Ionic Conductivity of the Li6PS5Cl0.5Br0.5 Argyrodite Electrolyte at Different Operating and Pelletizing Pressures and Temperatures
<p>Experimental setup.</p> "> Figure 2
<p>Nyquist plot for Ampcera Li6PS<sub>5</sub>Cl<sub>0.5</sub>Br<sub>0.5</sub> at −20 °C, 540 MPa pelletizing and 250 MPa operating pressure. Results indicate that there is a grain boundary resistance of 90 Ω and a bulk resistance of 105 Ω based on the Zview fit, which means that the total resistance is 195 Ω. This is the value that was used to calculate the ionic conductivity of the electrolyte. This figure is for visual explanation only; the accuracy of the bulk and grain boundary measurements have not been studied or verified.</p> "> Figure 3
<p>Electrolyte thickness versus the pelletization pressure for 100 mg electrolyte powder and the die with a circular diameter of 10 mm.</p> "> Figure 4
<p>(<b>a</b>) Ionic conductivity of the Li<sub>6</sub>PS<sub>5</sub>Cl<sub>0.5</sub>Br<sub>0.5</sub> electrolyte versus the cell operating pressure at different pelletization pressures and at room temperature (25 °C). (<b>b</b>) Ionic conductivity of the Li6PS5Cl0.5Br0.5 electrolyte versus the cell pelletizing pressure at different operating pressures and at room temperature (25 °C).</p> "> Figure 5
<p>Ionic conductivity of the Li6PS5Cl0.5Br0.5 electrolyte versus the cell operating pressure at different battery operating temperatures and pelletization pressures of (<b>a</b>) 180 MPa (<b>b</b>) 540 MPa and (<b>c</b>) 900 MPa. Error bars are presented to show one standard deviation range for each result.</p> "> Figure 5 Cont.
<p>Ionic conductivity of the Li6PS5Cl0.5Br0.5 electrolyte versus the cell operating pressure at different battery operating temperatures and pelletization pressures of (<b>a</b>) 180 MPa (<b>b</b>) 540 MPa and (<b>c</b>) 900 MPa. Error bars are presented to show one standard deviation range for each result.</p> "> Figure 6
<p>Arrhenius ionic conductivity plot of Ampcera<sup>TM</sup> Li<sub>6</sub>PS<sub>5</sub>Cl<sub>0.5</sub>Br<sub>0.5</sub> at 250 MPa from −20 to 75 °C. The activation energy was found to be 0.275 eV.</p> "> Figure 7
<p>Ionic conductivity of the Li<sub>6</sub>PS<sub>5</sub>Cl<sub>0.5</sub>Br<sub>0.5</sub> electrolyte versus the cell operating pressure at different battery pelletizing temperatures and operating pressures at a constant pelletizing pressure of 540 MPa.</p> "> Figure 8
<p>Ionic conductivity of the Li<sub>6</sub>PS<sub>5</sub>Cl<sub>0.5</sub>Br<sub>0.5</sub> electrolyte versus the cell operating pressure at different battery pelletizing pressures and 100 °C pelletizing temperature compared with the best room-temperature pelletizing temperature result.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of Pelletizing Pressure on Electrolyte Pellet Thickness
3.2. Effect of Pelletizing and Operating Pressure on Ionic Conductivity
3.3. Effect of Operating Temperature on Ionic Conductivity
3.4. Effect of Pelletizing Temperature on Ionic Conductivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 99. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Famprikis, T.; Canepa, P.; Dawson, J.A.; Islam, M.S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291. [Google Scholar] [CrossRef]
- Hao, F.; Han, F.; Liang, Y.; Wang, C.; Yao, Y. Architectural design and fabrication approaches for solid-state batteries. MRS Bull. 2018, 43, 775–781. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, K.; Xu, Y.; Zhang, G.; Li, S.; Li, C.; Zhang, X.; Sun, X.; Ge, X.; Ma, Y. Strategies to Boost Ionic Conductivity and Interface Compatibility of Inorganic–Organic Solid Composite Electrolytes. Energy Storage Mater. 2021, 36, 291–308. [Google Scholar] [CrossRef]
- Zhang, B.; Tan, R.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Lin, Z.; Pan, F. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Mater. 2018, 10, 139–159. [Google Scholar] [CrossRef]
