An Investigation of Tidal Stream Turbine Wake Development Using Modified BEM–AD Model
<p>Simple illustration of flow passing through an actuator disk.</p> "> Figure 2
<p>Geometry of the fluid domain: (<b>a</b>) Front view; (<b>b</b>) Side cross-section view.</p> "> Figure 3
<p>Fluid domain inlet profile: (<b>a</b>) Velocity profile; (<b>b</b>) Turbulence intensity profile.</p> "> Figure 4
<p>Disk domain for case study view from front: (<b>a</b>) Disk dimension; (<b>b</b>) Disk mesh.</p> "> Figure 5
<p>Comparison of numerical prediction with experimental measurements [<a href="#B8-energies-17-01198" class="html-bibr">8</a>] for a range of tip speed ratios: (<b>a</b>) Power coefficient; (<b>b</b>) Thrust coefficient.</p> "> Figure 6
<p>The effect of changing normalised velocity on the (<b>a</b>) Porosity and (<b>b</b>) Resistance coefficient of the velocity variation.</p> "> Figure 7
<p>The radially changing (<b>a</b>) Porosity and (<b>b</b>) Resistance coefficient on the actuator disk with respect to normalised radius of the body region of radial variation.</p> "> Figure 8
<p>The effect of changing normalised velocity on the (<b>a</b>) Porosity and (<b>b</b>) Resistance coefficient on the disk’s base.</p> "> Figure 9
<p>The effect of changing normalised velocity on the (<b>a</b>) Porosity and (<b>b</b>) Resistance coefficient on the disk’s tip.</p> "> Figure 10
<p>The effect of changing normalised velocity and blade section on the (<b>a</b>) Porosity and (<b>b</b>) Resistance coefficient on the disk’s body.</p> "> Figure 11
<p>Isometric sectional view of the concentrated mesh fluid domain.</p> "> Figure 12
<p>Vertical water column comparison between the normal mesh and the concentrated mesh fluid domain in terms of downstream (<b>a</b>) Normalised velocity and (<b>b</b>) Turbulence intensity at 5-disk diameters downstream from the actuator disk.</p> "> Figure 13
<p>Velocity at six different point locations plotted against different mesh setups, with an increasing number of elements.</p> "> Figure 14
<p>Comparison of downstream centreline (<b>a</b>) Velocity and (<b>b</b>) Turbulence intensity (bottom) of the velocity variation BEM–AD model against experimental measurements.</p> "> Figure 15
<p>Comparison of (<b>A</b>) Vertical velocity and (<b>B</b>) Vertical turbulence intensity (right) of the velocity variation BEM–AD model with experimental measurements at downstream distances of (<b>a</b>) 5D, (<b>b</b>) 8D, and (<b>c</b>) 10D.</p> "> Figure 16
<p>Comparison of downstream centreline (<b>a</b>) Velocity and (<b>b</b>) Turbulence intensity (bottom) of the radial variation BEM–AD model against experimental measurements.</p> "> Figure 17
<p>Comparison of (<b>A</b>) Vertical velocity and (<b>B</b>) Vertical turbulence intensity (right) of the radial variation BEM–AD model with experimental measurements at downstream distances of (<b>a</b>) 5D, (<b>b</b>) 8D, and (<b>c</b>) 10D.</p> "> Figure 18
<p>Comparison of downstream centreline (<b>a</b>) Velocity and (<b>b</b>) Turbulence intensity (bottom) of the modified hybrid BEM–AD model against experimental measurements.</p> "> Figure 19
