Advancements in Manufacturing of High-Performance Perovskite Solar Cells and Modules Using Printing Technologies
<p>(<b>a</b>) Experimental arrangement and placement using the blade coating method [<a href="#B27-energies-17-06344" class="html-bibr">27</a>], (<b>b</b>) Schematic of slot-die coating procedure [<a href="#B28-energies-17-06344" class="html-bibr">28</a>], (<b>c</b>) Illustration of R2R screen printing [<a href="#B29-energies-17-06344" class="html-bibr">29</a>], (<b>d</b>) Schematic of gravure printing on elastic substrate [<a href="#B30-energies-17-06344" class="html-bibr">30</a>], (<b>e</b>) Schematic of spray coating process [<a href="#B31-energies-17-06344" class="html-bibr">31</a>].</p> "> Figure 2
<p>Schematic for combined cosolvent and additive strategy to reduce coordination regulation by replacing strong coordination solvent (SCS) with weak coordination solvents (WCS), [<a href="#B36-energies-17-06344" class="html-bibr">36</a>].</p> "> Figure 3
<p>(<b>a</b>) J-V characteristics, (<b>b</b>) stabilized PCE over time, (<b>c</b>) EQE plot for blade coated PSCs with device area over 1 cm<sup>2</sup>, (<b>d</b>) champion Voc for WBG-based PSCs [<a href="#B37-energies-17-06344" class="html-bibr">37</a>].</p> "> Figure 4
<p>(<b>a</b>) Fill factor (FF) and PCE statistical distribution for blade-coated single-junction PSCs using different bottom contacts: PTAA, (MeO:Br)-2PACz, and 2PACz, (<b>b</b>) Statistical distribution of PCE and FF for blade-coating tandems with F6TCNNQ incorporation and different hole transport layer (HTL) (PTAA, (MeO:Br)-2PACz and 2PACz), (<b>c</b>) unit architecture of F6TCNNQ-doped tandems with different HTL configurations, (<b>d</b>) J-V curves of single junction (hollow circles) and tandem devices with different HTLs, (<b>e</b>) MPPT stability testing of blade-coated tandem solar cells [<a href="#B38-energies-17-06344" class="html-bibr">38</a>].</p> "> Figure 5
<p>(<b>A</b>) Schematic view of the tandem-structured device, (<b>B</b>) Measured reflection (1-R) and EQE of mentioned tandem solar cells, (<b>C</b>) Photovoltaic parameters of tandem solar cells with variation in thickness, (<b>D</b>) Quasi steady-state J-V characteristics [<a href="#B40-energies-17-06344" class="html-bibr">40</a>].</p> "> Figure 6
<p>(<b>a</b>) Structure of perovskite-silicon tandem solar cells without and with LiF layer, (<b>b</b>) Schematic of equivalent circuit of the tandem cell [<a href="#B43-energies-17-06344" class="html-bibr">43</a>].</p> "> Figure 7
<p>(<b>A</b>) Structure of the single-junction perovskite sub-cell for integration with commercial silicon cells, (<b>B</b>) J-V plots of champion PSCs optimized at varying annealing temperatures, (<b>C</b>) External quantum efficiency measurement and integrated short-circuit current, Jsc, (<b>D</b>) MPPT stability test of the fabricated best solar cells at 25 °C [<a href="#B44-energies-17-06344" class="html-bibr">44</a>].</p> "> Figure 8
<p>(<b>a</b>) Device structure and deposition approach for each layer, (<b>b</b>) J-V plots of the best PSCs based on pristine and KSCN incorporated MAPbI<sub>3</sub> films [<a href="#B45-energies-17-06344" class="html-bibr">45</a>].</p> "> Figure 9
<p>(<b>a</b>) Illustration of slot die coating setup, (<b>b</b>) J-V plots at various DMSO additive solvent concentrations [<a href="#B46-energies-17-06344" class="html-bibr">46</a>].</p> "> Figure 10
<p>(<b>a</b>) Schematic of perovskite crystallization with additive and cosolvent strategy, (<b>b</b>) J-V plots of fabricated PSCs, (<b>c</b>) EQE for both cases of with and without NH<sub>4</sub>Cl, (<b>d</b>) MPPT stability testing of PSCs with optimized NH<sub>4</sub>Cl addition [<a href="#B53-energies-17-06344" class="html-bibr">53</a>].</p> "> Figure 11
<p>Illustration in printing procedure and resulting structure of fully R2R printed PSMs [<a href="#B63-energies-17-06344" class="html-bibr">63</a>].</p> "> Figure 12
<p>(<b>a</b>) An image of a blade-coated FA<sub>0.3</sub>MA<sub>0.7</sub>PbI<sub>3</sub> perovskite layer on an ITO substrate, covering around 130 cm<sup>2</sup>, (<b>b</b>) A photograph showing enclosed minimodules with aperture areas of approximately 78 cm<sup>2</sup>, (<b>c</b>) J-V plots illustrating the characteristics of minimodules with aperture areas of 78 cm<sup>2</sup>, 84 cm<sup>2</sup>, and 108 cm<sup>2</sup>, respectively, (<b>d</b>) Performance of minimodule with various aperture areas, (<b>e</b>) Stable power output from the champion minimodules [<a href="#B71-energies-17-06344" class="html-bibr">71</a>].</p> "> Figure 13
