Influence of Copper and Tin Oxidation States on the Phase Evolution of Solution-Processed Ag-Alloyed CZTS Photovoltaic Absorbers
<p>The optimized annealing profile used in this work.</p> "> Figure 2
<p>XRD patterns of ACZTS precursors deposited from Sol-1 or Sol-2.</p> "> Figure 3
<p>Raman s spectra of CZTS precursors deposited from Sol-1 or Sol-2, recorded with excitation wavelengths of 532 (<b>a</b>) and 785 nm (<b>b</b>).</p> "> Figure 4
<p>Transformation mechanisms from solution to precursor for the two different protocols.</p> "> Figure 5
<p>XRD patterns of CZTS thin-film absorbers prepared with Sol-1 (<b>a</b>) and Sol-2 (<b>b</b>) and annealed at different temperatures.</p> "> Figure 6
<p>Raman spectra of CZTS absorbers prepared with Sol-1 and Sol-2 and annealed at different temperatures, recorded with excitation wavelengths of 532 (<b>a</b>,<b>c</b>) and 785 nm (<b>b</b>,<b>d</b>).</p> "> Figure 7
<p>Surface SEM images of CZTS absorbers prepared with Sol-1 and Sol-2 and annealed at different temperatures.</p> "> Figure 8
<p>Transformation mechanisms from the solution to the precursor and from the precursor to the absorber for Sol-1 and Sol-2.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the ACZTS Sol–Gel Solution
2.2. Chemical Reactions
2.3. Deposition Process
2.4. Sulfurization Process
2.5. Characterizations
3. Results
3.1. From Solution to Precursor Transfer
3.2. From Precursor to Absorber Transfer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miccoli, I.; Prete, P.; Marzo, F.; Cannoletta, D.; Lovergine, N. Synthesis of Vertically-aligned GaAs Nanowires on GaAs/(111)Si Hetero-substrates by Metalorganic Vapour Phase Epitaxy. Cryst. Res. Technol. 2011, 46, 795–800. [Google Scholar] [CrossRef]
- Di Carlo, V.; Prete, P.; Dubrovskii, V.G.; Berdnikov, Y.; Lovergine, N. CdTe Nanowires by Au-Catalyzed Metalorganic Vapor Phase Epitaxy. Nano Lett. 2017, 17, 4075–4082. [Google Scholar] [CrossRef]
- Dang, H.; Ososanaya, E.; Zhang, N. Improving Reliability of Window-Absorber Solar Cells through CdS Nanowires. Opt. Mater. 2022, 132, 112721. [Google Scholar] [CrossRef]
- Larramona, G.; Choné, C.; Meissner, D.; Ernits, K.; Bras, P.; Ren, Y.; Martín-Salinas, R.; Rodríguez-Villatoro, J.L.; Vermang, B.; Brammertz, G. Stability, Reliability, Upscaling and Possible Technological Applications of Kesterite Solar Cells. J. Phys. Energy 2020, 2, 024009. [Google Scholar] [CrossRef]
- Engberg, S.; Martinho, F.; Gansukh, M.; Protti, A.; Küngas, R.; Stamate, E.; Hansen, O.; Canulescu, S.; Schou, J. Spin-Coated Cu2ZnSnS4 Solar Cells: A Study on the Transformation from Ink to Film. Sci. Rep. 2020, 10, 20749. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Regino, V.D.; Castanedo-Pérez, R.; Márquez-Marín, J.; Torres-Delgado, G. Cu2ZnSnS4 Films Properties Deposited by Spray Pyrolysis, Subjected to a Combined Novel Thermal Treatment: CSS Sulfurization and RTA Post-Treatment. J. Alloys Compd. 2023, 956, 170379. [Google Scholar] [CrossRef]
- Katirci, R.; Onel, M.N.; Danaci, I.; Danaci, K.I.; Ozbay, S.; Erden, F. Fabrication of CZTS Films through a Combined Electrodeposition and Solution Process: An Experimental and First-Principles Study. ChemElectroChem 2023, 10, e202300162. [Google Scholar] [CrossRef]
