Highly Stable Lattice Boltzmann Method with a 2-D Actuator Line Model for Vertical Axis Wind Turbines
<p>D2Q9 velocity set for a 2-D fluid-flow problem.</p> "> Figure 2
<p>R500 case study [<a href="#B31-energies-17-04847" class="html-bibr">31</a>].</p> "> Figure 3
<p>Computational domain.</p> "> Figure 4
<p>Sensitivity of the relative wind speed <span class="html-italic">V<sub>rel</sub></span> to the increasing mesh resolution Δ<span class="html-italic">h</span> for simulations with <b><span class="html-italic">ε</span></b> equal to 0.5<span class="html-italic">c</span>.</p> "> Figure 5
<p>Numerical model and mesh with boundary conditions.</p> "> Figure 6
<p>Effect of the corrections to the normal force coefficient <span class="html-italic">C<sub>n</sub></span>* for <span class="html-italic">ε</span> = 0.5c (<b>left-hand side</b>) and <span class="html-italic">ε</span> = c (<b>right-hand side</b>). BASELINE = uncorrected curve; FC = flow curvature; DS = dynamic stall; T = Smagorinsky turbulence model.</p> "> Figure 7
<p>Effect of the corrections to the tangential force coefficient <span class="html-italic">C<sub>t</sub></span>* for <span class="html-italic">ε</span> = 0.5c (<b>left-hand side</b>) and <span class="html-italic">ε</span> = c (<b>right-hand side</b>).</p> "> Figure 8
<p>Effect of the corrections to the angle of attack <span class="html-italic">α</span> for <span class="html-italic">ε</span> = 0.5c (<b>left-hand side</b>) and <span class="html-italic">ε</span> = c (<b>right-hand side</b>).</p> "> Figure 9
<p>Blade normal force coefficient <span class="html-italic">C<sub>n</sub></span>* vs. azimuthal angle <span class="html-italic">ϑ</span> (<b>left-hand side</b>) and tangential force coefficient <span class="html-italic">C<sub>t</sub></span>* (<b>right-hand side</b>) at a high tip-speed ratio (<span class="html-italic">λ</span> = 4.5). Comparison between PIV experimental data (EXP), Lattice Boltzmann Method (LBM), Scale-Adaptive Simulation (SAS), and Vortex Method (VM).</p> "> Figure 10
<p>Blade normal force coefficient <span class="html-italic">C<sub>n</sub></span>* vs. azimuthal angle <span class="html-italic">ϑ</span> (<b>left-hand side</b>) and tangential force coefficient <span class="html-italic">C<sub>t</sub></span>* (<b>right-hand side</b>) at a low tip-speed ratio (<span class="html-italic">λ</span> = 2.0). Comparison between PIV experimental data (EXP), Lattice Boltzmann Method (LBM), Scale-Adaptive Simulation (SAS), and Vortex Method (VM).</p> "> Figure 11
<p>Axial induction factor <span class="html-italic">a<sub>ϑ</sub></span> vs. azimuthal angle <span class="html-italic">ϑ</span> (<b>left-hand side</b>) and angle of attack <span class="html-italic">α</span> vs. azimuthal angle <span class="html-italic">ϑ</span> (<b>right-hand side</b>) for tip-speed ratios <span class="html-italic">λ</span> of 4.5 and 2.0.</p> "> Figure 12
<p>Normalized streamwise velocity <span class="html-italic">u<sub>x</sub></span><sub>,<span class="html-italic">n</span></sub> at different stations <span class="html-italic">x</span>/<span class="html-italic">D</span> downstream of the turbine for <span class="html-italic">λ</span> = 4.5 (<b>left-hand side</b>) and <span class="html-italic">λ</span> = 2.0 (<b>right-hand side</b>).</p> "> Figure 13
<p>Contours of normalized out-of-plane vorticity for the combined field <span class="html-italic">ω<sub>z</sub>c</span>/<span class="html-italic">u</span><sub>0</sub> for <span class="html-italic">λ</span> = 4.5 <b>(top</b>) and <span class="html-italic">λ</span> = 2.0 (<b>bottom</b>).</p> "> Figure 13 Cont.