<p>Comparison of (<b>A</b>) Vertical velocity and (<b>B</b>) Vertical turbulence intensity (right) of the modified hybrid BEM–AD model with experimental measurements at downstream distances of (<b>a</b>) 5D, (<b>b</b>) 8D, and (<b>c</b>) 10D.</p> "> Figure 20
<p>Comparison of downstream centreline (<b>a</b>) Velocity and (<b>b</b>) Turbulence intensity (bottom) for the velocity variation, radial variation, and hybrid modification against experimental measurements.</p> "> Figure 21
<p>Velocity contour of (<b>a</b>) Radial variation model and (<b>b</b>) Hybrid modified model from the side view.</p> "> Figure 22
<p>Turbulence intensity contour of (<b>a</b>) Radial variation model and (<b>b</b>) Hybrid modified model from the side view.</p> "> Figure 23
<p>Disk Power density contour of (<b>a</b>) Velocity variation model, (<b>b</b>) Radial variation model, and (<b>c</b>) Hybrid modified model.</p> "> Figure 24
<p>Power density contour of the hybrid modified model from the side view.</p> ">
Abstract
:1. Introduction
2. Theory
2.1. Reynolds-Averaged Navier–Stokes (RANS) Equations
2.2. Actuator Disk Theory
2.3. Blade Element Momentum (BEM) Theory
2.4. BEM–AD Theory
3. Methodology
3.1. Introduction
3.2. Computational Fluid Dynamics (CFD) Modelling
3.2.1. Fluid Domain
3.2.2. Disk Domain and Case Studies Setup
4. Tidal Stream Turbine Blade Performance
4.1. Introduction
4.2. Blade Characteristic
4.3. Power and Thrust Coefficient
4.4. Porosity and Resistance Coefficient
5. CFD Meshing
5.1. Mesh Configuration
5.2. Mesh Sensitivity Study
6. Results
6.1. Modified BEM–AD Model: Velocity Variation
6.2. Modified BEM–AD Model: Radial Variation
6.3. Modified BEM–AD Model: Hybrid Model
6.4. Overall Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Rourke, F.; Boyle, F.; Reynolds, A. Tidal current energy resource assessment in Ireland: Current status and future update. Renew. Sustain. Energy Rev. 2010, 14, 3206–3212. [Google Scholar] [CrossRef]
- Gaurier, B.; Carlier, C.; Germain, G.; Pinon, G.; Rivoalen, E. Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance. Renew. Energy 2020, 148, 1150–1164. [Google Scholar] [CrossRef]
- Zhou, Z.; Benbouzid, M.; Charpentier, J.-F.; Scuiller, F.; Tang, T. Developments in large marine current turbine technologies—A review. Renew. Sustain. Energy Rev. 2017, 71, 852–858. [Google Scholar] [CrossRef]
- Allsop, S.; Peyrard, C.; Thies, P.R.; Boulougouris, E.; Harrison, G.P. Hydrodynamic analysis of a ducted, open centre tidal stream turbine using blade element momentum theory. Ocean Eng. 2017, 141, 531–542. [Google Scholar] [CrossRef]
- The Crown Estate. UK Wave and Tidal Key Resource Areas Project. Available online: https://www.thecrownestate.co.uk/ (accessed on 5 February 2024).
- Jump, E.; Wills, T.; Macleod, A. Review of tidal turbine wake modelling methods—State of the art. Int. Mar. Energy J. 2020, 3, 91–100. [Google Scholar] [CrossRef]
- Fallon, D.; Hartnett, M.; Olbert, A.; Nash, S. The effects of array configuration on the hydro-environmental impacts of tidal turbines. Renew. Energy 2014, 64, 10–25. [Google Scholar] [CrossRef]
- Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.; Batten, W.M.J. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew. Energy 2007, 32, 407–426. [Google Scholar] [CrossRef]