<p>(<b>a</b>) Rheological characteristics of perovskite precursor inks modulated by DCB, (<b>b</b>) Visualizing PCE dependence on ink composition, (<b>c</b>) Performance characteristics of perovskite minimodule under standard testing conditions [<a href="#B82-energies-17-06344" class="html-bibr">82</a>].</p> "> Figure 14
<p>(<b>a</b>) Slot die coating deposition of a wide band gap perovskite absorber layer on textured silicon surface to make perovskite/silicon tandem devices, (<b>b</b>) SEM image showing cross-section of textured silicon/perovskite tandem device made by slot die coating, (<b>c</b>) PCE statistics for slot-die-coated tandems at various head speeds, (<b>d</b>) J-V plot of the best slot die coated silicon/perovskite tandem devices [<a href="#B84-energies-17-06344" class="html-bibr">84</a>].</p> "> Figure 15
<p>(<b>a</b>) Certified J-V plots of the top PSCs using Me-4PACz as HTL (<b>b</b>) J-V plots of a 25 cm<sup>2</sup> mini-module [<a href="#B86-energies-17-06344" class="html-bibr">86</a>].</p> "> Figure 16
<p>Performance development of PSMs with various unit areas, in terms of different printing methods [<a href="#B90-energies-17-06344" class="html-bibr">90</a>].</p> ">
Abstract
:1. Introduction
2. Large-Are Printing Techniques for Solution Processing
2.1. Blade Coating
2.2. Slot Die Coating
2.3. Screen Printing
2.4. Gravure Printing
2.5. Spray Coating
3. High-Efficiency Perovskite Solar Cells by Printing
3.1. Notable PSCs Based on Blade Coating
3.2. Notable PSCs Based on Slot Die Coating
3.3. Notable PSCs Based on Screen Printing
4. Large-Scale Coating from Cells to Modules and Fully Printed PSCs and PSMs
4.1. Fully Blade Coated PSCs and PSMs
4.2. Fully Slot-Die Coated PSCs and PSMs
4.3. Fully Screen-Printed PSCs and PSMs
5. Assessments of High-Efficiency Perovskite Solar Modules
5.1. Notable PSMs Based on Blade Coating
5.2. Notable PSMs Based on Slot Die Coating
5.3. Notable PSMs Based on Screen Printing
6. Conclusions and Outlook
Funding
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X.; et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, W.; Guo, X.; Lu, C.; Wei, J.; Fang, J. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 2022, 375, 434–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bi, L.; Huang, X.; Feng, Q.; Liu, M.; Chen, M.; An, Y.; Jiang, W.; Lin, F.R.; Fu, Q.; et al. Bilayer interface engineering through 2D/3D perovskite and surface dipole for inverted perovskite solar modules. eScience 2024, 4, 100308. [Google Scholar] [CrossRef]
- Wang, J.; Bi, L.; Fu, Q.; Jen, A.K. Methods for Passivating Defects of Perovskite for Inverted Perovskite Solar Cells and Modules. Adv. Energy Mater. 2024, 14, 2401414. [Google Scholar] [CrossRef]
- Hutter, E.M.; Eperon, G.E.; Stranks, S.D.; Savenije, T.J. Charge carriers in planar and meso-structured organic–inorganic perovskites: Mobilities, lifetimes, and concentrations of trap states. J. Phys. Chem. Lett. 2015, 6, 3082–3090. [Google Scholar] [CrossRef] [PubMed]
- De Wolf, S.; Holovsky, J.; Moon, S.-J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F.-J.; Yum, J.-H.; Ballif, C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014, 5, 1035–1039. [Google Scholar] [CrossRef]
- Yin, W.J.; Shi, T.; Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658. [Google Scholar] [CrossRef] [PubMed]
- Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J.T.-W.; Stranks, S.D.; Snaith, H.J.; Nicholas, R.J. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 2015, 11, 582–587. [Google Scholar] [CrossRef]
- Saliba, M.; Correa-Baena, J.; Graetzel, M.; Hagfeldt, A.; Abate, A. Perovskite solar cells: From the atomic level to film quality and device performance. Angew. Chem. Int. Ed. 2018, 57, 2554–2569. [Google Scholar] [CrossRef] [PubMed]
- Castriotta, L.A.; Zendehdel, M.; Nia, N.Y.; Leonardi, E.; Löffler, M.; Paci, B.; Generosi, A.; Rellinghaus, B.; Di Carlo, A. Reducing losses in perovskite large area solar technology: Laser design optimization for highly efficient modules and minipanels. Adv. Energy Mater. 2022, 12, 2103420. [Google Scholar] [CrossRef]
- Zhu, K.; Lu, Z.; Cong, S.; Cheng, G.; Ma, P.; Lou, Y.; Ding, J.; Yuan, N.; Rümmeli, M.H.; Zou, G. Ultraflexible and lightweight bamboo-derived transparent electrodes for perovskite solar cells. Small 2019, 15, 1902878. [Google Scholar] [CrossRef]