<p>Contours of normalized out-of-plane vorticity for the combined field <span class="html-italic">ω<sub>z</sub>c</span>/<span class="html-italic">u</span><sub>0</sub> for <span class="html-italic">λ</span> = 4.5 <b>(top</b>) and <span class="html-italic">λ</span> = 2.0 (<b>bottom</b>).</p> ">
Abstract
:1. Introduction
2. Method
2.1. Simplified and Highly Stable Lattice Boltzmann Method
2.2. Actuator Line Model
2.3. ALM Corrections
2.3.1. Flow Curvature
2.3.2. Dynamic Stall
2.3.3. Smagorinsky Turbulence Model
3. Simulations
3.1. Kernel Size and Mesh Resolution
3.2. Validation with a 2-D CFD Approach and VM
3.3. High Tip-Speed Ratio
3.4. Low Tip-Speed Ratio
3.5. Wake Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bangga, G.; Dessoky, A.; Wu, Z.; Rogowski, K.; Hansen, M.O.L. Accuracy and Consistency of CFD and Engineering Models for Simulating Vertical Axis Wind Turbine Loads. Energy 2020, 206, 118087. [Google Scholar] [CrossRef]
- Strickland, J.H. Advanced Energy Projects Dept. In The Darrieus Turbine: A Performance Prediction Model Using Multiple Streamtubes; SAND, Sandia Laboratories: Albuquerque, NM, USA, 1979. [Google Scholar]
- Paraschivoiu, I. Double-Multiple Streamtube Model for Studying Vertical-Axis Wind Turbines. AIAA J. Propuls. Power 1988, 4, 370–378. [Google Scholar] [CrossRef]
- Sørensen, J.N.; Shen, W.Z. Numerical Modelling of Wind Turbine Wakes. J. Fluids Eng. 2002, 124, 393–399. [Google Scholar] [CrossRef]
- Hansen, M.O.L.; Sørensen, D.N. CFD Model for Vertical Axis Wind Turbine; European Wind Energy Conference and Exhibition: Copenhagen, Denmark, 2001; pp. 485–487. [Google Scholar]
- Rogowski, K. Numerical Studies on Two Turbulence Models and a Laminar Model for Aerodynamics of a Vertical-Axis Wind Turbine. J. Mech. Sci. Technol. 2018, 32, 2079–2088. [Google Scholar] [CrossRef]
- Rogowski, K.; Hansen, M.O.L.; Galih, B. Performance Analysis of a H-Darrieus Wind Turbine for a Series of 4-digit NACA Airfoils. Energies 2020, 13, 3196. [Google Scholar] [CrossRef]
- Belabes, B.; Paraschivoiu, M. Numerical Study of the Effect of Turbulence Intensity on VAWT Performance. Energy 2021, 233, 121139. [Google Scholar] [CrossRef]
- Cacciali, L. Lattice Boltzmann Method for VAWT Aerodynamics. Wind Energy. Master’s Thesis, Technical University of Denmark, DTU, Lyngby, Denmark, 2024. [Google Scholar]
- Shamsoddin, S.; Porté-Agel, F. A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer. Energies 2016, 9, 366. [Google Scholar] [CrossRef]
- Troldborg, N.; Sørensen, J.N.; Mikkelsen, R. Numerical Simulations of Wake Characteristics of a Wind Turbine in Uniform Inflow. Wind Energy 2010, 13, 86–99. [Google Scholar] [CrossRef]
- Bachant, P.; Goude, A.; Wosnik, M. Actuator Line Modeling of Vertical-Axis Turbines. arXiv 2018, arXiv:1605.01449. [Google Scholar]
- Martinez-Ojeda, E.; Ordaz, F.J.S.; Sen, M. Vertical-Axis Wind-Turbine Computations Using a 2D Hybrid Wake Actuator-Cylinder Model. Wind Energy Sci. 2021, 6, 1061–1077. [Google Scholar] [CrossRef]
- Madsen, H. The Actuator Cylinder: A Flow Model for Vertical-Axis Wind Turbines. Ph.D. Thesis, Aalborg University Centre, Aalborg, Denmark, 1982. [Google Scholar]
- Mendoza, V.; Goude, A. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear. J. Phys. Conf. Ser. 2017, 854, 012031. [Google Scholar] [CrossRef]
- Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Nourgaliev, R.R.; Dinh, T.N.; Theofanous, T.G.; Joseph, D. The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications. Int. J. Multiph. Flow 2003, 29, 117–169. [Google Scholar] [CrossRef]
- Dünweg, B.; Ladd, A.J.C. Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–78. [Google Scholar]
- Krüger, T.; Kusumaatmaja, H.; Kuxmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method. In Principles and Practice; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Geller, S.; Krafczyk, M.; Tölke, J.; Turek, S.; Hron, J. Benchmark computations based on Lattice-Boltzmann, Finite Element and Finite Volume Methods for laminar Flows. Comput. Fluids 2006, 35, 888–897. [Google Scholar] [CrossRef]
- Asmuth, H.; Olivares-Espinosa, H.; Nilson, K.; Ivanell, S. The Actuator Line Model in Lattice Boltzmann Frameworks: Numerical Sensitivity and Computational Performance. J. Phys. Conf. Ser. 2019, 1256, 012022. [Google Scholar] [CrossRef]
- Asmuth, H.; Olivares-Espinosa, H.; Ivanell, S. Actuator Line Simulations of Wind Turbine Wakes Using the Lattice Boltzmann Method. Wind Energy Sci. 2020, 5, 623–645. [Google Scholar] [CrossRef]
- Glessmer, M.S.; Janssen, C.F. Using an Interactive Lattice Boltzmann Solver in Fluid Mechanics Instruction. Computation 2017, 5, 35. [Google Scholar] [CrossRef]
- Schubiger, A.; Barber, S.; Nordborg, H. Evaluation of the Lattice Boltzmann Method for Wind Modelling in Complex Terrain. Wind Energy Sci. 2020, 5, 1507–1519. [Google Scholar] [CrossRef]
- Latt, J.; Malaspinas, O.; Kontaxakis, D.; Parmigiani, A.; Lagrava, D.; Brogi, F.; Belgacem, M.B.; Thorimbert, Y.; Leclaire, S.; Marson, F.; et al. Palabos: Parallel Lattice Boltzmann Solver. Comput. Math. Appl. 2021, 81, 334–350. [Google Scholar] [CrossRef]
- Ribeiro, A.F.P.; Muscari, C. Sliding Mesh Simulations of a Wind Turbine Rotor with Actuator Line Lattice-Boltzmann Method. Wind Energy 2023. Early View. [Google Scholar] [CrossRef]
- Rullaud, S.; Blondel, F.; Cathelain, M. Actuator-Line Model in a Lattice Boltzmann Framework for Wind Turbine Simulations. J. Phys. Conf. Ser. 2018, 1037, 022023. [Google Scholar] [CrossRef]
- d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P. Multiple-Relaxation-Time Lattice Boltzmann Models in Three Dimensions. Phil. Trans. A 2002, 360, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Kupershtokh, A.L.; Medvedev, D.A.; Karpov, D.I. On Equations of State in a Lattice Boltzmann Method. Comput. Math. Appl. 2009, 58, 965–974. [Google Scholar] [CrossRef]
- Chen, Z.; Shu, C. Simplified and Highly Stable Lattice Boltzmann Method—Theory and Applications. In Advances in Computational Fluid Dynamics; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2021; Volume 5. [Google Scholar]
- Tescione, G.; Ragni, D.; He, C.; Simão Ferreira, C.J.; Van Bussel, G.J.W. Near Wake Flow Analysis of a Vertical Axis Wind Turbine by Stereoscopic Particle Image Velocimetry. Renew. Energy 2014, 70, 47–61. [Google Scholar] [CrossRef]
- Castelein, D.; Ragni, D.; Tescione, G.; Simão Ferreira, C.J.; Gaunaa, M. Creating a Benchmark of Vertical Axis Wind Turbines in Dynamic Stall for Validating Numerical Models. In Proceedings of the 33rd Wind Energy Symposium, AIAA Scitech, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar]
