FPGA-Based Speed Control Strategy of PMSM Using Improved Beetle Antennae Search Algorithm
<p>RTL model of four pseudo-random numbers from LFSR.</p> "> Figure 2
<p>RTL model of right antenna update.</p> "> Figure 3
<p>RTL model of right antenna update.</p> "> Figure 4
<p>RTL model of beetle position update.</p> "> Figure 5
<p>Three-phase SVPWM generator module.</p> "> Figure 6
<p>Block diagram of PMSM control system based on LDSBAS/BAS algorithm.</p> "> Figure 7
<p>Simulation results of speed response with no load.</p> "> Figure 8
<p>Simulation results of speed response with speed transient.</p> "> Figure 9
<p>Simulation results of speed response with load transients.</p> "> Figure 10
<p>The position update results of the beetle with different numbers of iterations. (<b>a</b>) Simulation of beetle position with 200 iterations; (<b>b</b>) simulation results of beetle position with 100 iterations; (<b>c</b>) simulation results of beetle position with 50 iterations.</p> "> Figure 11
<p>The simulation results for the PI controller with different numbers of iterations. (<b>a</b>) The output waveform of the PI controller with a speed loop with 200 iterations; (<b>b</b>) the output waveform of the PI controller with a speed loop with 100 iterations; (<b>c</b>) the output waveform of the PI controller with a speed loop with 50 iterations.</p> "> Figure 12
<p>Closed-loop simulation results of PMSM control system.</p> ">
Abstract
:1. Introduction
- In this paper, we propose an LDSBAS algorithm to solve the optimization problem of PI controller parameters. The LDSBAS algorithm linearly decreases the search step length such that the beetle’s global and local search capabilities are significantly improved compared with the traditional BAS algorithm.
- The LFSR model, which has the ability to generate four random numbers, is developed for the first time on an FPGA platform. Compared to the existing LFSR model, which can generate only one random number, the model that we propose can provide more random numbers.
- This paper solves the problem of implementing a PMSM control system based on the BAS algorithm on an FPGA and provides a more feasible solution for the application of intelligent optimization algorithms in PMSM control systems.
- The PMSM control system presented in this paper, which is based on the LDSBAS algorithm, was developed using a register transfer level description. This approach directly represents the underlying circuitry and meets the need for dynamic function expansion.
2. Mathematical Model of PMSM
3. LDSBAS Algorithm
3.1. Random Search Direction and Antenna Coordinate Calculation
3.2. Update of Location and Fitness Function
Algorithm 1: LDSBAS algorithm |
Input:
Output:
|
4. Hardware Description of LDSBAS Algorithm
4.1. Random Number Generator Module
4.2. Antenna Update Module
4.3. Position Update Module
4.4. Fitness Function Calculation Module
5. The PMSM Control System Based on the LDSBAS Algorithm
5.1. PI Controller Module
5.2. Coordinate Transform Module
5.2.1. Inverse Park Transformation
5.2.2. Inverse Clark Transformation
5.2.3. Clark Transformation
5.2.4. Park Transformation
5.3. SVPWM Generator Module
6. Results Analysis of PMSM Control System Simulation
6.1. No Load
6.2. Speed Transient
6.3. Load Transients
7. FPGA-Based PMSM Control System
7.1. Hardware Simulation of PMSM Control System
7.2. FPGA Resource Evaluation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Yang, J.; Li, S.; Wang, X. Single-Loop Robust Model Predictive Speed Regulation of PMSM Based on Exogenous Signal Preview. IEEE Trans. Ind. Electron. 2023, 70, 12719–12729. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, H.; Liu, Y. Speed-Current Single-Loop Control with Overcurrent Protection for PMSM Based on Time-Varying Nonlinear Disturbance Observer. IEEE Trans. Ind. Electron. 2022, 69, 179–189. [Google Scholar] [CrossRef]
- Li, Z.; Yang, X.; Zhao, S. Flux Linkage Observation Using an Improved MRAS Observer in Case of Uniform Demagnetization of IPMSM. IEEE Trans. Instrum. Meas. 2024, 73, 1–10. [Google Scholar] [CrossRef]
- Fuentes, E.; Silva, C.A.; Kennel, R.M. MPC Implementation of a Quasi-Time-Optimal Speed Control for a PMSM Drive, with Inner Modulated-FS-MPC Torque Control. IEEE Trans. Ind. Electron. 2016, 63, 3897–3905. [Google Scholar] [CrossRef]