- Chu, L.; Zhai, S.; Ahmad, W.; Zhang, J.; Zang, Y.; Yan, W.; Li, Y. High-performance large-area perovskite photovoltaic modules. Nano Res. Energy 2022, 1, 9120024. [Google Scholar] [CrossRef]
- Gusain, A.; Thankappan, A.; Thomas, S. Roll-to-roll printing of polymer and perovskite solar cells: Compatible materials and processes. J. Mater. Sci. 2020, 55, 13490–13542. [Google Scholar] [CrossRef]
- Dou, B.; Whitaker, J.B.; Bruening, K.; Moore, D.T.; Wheeler, L.M.; Ryter, J.; Breslin, N.J.; Berry, J.J.; Garner, S.M.; Barnes, F.S.; et al. Roll-to-Roll Printing of Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 2558–2565. [Google Scholar] [CrossRef]
- Elangovan, N.K.; Kannadasan, R.; Beenarani, B.B.; Alsharif, M.H.; Kim, M.K.; Inamul, Z.H. Recent developments in perovskite materials, fabrication techniques, band gap engineering, and the stability of perovskite solar cells. Energy Rep. 2024, 11, 1171–1190. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, C.; Lv, P.; Ku, Z.; Lu, J.; Huang, F.; Cheng, Y.-B. Printing strategies for scaling-up perovskite solar cells. Natl. Sci. Rev. 2021, 8, nwab075. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Cheng, Y.; Wang, C.; Zhang, C.; Xia, H.; Huang, K.; Tong, S.; Hao, X.; Yang, J. Fully doctor-bladed planar heterojunction perovskite solar cells under ambient condition. Org. Electron. 2018, 58, 153–158. [Google Scholar] [CrossRef]
- Kim, B.; Ko, S.G.; Sonu, K.S.; Ri, J.H.; Kim, U.C.; Ryu, G.I. Effects of Adding PbI2 on the Performance of Hole-Transport Material-Free Mesoscopic Perovskite Solar Cells with Carbon Electrode. J. Electron. Mater. 2018, 47, 6266–6271. [Google Scholar] [CrossRef]
- Patidar, R.; Burkitt, D.; Hooper, K.; Richards, D.; Watson, T. Slot-die coating of perovskite solar cells: An overview. Mater. Today Commun. 2019, 22, 100808. [Google Scholar] [CrossRef]
- Krebs, F.C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. [Google Scholar] [CrossRef]
- Schmidt, T.M.; Larsen-Olsen, T.T.; Carlé, J.E.; Angmo, D.; Krebs, F.C. Upscaling of perovskite solar cells: Fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv. Energy Mater. 2015, 5, 1500569. [Google Scholar] [CrossRef]
- Mathies, F.; Eggers, H.; Richards, B.S.; Hernandez-Sosa, G.; Lemmer, U.; Paetzold, U.W. Inkjet-printed triple cation perovskite solar cells. ACS Appl. Energy Mater. 2018, 1, 1834–1839. [Google Scholar] [CrossRef]
- Rong, Y.; Ming, Y.; Ji, W.; Li, D.; Mei, A.; Hu, Y.; Han, H. Toward industrial-scale production of perovskite solar cells: Screen printing, slot-die coating, and emerging techniques. J. Phys. Chem. Lett. 2018, 9, 2707–2713. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Y.; Yang, T.Y.; Suhonen, R.; Välimäki, M.; Maaninen, T.; Kemppainen, A.; Jeon, N.J.; Seo, J. Gravure-printed flexible perovskite solar cells: Toward roll-to-roll manufacturing. Adv. Sci. 2019, 6, 1802094. [Google Scholar] [CrossRef]
- Bishop, J.E.; Routledge, T.J.; Lidzey, D.G. Advances in spray-cast perovskite solar cells. J. Phys. Chem. Lett. 2018, 9, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, S.; Pious, J.K.; Lai, H.; Kothandaraman, R.K.; Luo, J.; Vlnieska, V.; Tiwari, A.N.; Fu, F. Stabilizing Solution–Substrate Interaction of Perovskite Ink on PEDOT:PSS for Scalable Blade Coated Narrow Bandgap Perovskite Solar Modules by Gas Quenching. Sol. RRL 2024, 8, 2400447. [Google Scholar] [CrossRef]
- Duarte, V.C.M.; Andrade, L. Recent Advancements on Slot-Die Coating of Perovskite Solar Cells: The Lab-to-Fab Optimisation Process. Energies 2024, 17, 3896. [Google Scholar] [CrossRef]
- Chen, C.; Ran, C.; Yao, Q.; Wang, J.; Guo, C.; Gu, L.; Han, H.; Wang, X.; Chao, L.; Xia, Y.; et al. Screen-Printing Technology for Scale Manufacturing of Perovskite Solar Cells. Adv. Sci. 2023, 10, 2303992. [Google Scholar] [CrossRef]
- Ouedraogo, N.A.N.; Ouyang, Y.; Guo, B.; Xiao, Z.; Zuo, C.; Chen, K.; He, Z.; Odunmbaku, G.O.; Ma, Z.; Long, W.; et al. Printing Perovskite Solar Cells in Ambient Air: A Review. Adv. Energy Mater. 2024, 14, 2401463. [Google Scholar] [CrossRef]
- Bishop, J.E.; Smith, J.A.; Lidzey, D.G. Development of spray-coated perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 48237–48245. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Chen, G.; Li, G.; Liang, J.; Guan, H.; Wang, C.; Pu, D.; Ge, Y.; Hu, X.; Cui, H.; et al. Intermediate Phase Suppression with Long Chain Diammonium Alkane for High Performance Wide-Bandgap and Tandem Perovskite Solar Cells. Adv. Mater. 2024, 36, 2400105. [Google Scholar] [CrossRef]