- Mohamad, A.A. Lattice Boltzmann Method—Fundamental and Engineering Applications with Computer Codes, 2nd ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Churchfield, M.; Schreck, S.; Martinez-Tossas, L.; Meneveau, C.; Spalart, P. An Advanced Actuator Line Method for Wind Energy Applications and Beyond. In Proceedings of the 35th Wind Energy Symposium, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Jha, P.K.; Schmitz, S. Actuator Curve Embedding an Advanced Actuator Line Model. J. Fluid Mech. 2018, 834, R2. [Google Scholar] [CrossRef]
- Mohamed, O.S.; Melani, P.F.; Balduzzi, F.; Ferrara, G.; Bianchini, A. An Insight on the Key Factors Influencing the Accuracy of the Actuator Line Method for Use in Vertical-Axis Turbines: Limitations and Open Challenges. Energy Convers. Manag. 2022, 270, 116249. [Google Scholar] [CrossRef]
- Martínez-Tossas, L.A.; Churchfield, M.J.; Meneveau, C. Optimal Smoothing Length Scale for Actuator Line Models of Wind Turbine Blades Based on Gaussian Body Force Distribution. Wind Energy 2017, 20, 1083–1096. [Google Scholar] [CrossRef]
- Melani, P.F.; Balduzzi, F.; Ferrara, G.; Bianchini, A. Tailoring the Actuator Line Theory to the Simulation of Vertical-Axis Wind Turbines. Energy Convers. Manag. 2021, 243, 114422. [Google Scholar] [CrossRef]
- Troldborg, N. Actuator Line Modeling of Wind Turbine Wakes. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2008. [Google Scholar]
- Migliore, P.G.; Wolfe, W.P.; Fanucci, J.B. Flow Curvature Effects on Darrieus Turbine Blade Aerodynamics. J. Energy 1980, 4, 49–55. [Google Scholar] [CrossRef]
- Goude, A. Fluid Mechanics of Vertical Axis Turbines: Simulations and Model Development. Doctoral Thesis, Uppsala University, Uppsala, Sweden, 2012. [Google Scholar]
- Dyachuk, E.; Goude, A.; Bernhoff, H. Dynamic Stall Modeling for the Conditions of Vertical Axis Wind Turbines. AIAA J. 2014, 52, 72–81. [Google Scholar] [CrossRef]
- Øye, S. Dynamic Stall Simulated as Time Lag of Separation. In Proceedings of the 4th IEA Symposium on the Aerodynamics of Wind Turbines, Rome, Italy, 20–21 November 1990. [Google Scholar]
- Branlard, E. Wind Turbine Aerodynamics and Vorticity-Based Methods. In Fundamentals and Recent Applications. Research Topics in Wind Energy; Springer: Cham, Switzerland, 2017; Volume 7. [Google Scholar]
- Hansen, M.O.L. Aerodynamics of Wind Turbines, 3rd ed.; Routledge: London, UK, 2015. [Google Scholar]
- Smagorinsky, J. General Circulation Experiments with the Primitive Equations. Mon. Weather. Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Bailly, C.; Comte-Bellot, G. Turbulence; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics. In The Finite Volume Method, 2nd ed.; Pearson: London, UK, 2007. [Google Scholar]
- Jiang, L.; Gu, X.; Wu, J. A Simplified Lattice Boltzmann Method for Turbulent Flow Simulation. Adv. Appl. Math. Mech. 2021, 14, 1040–1058. [Google Scholar] [CrossRef]
- Balduzzi, F.; Bianchini, A.; Ferrara, G.; Ferrari, L. Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines. Energy 2016, 97, 246–261. [Google Scholar] [CrossRef]
- Perzon, S. On Blockage Effects in Wind Tunnels—A CFD Study. In Proceedings of the SAE 2001 World Congress, Detroit, MI, USA, 5–8 March 2001. [Google Scholar]
- Barlow, J.B.; Rae, W.H.; Pope, A. Low Speed Wind Tunnel Testing, 3rd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1999. [Google Scholar]
- Rezaeiha, A.; Kalkman, I.; Blocken, B. CFD Simulation of a Vertical Axis Wind Turbine Operating at a Moderate Tip Speed Ratio: Guidelines for Minimum Domain Size and Azimuthal Increment. Renew. Energy 2017, 107, 373–385. [Google Scholar] [CrossRef]