- Stallard, T.; Collings, R.; Feng, T.; Whelan, J. Interactions between tidal turbine wakes: Experimental study of a group of three-bladed rotors. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120159. [Google Scholar] [CrossRef] [PubMed]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renew. Energy 2014, 66, 729–746. [Google Scholar] [CrossRef]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines. Renew. Energy 2014, 68, 876–892. [Google Scholar] [CrossRef]
- Giguere, P.; Selig, M.S. Design of a Tapered and Twisted Blade for the NREL Combined Experiment Rotor; National Renewable Energy Lab. (NREL): Golden, CO, USA, 1999. [Google Scholar] [CrossRef]
- Edmunds, M.; Malki, R.; Williams, A.J.; Masters, I.; Croft, T.N. Aspects of tidal stream turbine modelling in the natural environment using a coupled BEM–CFD model. Int. J. Mar. Energy 2014, 7, 20–42. [Google Scholar] [CrossRef]
- Batten, W.M.J.; Bahaj, A.S.; Molland, A.F.; Chaplin, J.R. Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Ocean Eng. 2007, 34, 1013–1020. [Google Scholar] [CrossRef]
- Tian, W.; VanZwieten, J.H.; Pyakurel, P.; Li, Y. Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine. Energy 2016, 111, 104–116. [Google Scholar] [CrossRef]
- Malki, R.; Williams, A.J.; Croft, T.N.; Togneri, M.; Masters, I. A coupled blade element momentum—Computational fluid dynamics model for evaluating tidal stream turbine performance. Appl. Math. Model. 2013, 37, 3006–3020. [Google Scholar] [CrossRef]
- Turnock, S.R.; Phillips, A.B.; Banks, J.; Nicholls-Lee, R. Modelling tidal current turbine wakes using a coupled RANS-BEMT approach as a tool for analysing power capture of arrays of turbines. Ocean Eng. 2011, 38, 1300–1307. [Google Scholar] [CrossRef]
- Olczak, A.; Stallard, T.; Feng, T.; Stansby, P.K. Comparison of a RANS blade element model for tidal turbine arrays with laboratory scale measurements of wake velocity and rotor thrust. J. Fluids Struct. 2016, 64, 87–106. [Google Scholar] [CrossRef]
- Belloni, C.S.K.; Willden, R.H.J.; Houlsby, G.T. An investigation of ducted and open-centre tidal turbines employing CFD-embedded BEM. Renew. Energy 2017, 108, 622–634. [Google Scholar] [CrossRef]
- Badoe, C.E.; Edmunds, M.; Williams, A.J.; Nambiar, A.; Sellar, B.; Kiprakis, A.; Masters, I. Robust validation of a generalised actuator disk CFD model for tidal turbine analysis using the FloWave ocean energy research facility. Renew. Energy 2022, 190, 232–250. [Google Scholar] [CrossRef]
- Batten, W.M.J.; Harrison, M.E.; Bahaj, A.S. Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120293. [Google Scholar] [CrossRef]
- Myers, L.E.; Bahaj, A.S. Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocean Eng. 2010, 37, 218–227. [Google Scholar] [CrossRef]
- Troldborg, N.; Sørensen, J.N.; Mikkelsen, R. Actuator line simulation of wake of wind turbine operating in turbulent inflow. J. Phys. Conf. Ser. 2007, 75, 012063. [Google Scholar] [CrossRef]
- Mikkelsen, R. Actuator Disc Methods Applied to Wind Turbines. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 2003. [Google Scholar] [CrossRef]
- Kang, S.; Yang, X.; Sotiropoulos, F. On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow. J. Fluid Mech. 2014, 744, 376–403. [Google Scholar] [CrossRef]