- Zhang, D.; Khasnabis, S.; Wang, W.; Yeddu, V.; Moradi, S.; Awais, M.; Nguyen, H.D.; Reinecke, S.B.; Haruta, Y.; Godin, R.; et al. Cadmium-Doping Slows Trap Emptying in Ambient-Air Blade-Coated Formamidinium Lead Iodide Perovskite Solar Cells. Adv. Energy Mater. 2024, 14, 2303858. [Google Scholar] [CrossRef]
- Zhu, H.; Shao, B.; Yin, J.; Shen, Z.; Wang, L.; Huang, R.; Chen, B.; Wehbe, N.; Ahmad, T.; Abulikemu, M.; et al. Retarding Ion Migration for Stable Blade-Coated Inverted Perovskite Solar Cells. Adv. Mater. 2023, 36, 2306466. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Liu, T.; Dou, Y.; Hu, X.; Liu, Y.; Wang, F.; Wang, L.; Ren, Z.; Chen, S. Air-Processed Perovskite Solar Cells with >25% Efficiency and High Stability Enabled by Crystallization Modulation and Holistic Passivation. Adv. Mater. 2024, 36, 2402785. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Tian, Q.; Wang, S.; Yin, L.; Ma, C.; Wang, Z.; Lang, L.; Yang, Y.; Zhao, K.; Liu, S. Crystallization Control Based on the Regulation of Solvent–Perovskite Coordination for High-Performance Ambient Printable FAPbI3 Perovskite Solar Cells. Adv. Mater. 2023, 36, 2307583. [Google Scholar] [CrossRef] [PubMed]
- Pu, D.; Zhou, S.; Guan, H.; Jia, P.; Chen, G.; Fang, H.; Fu, S.; Wang, C.; Hushvaktov, H.; Jumabaev, A.; et al. Enhancing Efficiency and Intrinsic Stability of Large-Area Blade-Coated Wide-Bandgap Perovskite Solar Cells Through Strain Release. Adv. Funct. Mater. 2024, 34, 2314349. [Google Scholar] [CrossRef]
- Subbiah, A.S.; Merino, L.V.T.; Pininti, A.R.; Hnapovskyi, V.; Mannar, S.; Aydin, E.; Razzaq, A.; Allen, T.G.; De Wolf, S. Enhancing the Performance of Blade-Coated Perovskite/Silicon Tandems via Molecular Doping and Interfacial Energy Alignment. ACS Energy Lett. 2024, 9, 727–731. [Google Scholar] [CrossRef]
- Liang, J.; Du, D.; Gao, C.; Qiao, F.; He, L.; Zhang, D.; Bao, J.; Liu, H.; Shen, W. Controllable Cosolvent Blade-Coating Strategy toward Low-Temperature Fabrication of Perovskite Solar Cells. ACS Appl. Energy Mater. 2023, 6, 10842–10852. [Google Scholar] [CrossRef]
- Mariotti, S.; Köhnen, E.; Scheler, F.; Sveinbjörnsson, K.; Zimmermann, L.; Piot, M.; Yang, F.; Li, B.; Warby, J.; Musiienko, A.; et al. Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science 2023, 381, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Dai, X.; Xu, S.; Jiao, H.; Zhao, L.; Huang, J. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 2021, 373, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.F.; Liu, T.X.; Cui, Z.W.; Wang, L.Y.; Dou, Y.J.; Shi, X.Y.; Luo, S.W.; Hu, X.D.; Ren, Z.J.; Liu, Y.Y.; et al. Simplified pin perovskite solar cells with a multifunctional polyfullerene electron transporter. Chin. J. Polym. Sci. 2024, 42, 1060–1066. [Google Scholar] [CrossRef]
- Yang, G.; Yu, Z.J.; Wang, M.; Shi, Z.; Ni, Z.; Jiao, H.; Fei, C.; Wood, A.; Alasfour, A.; Chen, B.; et al. Shunt mitigation toward efficient large-area perovskite-silicon tandem solar cells. Cell Rep. Phys. Sci. 2023, 4, 101628. [Google Scholar] [CrossRef]
- Xu, K.; Al-Ashouri, A.; Peng, Z.W.; Köhnen, E.; Hempel, H.; Akhundova, F.; Marquez, J.A.; Tockhorn, P.; Shargaieva, O.; Ruske, F.; et al. Slot-die coated triple-halide perovskites for efficient and scalable perovskite/silicon tandem solar cells. ACS Energy Lett. 2022, 7, 3600–3611. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Liu, J.; Subbiah, A.S.; Liu, W.; Kang, J.; Harrison, G.T.; Yang, X.; Isikgor, F.H.; Aydin, E.; De Bastiani, M.; et al. Potassium thiocyanate-assisted enhancement of slot-die-coated perovskite films for high-performance solar cells. Small Sci. 2021, 1, 2000044. [Google Scholar] [CrossRef]
- Li, J.; Dagar, J.; Shargaieva, O.; Flatken, M.A.; Köbler, H.; Fenske, M.; Schultz, C.; Stegemann, B.; Just, J.; Többens, D.M.; et al. 20.8% slot-die coated MAPbI3 perovskite solar cells by optimal DMSO-content and age of 2-ME based precursor inks. Adv. Energy Mater. 2021, 11, 2003460. [Google Scholar] [CrossRef]
- Abate, S.Y.; Yang, Z.; Jha, S.; Ma, G.; Ouyang, Z.; Zhang, H.; Muhammad, S.; Pradhan, N.; Gu, X.; Patton, D.; et al. Room temperature slot-die coated perovskite layer modified with sulfonyl-γ-AApeptide for high performance perovskite solar devices. Chem. Eng. J. 2022, 457, 141199. [Google Scholar] [CrossRef]