- Rogowski, K.; Hansen, M.O.L.; Maroński, R.; Lichota, P. Scale Adaptive Simulation Model for the Darrieus Wind Turbine. J. Phys. Conf. Ser. 2016, 753, 022050. [Google Scholar] [CrossRef]
- Rezaeiha, A.; Montazeri, H.; Blocken, B. CFD Analysis of Dynamic Stall on Vertical Axis Wind Turbines Using Scale Adaptive Simulation (SAS): Comparison against URANS and hybrid RANS/LES. Energy Convers. Manag. 2019, 196, 1282–1298. [Google Scholar] [CrossRef]
- Menter, F.R.; Egorov, Y. The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description. Flow Turbul. Combust. 2010, 85, 113–138. [Google Scholar] [CrossRef]
- Menter, F.; Hüppe, A.; Matyushenko, A.; Kolmogorov, D. An Overview of Hybrid RANS–LES Models Developed for Industrial CFD. Appl. Sci. 2021, 11, 2459. [Google Scholar] [CrossRef]
- Rogowski, K.; Michna, J.; Ferreira, C.S. Numerical analysis of Aerodynamic Performance of a Fixed-Pitch Vertical Axis Wind Turbine Rotor. Adv. Sci. Technol. Res. J. 2024, 18, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Rogowski, K. CFD Computation of the H-Darrieus Wind Turbine—The Impact of the Rotating Shaft on the Rotor Performance. Energies 2019, 12, 2506. [Google Scholar] [CrossRef]
- Carbó Molina, A.; De Troyer, T.; Massai, T.; Vergaerde, A.; Runacres, M.C.; Bartoli, G. Effect of Turbulence on the Performance of VAWTs: An Experimental Study in Two Different Wind Tunnels. J. Wind. Eng. Ind. Aerodyn. 2019, 193, 103969. [Google Scholar] [CrossRef]
- Rogowski, K.; Królak, G.; Bangga, G. Numerical Study on the Aerodynamic Characteristics of the NACA 0018 Airfoil at Low Reynolds Number for Darrieus Wind Turbines Using the Transition SST Model. Processes 2021, 9, 477. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS Fluent Theory Guide Version 22; ANSYS Inc.: Canonsburg, PA, USA, 2022. [Google Scholar]
- Michna, J.; Rogowski, K. Numerical Study of the Effect of the Reynolds Number and the Turbulence Intensity on the Performance of the NACA 0018 Airfoil at the Low Reynolds Number Regime. Processes 2022, 10, 1004. [Google Scholar] [CrossRef]
Velocities ck | Length |ck| | Weight wk |
---|---|---|
(0,0) | 0 | 4/9 |
(±1,0), (0,±1) | 1 | 1/9 |
(±1,±1) | √2 | 1/36 |
Number of Blades | 2 |
---|---|
Radius [m] | 0.50 |
Blade chord [m] | 0.06 |
Airfoil | NACA 0018 |
λ | u0 [l.u.] | Re |
---|---|---|
4.5 | 0.1 | 160,000 |
2.0 | 0.1 | 80,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciali, L.; Hansen, M.O.L.; Rogowski, K. Highly Stable Lattice Boltzmann Method with a 2-D Actuator Line Model for Vertical Axis Wind Turbines. Energies 2024, 17, 4847. https://doi.org/10.3390/en17194847
Cacciali L, Hansen MOL, Rogowski K. Highly Stable Lattice Boltzmann Method with a 2-D Actuator Line Model for Vertical Axis Wind Turbines. Energies. 2024; 17(19):4847. https://doi.org/10.3390/en17194847
Chicago/Turabian StyleCacciali, Luca, Martin O. L. Hansen, and Krzysztof Rogowski. 2024. "Highly Stable Lattice Boltzmann Method with a 2-D Actuator Line Model for Vertical Axis Wind Turbines" Energies 17, no. 19: 4847. https://doi.org/10.3390/en17194847
APA StyleCacciali, L., Hansen, M. O. L., & Rogowski, K. (2024). Highly Stable Lattice Boltzmann Method with a 2-D Actuator Line Model for Vertical Axis Wind Turbines. Energies, 17(19), 4847. https://doi.org/10.3390/en17194847