, no. 24: 6412. https://doi.org/10.3390/en17246412
APA StyleSienkiewicz, A., Cwalina, P., Obidziński, S., Krasowska, M., Kowczyk-Sadowy, M., Piotrowska-Niczyporuk, A., & Bajguz, A. (2024). Potential for Using Composts Produced from Agri-Food Industry Waste as Biocomponents of Liquid and Solid Fuels. Energies, 17(24), 6412. https://doi.org/10.3390/en17246412