- Rana, T.R.; Abbas, M.; Schwartz, E.; Jiang, F.; Yaman, M.Y.; Xu, Z.; Ginger, D.S.; MacKenzie, D. Scalable Passivation Strategies to Improve Efficiency of Slot Die-Coated Perovskite Solar Cells. ACS Energy Lett. 2024, 9, 1888–1894. [Google Scholar] [CrossRef]
- Zimmermann, I.; Harada, N.; Guillemot, T.; Aider, C.; Salim, K.M.M.; Nguyen, V.S.; Castillon, J.; Provost, M.; Medjoubi, K.; Cacovich, S.; et al. Slot-Die Deposition of CuSCN Using Asymmetric Alkyl Sulfides as Cosolvent for Low-Cost and Fully Scalable Perovskite Solar Cell Fabrication. Sol. RRL 2024, 8, 2400064. [Google Scholar] [CrossRef]
- Sheng, J.; Zhu, X.; Xu, X.; He, J.; Ma, D.; Liu, J.; Wu, W. EtOH/H2O ratio modulation on carbon for high-Voc (1.03 V) printable mesoscopic perovskite solar cells without any passivation. Mater. Adv. 2023, 4, 1534–1545. [Google Scholar] [CrossRef]
- Chen, C.; Chen, J.; Han, H.; Chao, L.; Hu, J.; Niu, T.; Dong, H.; Yang, S.; Xia, Y.; Chen, Y.; et al. Perovskite solar cells based on screen-printed thin films. Nature 2022, 612, 266–271. [Google Scholar] [CrossRef]
- Chen, C.; Ran, C.; Guo, C.; Yao, Q.; Wang, J.; Niu, T.; Li, D.; Chao, L.; Xia, Y.; Chen, Y. Fully Screen-Printed Perovskite Solar Cells with 17% Efficiency via Tailoring Confined Perovskite Crystallization within Mesoporous Layer. Adv. Energy Mater. 2023, 13, 2302654. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, D.; Chen, Y.; Tao, Y.; Guo, R.; Zhang, Z.; Huang, Y.; Xiong, J.; Xiang, D.; Zhang, J. Room-Temperature Processed Annealing-Free Printable Carbon-Based Mesoscopic Perovskite Solar Cells with 17.34% Efficiency. ACS Appl. Mater. Interfaces 2024, 16, 7265–7274. [Google Scholar] [CrossRef] [PubMed]
- He, J.; He, J.; Ma, D.; Sheng, J.; Shao, W.; Ding, T.; Wu, W. Competitive Formation Mechanism for Bidentate Passivation of Halogen Vacancies in Perovskite Based on 6-Chloropurine. Small 2023, 20, 2305127. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xiong, J.; Wang, D.; Chen, Y.; Zhang, Y.; Wu, C.; Zhang, Z.; Wang, J.; Huang, Y.; Zhang, J. Efficient and stable full-printed mesoscopic perovskite solar cells with potassium hexafluorophosphate additives. Sustain. Energy Fuels 2023, 7, 2349–2356. [Google Scholar] [CrossRef]
- Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl. 2021, 29, 3–15. [Google Scholar] [CrossRef]
- Khorasani, A.; Mohamadkhani, F.; Marandi, M.; Luo, H.; Abdi-Jalebi, M. Opportunities, Challenges, and Strategies for Scalable Deposition of Metal Halide Perovskite Solar Cells and Modules. Adv. Energy Sustain. Res. 2024, 5, 2300275. [Google Scholar] [CrossRef]
- Scarpulla, M.A.; McCandless, B.; Phillips, A.B.; Yan, Y.; Heben, M.J.; Wolden, C.; Xiong, G.; Metzger, W.K.; Mao, D.; Krasikov, D.; et al. CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects. Sol. Energy Mater. Sol. Cells 2023, 255, 112289. [Google Scholar] [CrossRef]
- Powalla, M.; Paetel, S.; Hariskos, D.; Wuerz, R.; Kessler, F.; Lechner, P.; Wischmann, W.; Friedlmeier, T.M. Advances in cost-efficient thin-film photovoltaics based on Cu (In, Ga) Se2. Engineering 2017, 3, 445–451. [Google Scholar] [CrossRef]
- Li, Z.; Klein, T.R.; Kim, D.H.; Yang, M.; Berry, J.J.; van Hest, M.F.A.M.; Zhu, K. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 2018, 3, 18017. [Google Scholar] [CrossRef]
- Wang, F.; Bai, S.; Tress, W.; Hagfeldt, A.; Gao, F. Defects engineering for high-performance perovskite solar cells. npj Flex. Electron. 2018, 2, 22. [Google Scholar]
- Szabó, G.; Park, N.-G.; De Angelis, F.; Kamat, P.V. Are Perovskite Solar Cells Reaching the Efficiency and Voltage Limits? ACS Energy Lett. 2023, 8, 3829–3831. [Google Scholar] [CrossRef]
- Weerasinghe, H.C.; Macadam, N.; Kim, J.E.; Sutherland, L.J.; Angmo, D.; Ng, L.W.; Scully, A.D.; Glenn, F.; Chantler, R.; Chang, N.L.; et al. The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions. Nat. Commun. 2024, 15, 1656. [Google Scholar] [CrossRef] [PubMed]
- Vesce, L.; Stefanelli, M.; Rossi, F.; Castriotta, L.A.; Basosi, R.; Parisi, M.L.; Sinicropi, A.; Di Carlo, A. Perovskite solar cell technology scaling-up: Eco-efficient and industrially compatible sub-module manufacturing by fully ambient air slot-die/blade meniscus coating. Prog. Photovolt. Res. Appl. 2024, 32, 115–129. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, K.; Lin, Z.; Wei, X.; Xu, M.; Huang, X.; Chen, H.; Yang, S. Long-chain gemini surfactant-assisted blade coating enables large-area carbon-based perovskite solar modules with record performance. Nano-Micro Lett. 2023, 15, 182. [Google Scholar] [CrossRef]