- Simya, O.K.; Geetha Priyadarshini, B.; Balachander, K.; Ashok, A.M. Formation of a Phase Pure Kesterite CZTSe Thin Films Using Multisource Hybrid Physical Vapour Deposition. Mater. Res. Express 2020, 7, 016419. [Google Scholar] [CrossRef]
- Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Zhu, Y.; Mitzi, D.B. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater. 2014, 4, 1301465. [Google Scholar] [CrossRef]
- Li, Y.; Cui, C.; Wei, H.; Shao, Z.; Wu, Z.; Zhang, S.; Wang, X.; Pang, S.; Cui, G. Suppressing Element Inhomogeneity Enables 14.9% Efficiency CZTSSe Solar Cells. Adv. Mater. 2024, 36, 2400138. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.W.; Pawar, S.M.; Park, C.Y.; Yun, J.H.; Moon, J.-H.; Kim, J.H.; Lee, J.Y. Studies on Cu2ZnSnS4 (CZTS) Absorber Layer Using Different Stacking Orders in Precursor Thin Films. Sol. Energy Mater. Sol. Cells 2011, 95, 3202–3206. [Google Scholar] [CrossRef]
- Patel, S.B.; Gohel, J.V. Effect of Type of Solvent on the Sol-Gel Spin Coated CZTS Thin Films. PAIJ 2017, 1, 126–129. [Google Scholar] [CrossRef]
- Kumar, Y.B.K.; Bhaskar, P.U.; Babu, G.S.; Raja, V.S. Effect of Copper Salt and Thiourea Concentrations on the Formation of Cu2ZnSnS4 Thin Films by Spray Pyrolysis. Phys. Status Solidi (A) 2010, 207, 149–156. [Google Scholar] [CrossRef]
- Moser, S.; Krummenacher, J.; Aribia, A.; Morzy, J.; Carron, R. Mitigating Sn Loss via Anion Substitution in the Cu2+–Sn2+ Precursor System for Cu2ZnSn(S, Se)4 Solar Cells. J. Mater. Chem. A 2024, 12, 32424–32435. [Google Scholar] [CrossRef]
- Li, Q.; Sun, S.; Li, X.; Li, X.; Liu, X.; Zhang, D.; Yu, N.; Wang, S. Influence of the Oxidation State of Sn in the Precursor and Selenization Temperature on Cu2ZnSn(S,Se)4 Thin Film Solar Cells. Mater. Sci. Semicond. Process. 2022, 138, 106251. [Google Scholar] [CrossRef]
- Agbenyeke, R.; Sheppard, A.; Keynon, J.; Benhaddou, N.; Fleck, N.; Corsetti, V.; Alkhalifah, M.A.; Tiwari, D.; Bowers, J.W.; Fermin, D.J. Correlating Molecular Precursor Interactions with Device Performance in Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells. ACS Appl. Mater. Interfaces 2024, 16, 35315–35322. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, Y.; Zhu, Q.; Zhou, Y.; Qiu, R.; Niu, C.; Xin, H. Identify the Origin of the Voc Deficit of Kestertie Solar Cells from the Two Reaction Paths Induced by Sn2+ and Sn4+ Precursors in DMSO Solution. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 1995–1997. [Google Scholar]
- Xin, H.; Katahara, J.K.; Braly, I.L.; Hillhouse, H.W. 8% Efficient Cu2ZnSn(S,Se)4 Solar Cells from Redox Equilibrated Simple Precursors in DMSO. Adv. Energy Mater. 2014, 4, 1301823. [Google Scholar] [CrossRef]
- Todorov, T.; Hillhouse, H.W.; Aazou, S.; Sekkat, Z.; Vigil-Galán, O.; Deshmukh, S.D.; Agrawal, R.; Bourdais, S.; Valdés, M.; Arnou, P.; et al. Solution-Based Synthesis of Kesterite Thin Film Semiconductors. J. Phys. Energy 2020, 2, 012003. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, Y.; Zhu, Q.; Zhou, Y.; Qiu, R.; Niu, C.; Yan, W.; Huang, W.; Xin, H. Identifying the Origin of the Voc Deficit of Kesterite Solar Cells from the Two Grain Growth Mechanisms Induced by Sn2+ and Sn4+ Precursors in DMSO Solution. Energy Environ. Sci. 2021, 14, 2369–2380. [Google Scholar] [CrossRef]