- Liu, J.; Lin, H.; Purimitla, S.R. Wake field studies of tidal current turbines with different numerical methods. Ocean Eng. 2016, 117, 383–397. [Google Scholar] [CrossRef]
- Li, Y.; Çalışal, S.M. A Discrete Vortex Method for Simulating a Stand-Alone Tidal-Current Turbine: Modeling and Validation. J. Offshore Mech. Arct. Eng. 2010, 132, 031102. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Ni, Y.; Wang, C.; Tan, Y.; Tan, D. Critical penetrating vibration evolution behaviors of the gas-liquid coupled vortex flow. Energy 2024, 292, 130236. [Google Scholar] [CrossRef]
- Fan, M.; Sun, Z.; Yu, R.; Dong, X.; Li, Z.; Bai, Y. Effect of leading-edge tubercles on the hydrodynamic characteristics and wake development of tidal turbines. J. Fluids Struct. 2023, 119, 103873. [Google Scholar] [CrossRef]
- Han, W.; Kim, H.; Son, E.; Lee, S. Assessment of yaw-control effects on wind turbine-wake interaction: A coupled unsteady vortex lattice method and curled wake model analysis. J. Wind. Eng. Ind. Aerodyn. 2023, 242, 105559. [Google Scholar] [CrossRef]
- Harrison, M.E.; Batten, W.M.J.; Myers, L.E.; Bahaj, A.S. A comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. Renew. Power Gener. 2010, 4, 613–627. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Guillou, S.S.; Thiébot, J.; Santa Cruz, A. Modelling turbulence with an Actuator Disk representing a tidal turbine. Renew. Energy 2016, 97, 625–635. [Google Scholar] [CrossRef]
- Chawdhary, S.; Hill, C.; Yang, X.; Guala, M.; Corren, D.; Colby, J.; Sotiropoulos, F. Wake characteristics of a TriFrame of axial-flow hydrokinetic turbines. Renew. Energy 2017, 109, 332–345. [Google Scholar] [CrossRef]
- Kang, S.K.; Kim, Y.; Lee, J.; Khosronejad, A.; Yang, X. Wake interactions of two horizontal axis tidal turbines in tandem. Ocean Eng. 2022, 254, 111331. [Google Scholar] [CrossRef]
- ANSYS. Ansys Release 5.6 Manual: Theory Reference, 11th ed.; ANSYS Inc.: Canonsburg, PA, USA, 1999. [Google Scholar]
- Sun, X.; Chick, J.P.; Bryden, I.G. Laboratory-scale simulation of energy extraction from tidal currents. Renew. Energy 2008, 33, 1267–1274. [Google Scholar] [CrossRef]
- Myers, L.; Bahaj, A.S. Near wake properties of horizontal axis marine current turbines. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–11 September 2009; pp. 558–565. [Google Scholar] [CrossRef]
- Taylor, G.I. The Scientific Papers of Sir Geoffrey Ingram Taylor; Cambridge University Press: Cambridge, UK, 1963. [Google Scholar] [CrossRef]
- Hansen, M. Aerodynamics of Wind Turbines; Routledge: London, UK, 2015. [Google Scholar] [CrossRef]
- Moriarty, P.J.; Hansen, A.C. Aerodynamics Theory Manual; NREL/TP-500-36881; National Renewable Energy Laboratory: Golden, CO, USA, 2005. Available online: http://www.osti.gov/bridge (accessed on 2 August 2023).
- Apsley, D.D.; Stallard, T.; Stansby, P.K. Actuator-line CFD modelling of tidal-stream turbines in arrays. J. Ocean Eng. Mar. Energy 2018, 4, 259–271. [Google Scholar] [CrossRef]
- Johnson, B.; Francis, J.; Howe, J.; Whitty, J. Computational Actuator Disc Models for Wind and Tidal Applications. J. Renew. Energy 2014, 2014, 172461. [Google Scholar] [CrossRef]
Surfaces | Boundary Conditions |
---|---|
Top | Symmetry |
Sides | Symmetry |
Bottom | Smooth Wall with no slip |