- Burkitt, D.; Patidar, R.; Greenwood, P.; Hooper, K.; McGettrick, J.; Dimitrov, S.; Colombo, M.; Stoichkov, V.; Richards, D.; Beynon, D.; et al. Roll-to-roll slot-die coated P–I–N perovskite solar cells using acetonitrile based single step perovskite solvent system. Sustain. Energy Fuels 2020, 4, 3340–3351. [Google Scholar] [CrossRef]
- Teixeira, C.; Fuentes-Pineda, R.; Andrade, L.; Mendes, A.; Forgács, D. Fabrication of low-cost and flexible perovskite solar cells by slot-die coating for indoor applications. Mater. Adv. 2023, 4, 3863–3873. [Google Scholar] [CrossRef]
- Li, C.-F.; Huang, H.-C.; Huang, S.-H.; Hsiao, Y.-H.; Chaudhary, P.; Chang, C.-Y.; Tsai, F.-Y.; Su, W.-F.; Huang, Y.-C. High-Performance Perovskite Solar Cells and Modules Fabricated by Slot-Die Coating with Nontoxic Solvents. Nanomaterials 2023, 13, 1760. [Google Scholar] [CrossRef]
- Raptis, D.; Worsley, C.A.; Meroni, S.M.P.; Pockett, A.; Carnie, M.; Watson, T. Scalable Screen-Printed TiO2 Compact Layers for Fully Printable Carbon-Based Perovskite Solar Cells. Solar 2022, 2, 293–304. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, L.; Chang, Q.; Yang, Y.; Tang, X.; Wan, Z.; Du, J.; Wei, H.; Liu, C.; Guo, P.; et al. Cyclen molecule manipulation for efficient and stable perovskite solar cells. J. Mater. Chem. A 2024, 12, 13212–13218. [Google Scholar] [CrossRef]
- Uddin, A.; Rana, P.J.S.; Ni, Z.; Yang, G.; Li, M.; Wang, M.; Gu, H.; Zhang, H.; Dou, B.D.; Huang, J. Iodide manipulation using zinc additives for efficient perovskite solar minimodules. Nat. Commun. 2024, 15, 1355. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Shi, X.; Yu, H.; Wang, L.; Ren, Z.; Chen, S. Efficient Blade-Coated p–i–n Perovskite Solar Cells and Modules Enabled by Effective Molecular N Doping. Small 2024, 20, 2306425. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Xiao, K.; Lin, R.; Zhao, S.; Wang, W.; Dayneko, S.; Duan, C.; Ji, C.; Sun, H.; Bui, A.D.; et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 2024, 383, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xiao, K.; Gao, H.; Duan, C.; Zhao, S.; Wen, J.; Wang, Y.; Lin, R.; Zheng, X.; Luo, H.; et al. Scalable Solution-Processed Hybrid Electron Transport Layers for Efficient All-Perovskite Tandem Solar Modules. Adv. Mater. 2023, 36, 2308706. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Cui, Z.; Shi, X.; Wang, L.; Dou, Y.; Wang, F.; Lin, H.; Yan, H.; Chen, S. Poly(carbazole phosphonic acid) as a versatile hole-transporting material for p-i-n perovskite solar cells and modules. Joule 2023, 7, 2894–2904. [Google Scholar] [CrossRef]
- Tutundzic, M.; Zhang, X.; Lammar, S.; Singh, S.; Marchezi, P.; Merckx, T.; Aguirre, A.; Moons, E.; Aernouts, T.; Kuang, Y.; et al. Toward Efficient and Fully Scalable Sputtered NiOx-Based Inverted Perovskite Solar Modules via Co-Ordinated Modification Strategies. Sol. RRL 2024, 8, 2300862. [Google Scholar] [CrossRef]
- Xu, W.; Chen, B.; Zhang, Z.; Liu, Y.; Xian, Y.; Wang, X.; Shi, Z.; Gu, H.; Fei, C.; Li, N.; et al. Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules. Nat. Photonics 2024, 18, 379–387. [Google Scholar] [CrossRef]
- Zhuang, J.; Liu, C.; Kang, B.; Cheng, H.; Xiao, M.; Li, L.; Yan, F. Rapid Surface Reconstruction in Air-Processed Perovskite Solar Cells by Blade Coating. Adv. Mater. 2023, 36, 2309869. [Google Scholar] [CrossRef]
- Huang, C.; Tan, S.; Yu, B.; Li, Y.; Shi, J.; Wu, H.; Luo, Y.; Li, D.; Meng, Q. Meniscus-modulated blade coating enables high-quality α-phase formamidinium lead triiodide crystals and efficient perovskite minimodules. Joule 2024, 8, 2539–2553. [Google Scholar] [CrossRef]
- Zhang, J.; Ji, X.; Wang, X.; Zhang, L.; Bi, L.; Su, Z.; Gao, X.; Zhang, W.; Shi, L.; Guan, G.; et al. Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid–Liquid Two-Step Film Formation. Nano-Micro Lett. 2024, 16, 190. [Google Scholar] [CrossRef]
- Rana, P.J.; Febriansyah, B.; Koh, T.M.; Muhammad, B.T.; Salim, T.; Hooper, T.J.; Kanwat, A.; Ghosh, B.; Kajal, P.; Lew, J.H.; et al. Alkali additives enable efficient large area (>55 cm2) slot-die coated perovskite solar modules. Adv. Funct. Mater. 2022, 32, 2113026. [Google Scholar] [CrossRef]