- Su, Z.; Sun, K.; Han, Z.; Cui, H.; Liu, F.; Lai, Y.; Li, J.; Hao, X.; Liu, Y.; Green, M.A. Fabrication of Cu2ZnSnS4 Solar Cells with 5.1% Efficiency via Thermal Decomposition and Reaction Using a Non-Toxic Sol–Gel Route. J. Mater. Chem. A 2014, 2, 500–509. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, Y.; Jedlicka, E.; Giridharagopal, R.; Clark, J.A.; Yan, W.; Niu, C.; Qiu, R.; Jiang, J.; Yu, S.; et al. Sn4+ Precursor Enables 12.4% Efficient Kesterite Solar Cell from DMSO Solution with Open Circuit Voltage Deficit below 0.30 V. Sci. China Mater. 2021, 64, 52–60. [Google Scholar] [CrossRef]
- Ahmoum, H.; Chelvanathan, P.; Su’ait, M.S.; Boughrara, M.; Li, G.; Gebauer, R.; Sopian, K.; Kerouad, M.; Amin, N.; Wang, Q. Sol-Gel Prepared Cu2ZnSnS4 (CZTS) Semiconductor Thin Films: Role of Solvent Removal Processing Temperature. Mater. Sci. Semicond. Process. 2021, 132, 105874. [Google Scholar] [CrossRef]
- Scragg, J.J.S.; Choubrac, L.; Lafond, A.; Ericson, T.; Platzer-Björkman, C. A Low-Temperature Order-Disorder Transition in Cu2ZnSnS4 Thin Films. Appl. Phys. Lett. 2014, 104, 041911. [Google Scholar] [CrossRef]
- Avendaño, C.A.M.; Mathews, N.R.; Pal, M.; Delgado, F.P.; Mathew, X. Structural Evolution of Multilayer SnS/Cu/ZnS Stack to Phase-Pure Cu2ZnSnS4 Thin Films by Thermal Processing. ECS J. Solid State Sci. Technol. 2015, 4, P91–P96. [Google Scholar] [CrossRef]
- Su, C.-Y.; Chiu, C.-Y.; Ting, J.-M. Cu2ZnSnS4 Absorption Layers with Controlled Phase Purity. Sci. Rep. 2015, 5, 9291. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, X.; Wu, H.; Wang, J.; Lou, L.; Yin, K.; Gong, Y.; Shi, J.; Luo, Y.; Li, D.; et al. Control of the Phase Evolution of Kesterite by Tuning of the Selenium Partial Pressure for Solar Cells with 13.8% Certified Efficiency. Nat. Energy 2023, 8, 526–535. [Google Scholar] [CrossRef]
- Kim, C.; Hong, S. Effects of Cu+ Ion Implantation on Band Gap and Raman Shift of Cu2ZnSnS4 Thin Films. Curr. Appl. Phys. 2023, 50, 153–160. [Google Scholar] [CrossRef]
- Yu, S.M.; Lim, K.-S.; Shin, D.-W.; Oh, T.-S.; Yoo, J.-B. Effect of the Intermediate Sulfide Layer on the Cu2ZnSnS4-Based Solar Cells. J. Mater. Sci. Mater. Electron. 2017, 28, 5696–5702. [Google Scholar] [CrossRef]
- Jung, H.R.; Shin, S.W.; Suryawanshi, M.P.; Yeo, S.J.; Yun, J.H.; Moon, J.H.; Kim, J.H. Phase Evolution Pathways of Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Thin Films during the Annealing of Sputtered Cu-Sn-Zn Metallic Precursors. Sol. Energy 2017, 145, 2–12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Errafyg, A.; Ennouhi, N.; Chouimi, Y.; Sekkat, Z. Influence of Copper and Tin Oxidation States on the Phase Evolution of Solution-Processed Ag-Alloyed CZTS Photovoltaic Absorbers. Energies 2024, 17, 6341. https://doi.org/10.3390/en17246341
Errafyg A, Ennouhi N, Chouimi Y, Sekkat Z. Influence of Copper and Tin Oxidation States on the Phase Evolution of Solution-Processed Ag-Alloyed CZTS Photovoltaic Absorbers. Energies. 2024; 17(24):6341. https://doi.org/10.3390/en17246341
Chicago/Turabian StyleErrafyg, Abdeljalil, Naoufal Ennouhi, Yassine Chouimi, and Zouheir Sekkat. 2024. "Influence of Copper and Tin Oxidation States on the Phase Evolution of Solution-Processed Ag-Alloyed CZTS Photovoltaic Absorbers" Energies 17, no. 24: 6341. https://doi.org/10.3390/en17246341
APA StyleErrafyg, A., Ennouhi, N., Chouimi, Y., & Sekkat, Z. (2024). Influence of Copper and Tin Oxidation States on the Phase Evolution of Solution-Processed Ag-Alloyed CZTS Photovoltaic Absorbers. Energies, 17(24), 6341. https://doi.org/10.3390/en17246341