Outlet | Opening; Entrainment; zero relative pressure and turbulence gradient |
Inlet | Velocity condition based on Equations (23)–(25) |
r/R | r (mm) | c/R | Pitch (deg) | t/c (%) |
---|---|---|---|---|
0.2 | 80 | 0.1250 | 20.0 | 24.0 |
0.3 | 120 | 0.1156 | 14.5 | 20.7 |
0.4 | 160 | 0.1063 | 11.1 | 18.7 |
0.5 | 200 | 0.0969 | 8.9 | 17.6 |
0.6 | 240 | 0.0875 | 7.4 | 16.6 |
0.7 | 280 | 0.0781 | 6.5 | 15.6 |
0.8 | 320 | 0.0688 | 5.9 | 14.6 |
0.9 | 360 | 0.0594 | 5.4 | 13.6 |
1.0 | 400 | 0.0500 | 5.0 | 12.6 |
Mesh | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Element size (m) | 0.75 | 0.50 | 0.40 | 0.30 | 0.15 |
No. of elements | 2.16 × 105 | 5.18 × 105 | 9.96 × 105 | 1.76 × 106 | 1.13 × 107 |
Mesh | No. of Elements | Normalised Velocity at Point Location | Normalised Velocity Difference (%) | Convergence Time (hrs: min: sec) | ||
---|---|---|---|---|---|---|
P2 | P3 | ΔP2 | ΔP3 | |||
1 | 2.16 × 105 | 0.835 | 0.886 | - | - | 00:58:35 |
2 | 5.18 × 105 | 0.763 | 0.828 | 8.6 | 6.5 | 01:17:08 |
3 | 9.96 × 105 | 0.732 | 0.808 | 4.0 | 2.4 | 01:57:08 |
4 | 1.76 × 106 | 0.716 | 0.801 | 2.3 | 0.9 | 03:44:56 |
5 | 1.13 × 107 | 0.714 | 0.802 | 0.3 | 0.1 | 08:14:21 |
Model | Velocity | Turbulence Intensity | ||||
---|---|---|---|---|---|---|
R2 | RMSE | MAPE | R2 | RMSE | MAPE | |
Velocity variation | 0.9868 | 0.0283 | 3.83% | 0.9775 | 0.0101 | 6.56% |
Radial variation | 0.9860 | 0.0154 | 1.88% | 0.9823 | 0.0052 | 3.25% |
Hybrid modification | 0.9917 | 0.0131 | 1.31% | 0.0058 | 0.0045 | 2.82% |
Model | Overall Thrust Coefficient | Overall Power Coefficient | ||
---|---|---|---|---|
CT | ΔCT | CP | ΔCP | |
BEM | 0.7960 | - | 0.4680 | - |
Velocity Variation | 0.7571 | 4.89% | 0.5229 | 11.73% |
Radial Variation | 0.6278 | 21.13% | 0.4616 | 1.37% |
Hybrid Modification | 0.7919 | 0.51% | 0.4714 | 0.72% |
Disk Vertical Offset | Overall Disk Power Coefficient at Downstream Distance | |||||||
---|---|---|---|---|---|---|---|---|
5D | 8D | 10D | 15D | |||||
CP | ΔCP | CP | ΔCP | CP | ΔCP | CP | ΔCP | |
+1.0 D | 0.472 | 0.1% | 0.467 | 0.9% | 0.466 | 1.2% | 0.463 | 1.9% |
+0.5 D | 0.288 | 38.9% | 0.304 | 35.6% | 0.312 | 33.8% | 0.328 | 30.5% |
0.0 D | 0.172 | 63.3% | 0.207 | 56.2% | 0.225 | 52.4% | 0.256 | 45.7% |
−0.5 D | 0.240 | 49.2% | 0.258 | 45.2% | 0.267 | 43.4% | 0.283 | 40.0% |
−1.0 D | 0.348 | 26.2% | 0.347 | 26.5% | 0.346 | 26.7% | 0.344 | 27.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, C.M.; Kennedy, D.M.; O’Rourke, F. An Investigation of Tidal Stream Turbine Wake Development Using Modified BEM–AD Model. Energies 2024, 17, 1198. https://doi.org/10.3390/en17051198
Pang CM, Kennedy DM, O’Rourke F. An Investigation of Tidal Stream Turbine Wake Development Using Modified BEM–AD Model. Energies. 2024; 17(5):1198. https://doi.org/10.3390/en17051198
Chicago/Turabian StylePang, Chee M., David M. Kennedy, and Fergal O’Rourke. 2024. "An Investigation of Tidal Stream Turbine Wake Development Using Modified BEM–AD Model" Energies 17, no. 5: 1198. https://doi.org/10.3390/en17051198
APA StylePang, C. M., Kennedy, D. M., & O’Rourke, F. (2024). An Investigation of Tidal Stream Turbine Wake Development Using Modified BEM–AD Model. Energies, 17(5), 1198. https://doi.org/10.3390/en17051198