- Sangale, S.S.; Kwon, S.; Patil, P.; Lee, H.; Na, S. Locally Supersaturated Inks for a Slot-Die Process to Enable Highly Efficient and Robust Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2300537. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, T.; Yuan, S.; Qian, F.; Li, X.; Zheng, H.; Huang, J.; Li, S. Over 19% efficiency perovskite solar modules by simultaneously suppressing cation deprotonation and iodide oxidation. ACS Appl. Mater. Interfaces 2024, 16, 4751–4762. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, A.S.; Isikgor, F.H.; Howells, C.T.; Bastiani, M.D.; Liu, J.; Aydin, E.; Furlan, F.; Allen, T.G.; Xu, F.; Zhumagali, S.; et al. High-performance perovskite single-junction and textured perovskite/silicon tandem solar cells via slot-die-coating. ACS Energy Lett. 2020, 5, 3034–3040. [Google Scholar] [CrossRef]
- Rana, P.J.; Febriansyah, B.; Koh, T.M.; Kanwat, A.; Xia, J.; Salim, T.; Hooper, T.J.; Kovalev, M.; Giovanni, D.; Aw, Y.C.; et al. Molecular Locking with All-Organic Surface Modifiers Enables Stable and Efficient Slot-Die-Coated Methyl-Ammonium-Free Perovskite Solar Modules. Adv. Mater. 2023, 35, 2210176. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dagar, J.; Shargaieva, O.; Maus, O.; Remec, M.; Emery, Q.; Khenkin, M.; Ulbrich, C.; Akhundova, F.; Márquez, J.A.; et al. Ink Design Enabling Slot-Die Coated Perovskite Solar Cells with >22% Power Conversion Efficiency, Micro-Modules, and 1 Year of Outdoor Performance Evaluation. Adv. Energy Mater. 2023, 13, 2203898. [Google Scholar] [CrossRef]
- Worsley, C.A.; Dunlop, T.; Potts, S.J.; Bolton, R.; Jewell, E.; Watson, T. Infiltration Issues in Printed Mesoporous Perovskite Solar Cells: A Troubleshooting Guide. J. Mater. Chem. C 2024, 12, 9401–9411. [Google Scholar] [CrossRef]
- Potts, S.J.; Bolton, R.; Dunlop, T.; Lacey, K.; Worsley, C.; Watson, T.; Jewell, E. Enhancing the Performance of the Mesoporous TiO2 Film in Printed Perovskite Photovoltaics through High-Speed Imaging and Ink Rheology Techniques. Adv. Funct. Mater. 2024, 34, 2401959. [Google Scholar] [CrossRef]
- Srisamran, N.; Sudchanham, J.; Sriprachuabwong, C.; Srisawad, K.; Pakawatpanurut, P.; Lohawet, K.; Kumnorkaew, P.; Krajangsang, T.; Tuantranont, A. Enhanced performance and stability of fully printed perovskite solar cells and modules by ternary additives under high humidity. Energy Fuels 2023, 37, 6049–6061. [Google Scholar] [CrossRef]
- Li, F.; Lin, F.R.; Jen, A.K.-Y. Current state and future perspectives of printable organic and perovskite solar cells. Adv. Mater. 2024, 36, 2307161. [Google Scholar] [CrossRef]
- Di Giacomo, F.; Shanmugam, S.; Fledderus, H.; Bruijnaers, B.J.; Verhees, W.J.; Dorenkamper, M.S.; Veenstra, S.C.; Qiu, W.; Gehlhaar, R.; Merckx, T.; et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Sol. Energy Mater. Sol. Cells 2018, 181, 53–59. [Google Scholar] [CrossRef]
- Nia, N.Y.; Giordano, F.; Zendehdel, M.; Cinà, L.; Palma, A.L.; Medaglia, P.G.; Zakeeruddin, S.M.; Grätzel, M.; Di Carlo, A. Solution-based heteroepitaxial growth of stable mixed cation/anion hybrid perovskite thin film under ambient condition via a scalable crystal engineering approach. Nano Energy 2020, 69, 104441. [Google Scholar]
- Chalkias, D.A.; Mourtzikou, A.; Katsagounos, G.; Kalarakis, A.N.; Stathatos, E. Development of Greener and Stable Inkjet-Printable Perovskite Precursor Inks for All-Printed Annealing-Free Perovskite Solar Mini-Modules Manufacturing. Small Methods 2023, 7, 2300664. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, E.; Matteocci, F.; Palma, A.L.; Vesce, L.; Taheri, B.; Carlini, L.; Pis, I.; Nappini, S.; Dagar, J.; Battocchio, C.; et al. Low temperature, solution-processed perovskite solar cells and modules with an aperture area efficiency of 11%. Sol. Energy Mater. Sol. Cells 2018, 185, 136–144. [Google Scholar] [CrossRef]
- Bu, T.; Liu, X.; Li, J.; Huang, W.; Wu, Z.; Huang, F.; Cheng, Y.B.; Zhong, J. Dynamic antisolvent engineering for spin coating of 10× 10 cm2 perovskite solar module approaching 18%. Sol. RRL 2020, 4, 1900263. [Google Scholar] [CrossRef]
- Bu, T.; Li, J.; Zheng, F.; Chen, W.; Wen, X.; Ku, Z.; Peng, Y.; Zhong, J.; Cheng, Y.-B.; Huang, F. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 2018, 9, 4609. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Lin, Y.-H.; Zhang, M.; Oliver, R.D.J.; Wang, X.; Liu, Z.; Luo, X.; Li, J.; Lai, D.; Luo, H.; et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 2022, 376, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, W.; Wu, S.; Zhu, H.; Liu, Z.; Liu, Z.; Jiang, Z.; Chen, R.; Zhou, J.; Lu, Q.; et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Sci. Adv. 2021, 7, eabg3749. [Google Scholar] [CrossRef]