- Sel, A.; Sel, B.; Coskun, U.; Kasnakoglu, C. Comparative Study of an EKF-Based Parameter Estimation and a Nonlinear Optimization-Based Estimation on PMSM System Identification. Energies 2021, 14, 6108. [Google Scholar] [CrossRef]
- Xie, T.; Xu, X.; Yuan, F.; Song, Y.; Lei, W.; Zhao, R.; Chang, Y.; Wu, X.; Gan, Z.; Zhang, F. Speed Estimation Strategy for Closed-Loop Control of PMSM Based on PSO Optimized KF Series Algorithms. Electronics 2023, 12, 4215. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Benbouzid, M.; Charpentier, J.-F.; At-Ahmed, N.; Han, J. Improved Fractional-Order PID Controller of a PMSM-Based Wave Compensation System for Offshore Ship Cranes. J. Mar. Sci. Eng. 2022, 10, 1238. [Google Scholar] [CrossRef]
- Baoyong, G.; Zhongjie, Z.; Pan, J.-S.; Chu, S.-C. Optimal Design and Simulation for PID Controller Using Fractional-Order Fish Migration Optimization Algorithm. IEEE Access 2021, 9, 8808–8819. [Google Scholar]
- Khudhair, M.; Ragab, M.; AboRas, K.M.; Abbasy, N.H. Robust Control of Frequency Variations for a Multi-Area Power System in Smart Grid Using a Novel Wild Horse Optimized Combination of PIDD2 and PD Controllers. Sustainability 2022, 14, 8223. [Google Scholar] [CrossRef]
- Obadina, O.O.; Thaha, M.A.; Althoefer, K.; Shaheed, M.H. Shaheed, Dynamic characterization of a master-slave robotic manipulator using a hybrid grey wolf-whale optimization algorithm. J. Vib. Control 2022, 28, 1992–2003. [Google Scholar] [CrossRef]
- Jiang, X.; Li, S. BAS: Beetle Antennae Search Algorithm for Optimization Problems. Int. J. Robot. Control 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Gao, B.; Hu, X.; Peng, Z.; Yubo, S. Application of intelligent water drop algorithm in process planning optimization. Int. J. Adv. Manuf. Technol. 2020, 106, 5199–5211. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Xu, B. Convergence analysis of beetle antennae search algorithm and its applications. Soft Comput. 2021, 25, 10595–10608. [Google Scholar] [CrossRef]
- Kou, B.; Ren, D.C.; Guo, S.J. Geometric Parameter Identification of Medical Robot Based on Improved Beetle Antennae Search Algorithm. Bioengineering 2022, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Gao, Y.; Wu, M.; Zhang, F.; Li, G. In-Field Calibration of Triaxial Accelerometer Based on Beetle Swarm Antenna Search Algorithm. Sensors 2020, 20, 4947. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Yang, Q.; Peng, Y. A Real-Time Path Planning Method for Urban Low-Altitude Logistics UAVs. Sensors 2023, 23, 7472. [Google Scholar] [CrossRef] [PubMed]
- Simos, T.E.; Mourtas, S.D.; Katsikis, V.N. Time-varying Black–Litterman portfolio optimization using a bio-inspired approach and neuronets. Appl. Soft Comput. 2021, 112, 107767. [Google Scholar] [CrossRef]
- Jiang, X.; Lin, Z.; Li, S.; Ji, Y.; Luan, Y.; Ma, S. Dynamical attitude configuration with wearable wireless body sensor networks through beetle antennae search strategy. Measurement 2021, 167, 108128. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, J. Lower limb exoskeleton robots’ dynamics parameters identification based on improved beetle swarm optimization algorithm. Robotica 2022, 40, 2716–2731. [Google Scholar] [CrossRef]
- Lin, M.; Li, Q.; Wang, F.; Chen, D. An improved beetle antennae search algorithm and its application on economic load distribution of power system. IEEE Access 2020, 8, 99624–99632. [Google Scholar] [CrossRef]
- Lojda, J.; Panek, R.; Sekanina, L.; Lukas, S.; Zdenek, K. Automated design and usage of the Fault-Tolerant dynamic partial reconfiguration controller for FPGAs. Microelectron. Reliab. 2023, 144, 114976. [Google Scholar] [CrossRef]
- Lin, J.; Wu, X. Optimized design and realization of storage array based on FPGA. Dianzi Jishu Yingyong 2023, 49, 111–116. [Google Scholar]
- Kumar, S.; Mahapatra, R.; Singh, A. Automatic Modulation Recognition: An FPGA Implementation. IEEE Commun. Lett. 2022, 9, 2062–2066. [Google Scholar] [CrossRef]
- Sun, A.; Qin, X. Multichannel ARINC429 bus test system based on FPGA. Dianzi Jishu Yingyong 2023, 49, 119–123. [Google Scholar]
- Sai, S.V.; Zinkevich, A.V. Computational methods to increase the speed of FPGA-based discrete wavelet transforms. Naučno-Teh. Vestn. Inf. Technol. 2023, 23, 79–87. [Google Scholar] [CrossRef]
- Yue, Z.; Li, G.; Jiang, X.; Li, S.; Cheng, J.; Ren, P. A Hardware Descriptive Approach to Beetle Antennae Search. IEEE Access 2020, 8, 89059–89070. [Google Scholar] [CrossRef]
- Damodaram, D.; Venkateswarlu, T. FPGA implementation of genetic algorithm to detect optimal user by cooperative spectrum sensing. ICT Express 2019, 5, 245–249. [Google Scholar] [CrossRef]
- Jdidia, S.B.; Belghith, F.; Sallem, A.; Maher, J.; Nouri, M. Hardware implementation of PSO-based approximate DST transform for VVC standard. J. Real-Time Image Process. 2022, 19, 87–101. [Google Scholar] [CrossRef]
- Issa, H.H.; Ahmed, S.M.E. FPGA Implementation of Floating Point Based Cuckoo Search Algorithm. IEEE Access 2019, 70, 134434–134447. [Google Scholar] [CrossRef]
- Ghith, E.S.; Tolba, F.A.A. Tuning PID Controllers Based on Hybrid Arithmetic Optimization Algorithm and Artificial Gorilla Troop Optimization for Micro-Robotics Systems. IEEE Access 2023, 11, 27138–27154. [Google Scholar] [CrossRef]
- Nie, Z.; Wang, Q.; Liu, R.; Lan, Y. Identification and PID control for a class of delay fractional-order systems. IEEE/CAA J. Autom. Sin. 2016, 3, 463–476. [Google Scholar] [CrossRef]
- Sadhika, P.; Thuraka, E.R.; Rao, R. Reduced complexity XOR trees for LDPC codes and BS-LFSR techniques to High-Speed memory applications. AEU Int. J. Electron. Commun. 2023, 169, 154754. [Google Scholar] [CrossRef]
- Zhao, W.; Dang, Q.; Xia, T.; Zhang, J.; Zheng, N.; Ren, P. Optimizing FPGA-Based DNN Accelerator with Shared Exponential Floating-Point Format. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 4478–4491. [Google Scholar] [CrossRef]
- Qian, W.; Chen, K.; Liu, W.; Cheng, Z. LMM: A Fixed-Point Linear Mapping Based Approximate Multiplier for IoT. J. Comput. Sci. Technol. 2023, 38, 298–308. [Google Scholar]
- Liu, Z.; Li, B.; Wang, X.; Xiang, W.; Fei, L. A predictive control method for switching sequence selection based on SVPWM for five-level converter. IET Power Electron. 2023, 16, 990–1000. [Google Scholar] [CrossRef]
- Yuan, L.; Shen, J.Q.; Xiao, F.; Chen, M.-L. Nonsingular terminal sliding-mode observer design for interior permanent magnet synchronous motor drive at very low-speed. Acta Phys. Sin. 2013, 62, 030501. [Google Scholar] [CrossRef]
- Yuan, L. Modern Permanent Magnet Synchronous Motor Control Principle and MATLAB Simulation; Beihang University Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
Description | Value | Unit |
---|---|---|
Rated speed () | 3000 | r/min |
Number of poles () | 4 | - |
Rated resistance () | 0.958 | |
-axis inductance () | 5.25 | mH |
-axis inductance () | 12 | mH |
Flux linkage () | 0.1827 | Wb |
Rotational inertia (J) | 0.003 | kg·m2 |
Speed loop bandwidth () | 50 | Hz |
Description | Name | Value |
---|---|---|
BAS | 0.8 | |
LDSBAS/BAS | 0.95 | |
LDSBAS/BAS | [0 1] | |
LDSBAS | 200 | |
LDSBAS | 0.8 | |
LDSBAS | 0.4 | |
PI | 0.14 | |
PI | 7 | |
BAS-PI | [0.001 3] | |
BAS-PI | [0.001 10] | |
LDSBAS-PI | [0.001 3] | |
LDSBAS-PI | [0.001 10] |
Resource | Utilization | Availability | Percent |
---|---|---|---|
LE | 2327 | 10,320 | 22.55 |
Multiplie | 18 | 46 | 39.13 |
Resource | Utilization | Availability | Percent |
---|---|---|---|
LUT | 1685 | 17,600 | 9.57 |
FF | 1391 | 35,200 | 3.95 |
DSP | 17 | 80 | 21.25 |
BUFG | 1 | 32 | 3.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Zhang, K.; Zhang, X. FPGA-Based Speed Control Strategy of PMSM Using Improved Beetle Antennae Search Algorithm. Energies 2024, 17, 1870. https://doi.org/10.3390/en17081870
Wu C, Zhang K, Zhang X. FPGA-Based Speed Control Strategy of PMSM Using Improved Beetle Antennae Search Algorithm. Energies. 2024; 17(8):1870. https://doi.org/10.3390/en17081870
Chicago/Turabian StyleWu, Caiyun, Kai Zhang, and Xin Zhang. 2024. "FPGA-Based Speed Control Strategy of PMSM Using Improved Beetle Antennae Search Algorithm" Energies 17, no. 8: 1870. https://doi.org/10.3390/en17081870
APA StyleWu, C., Zhang, K., & Zhang, X. (2024). FPGA-Based Speed Control Strategy of PMSM Using Improved Beetle Antennae Search Algorithm. Energies, 17(8), 1870. https://doi.org/10.3390/en17081870