- Hamidon, M.N.; Farnana, T.D.; Hasan, I.H.; Sali, A.; Isa, M.M. Printing of passive RFID tag antennas on flexible substrates for long read distance applications: Materials and techniques. J. Sci. Adv. Mater. Devices 2024, 9, 100778. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, C.; Zhang, M.; Mai, Y. Review on the effects of solvent physical properties on the performance of slot-die coated perovskite solar cells. Surf. Sci. Technol. 2024, 2, 25. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, F.; Tang, Z.; Li, Y. Scalable Blade Coating: A Technique Accelerating the Commercialization of Perovskite-Based Photovoltaics. Energy Technol. 2021, 9, 2100204. [Google Scholar] [CrossRef]
- Kirk, B.P.; Bjuggren, J.M.; Andersson, G.G.; Dastoor, P.; Andersson, M.R. Printing and Coating Techniques for Scalable Organic Photovoltaic Fabrication. Materials 2024, 17, 2511. [Google Scholar] [CrossRef] [PubMed]
Techniques | Crucial Scientific Aspects | Advantages | Challenges |
---|---|---|---|
Blade coating | Utilize a blade to spread solution across a substrate and form a layer after drying, relying on gravity and surface tension | High throughput and operating efficiency. Capable of making thinner, uniform layers | Limited to low-viscosity solutions. Risk and shortcomings include streaking, and requires precise control of coating speed |
Slot die coating | Uses a narrow slot to control the flow of ink, creating uniform wet film | High precise layer thickness and uniformity. Scalable for extensive surfaces. Appropriate for continuous production | Higher primary component costs. Needs precise control and coordination of ink viscosity, web speed, and flow rates to accomplish target thickness |
Screen printing | Involves forcing solution within a mesh screen, generating patterns introduced by the stencil | Cost-effective for limited-scale production. Versatile for various bases and can handle low-viscosity solution to create thick films | Lower resolution than other schemes. Potential for inconsistent film thickness and slower speeds for extensive areas |
Cell Design | Deposition Approaches | Area (cm2) | PCE (%) | Ref. | ||
---|---|---|---|---|---|---|
NIP structure | Perovskite | HTL | ETL | |||
Glass material/ITO/cTiO2/CH3NH3PbI3/Spiro-OMeTAD/Au | Slot die coating | Slot die coating | Physical Vapor Deposition | 168.75 | 11 | [91] |
Glass material/FTO/cTiO2/mTiO2/(FA1 − x-yMAxCsy)Pb (I1 − xBrx)3/Spiro-OMeTAD/Au | Blade coating | Spin coating | Spray/Blade coating | 50 | 11.6 | [92] |
Glass material/FTO/cTiO2/mTiO2/CH3NH3PbI3/carbon-based layer | Inkjet coating | Screen printing | Inkjet coating | 52.4 | 10.07 | [93] |
Glass material/FTO/SnO2/CH3NH3PbI3/Spiro-OMeTAD/Au | Spin coating | Blade coating | Spin coating | 13.8 | 13.1 | [94] |
Glass material/FTO/SnO2/CH3NH3PbI3/Spiro-OMeTAD/Au | Spin coating | Blade coating | Chemical vapor deposition | 53.64 | 17.82 | [95] |
ITO/PET/SnO2/Cs0.05(FA0.85MA0.15)0.95Pb (I0.85Br0.15)3/Spiro-OMeTAD/Au | Spin coating | Spin coating | Slot die coating | 14.89 | 16.07 | [96] |
PEDOT:PSS/FA0.7MA0.3PbI0.5 Sn0.5I3/C60/SnO2/Ag | Blade coating | Blade coating | Vapor transport deposition | 21.7 | 20.25 | [97] |
Glass material/ITO/NiO/VNPB/Cs0.35FA0.65PbI1.8Br1.2/C60/SnO2/Au | Blade coating | Blade coating | Vapor transport deposition | 21.7 | 20.25 | |
Glass material/FTO/NiMgLiO/FA0.83Cs0.17(PbI2)0.83Br0.17/LiF/C60/BCP/Bi/Ag | Slot die coating | Vapor transport deposition | Vapor transport deposition | 16.63 | 20.77 | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soltani, S.; Li, D. Advancements in Manufacturing of High-Performance Perovskite Solar Cells and Modules Using Printing Technologies. Energies 2024, 17, 6344. https://doi.org/10.3390/en17246344
Soltani S, Li D. Advancements in Manufacturing of High-Performance Perovskite Solar Cells and Modules Using Printing Technologies. Energies. 2024; 17(24):6344. https://doi.org/10.3390/en17246344
Chicago/Turabian StyleSoltani, Shohreh, and Dawen Li. 2024. "Advancements in Manufacturing of High-Performance Perovskite Solar Cells and Modules Using Printing Technologies" Energies 17, no. 24: 6344. https://doi.org/10.3390/en17246344
APA StyleSoltani, S., & Li, D. (2024). Advancements in Manufacturing of High-Performance Perovskite Solar Cells and Modules Using Printing Technologies. Energies, 17(24), 6344. https://doi.org/10.3390/en17246344