- Qiu, J.; Yang, L.; Sun, G.; Yu, X.; Li, H.; Chen, L. A stabilized PEO-based solid electrolyte via a facile interfacial engineering method for a high voltage solid-state lithium metal battery. Chem. Commun. 2020, 56, 5633–5636. [Google Scholar] [CrossRef] [PubMed]
- Senevirathne, K.; Day, C.S.; Gross, M.D.; Lachgar, A.; Holzwarth, N.A.W. A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure. Solid State Ion. 2013, 233, 95–101. [Google Scholar] [CrossRef]
- Zhou, L.; Park, K.-H.; Sun, X.; Lalère, F.; Adermann, T.; Hartmann, P.; Nazar, L.F. Solvent-Engineered Design of Argyrodite Li6PS5X (X = Cl, Br, I) Solid Electrolytes with High Ionic Conductivity. ACS Energy Lett. 2019, 4, 265–270. [Google Scholar] [CrossRef]
- Wu, J.; Liu, S.; Han, F.; Yao, X.; Wang, C. Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes. Adv. Mater. 2021, 33, 2000751. [Google Scholar] [CrossRef]
- Wang, H.; Yu, C.; Ganapathy, S.; van Eck, E.R.H.; van Eijck, L.; Wagemaker, M. A lithium argyrodite Li6PS5Cl0.5Br0.5 electrolyte with improved bulk and interfacial conductivity. J. Power Sources 2019, 412, 29–36. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.J.; Harrison, K.L.; Roberts, S.A.; Harris, S.J. Pressure-Driven Interface Evolution in Solid-State Lithium Metal Batteries. Cell Rep. Phys. Sci. 2020, 1, 100012. [Google Scholar] [CrossRef]
- Doux, J.-M.; Nguyen, H.; Tan, D.H.S.; Banerjee, A.; Wang, X.; Wu, E.A.; Jo, C.; Yang, H.; Meng, Y.S. Stack Pressure Considerations for Room-Temperature All-Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2020, 10, 1903253. [Google Scholar] [CrossRef] [Green Version]
- Doux, J.-M.; Yang, Y.; Tan, D.H.; Nguyen, H.; Wu, E.A.; Wang, X.; Banerjee, A.; Meng, S.Y. Pressure effects on sulfide electrolytes for all solid-state batteries. J. Mater. Chem. A 2020, 8, 5049–5055. [Google Scholar] [CrossRef]
- Zarrin, H.; Farhad, S.; Hamdullahpur, F.; Chabot, V.; Yu, A.; Fowler, M.; Chen, Z. Effects of Diffusive Charge Transfer and Salt Concentration Gradient in Electrolyte on Li-ion Battery Energy and Power Densities. Electrochimica Acta 2014, 125, 117–123. [Google Scholar] [CrossRef]
- Mastali, M.; Samadani, E.; Farhad, S.; Fraser, R.; Fowler, M. Three-dimensional Multi-Particle Electrochemical Model of LiFePO4 Cells based on a Resistor Network Methodology. Electrochimica Acta 2016, 190, 574–587. [Google Scholar] [CrossRef]
- Kashkooli, A.G.; Amirfazli, A.; Farhad, S.; Lee, D.U.; Felicelli, S.; Park, H.W.; Feng, K.; De Andrade, V.; Chen, Z. Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography. J. Appl. Electrochem. 2017, 47, 281–293. [Google Scholar] [CrossRef]
- Farhad, S.; Nazari, A. Introducing the energy efficiency map of lithium-ion batteries. Int. J. Energy Res. 2019, 43, 931–944. [Google Scholar] [CrossRef]
- Mohammed, A.H.; Esmaeeli, R.; Aliniagerdroudbari, H.; Alhadri, M.; Hashemi, S.R.; Nadkarni, G.; Farhad, S. Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway. Appl. Therm. Eng. 2019, 160, 114106. [Google Scholar] [CrossRef]
- Yu, C.; Ganapathy, S.; Hageman, J.; van Eijck, L.; van Eck, E.R.H.; Zhang, L.; Schwietert, T.; Basak, S.; Kelder, E.M.; Wagemaker, M. Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li6PS5Cl Solid-State Electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 33296–33306. [Google Scholar] [CrossRef]
- Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ion. 2012, 221, 1–5. [Google Scholar] [CrossRef]
- Yubuchi, S.; Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M. Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. J. Power Sources 2015, 293, 941–945. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y.-H.; Shen, Y.; Li, L.; Nan, C.-W. High-Conductivity Argyrodite Li6PS5Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2018, 10, 42279–42285. [Google Scholar] [CrossRef] [PubMed]
- Sakuda, A.; Hayashi, A.; Tatsumisago, M. Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery. Sci. Rep. 2013, 3, 2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, A.; Ma, Y.; Cao, Y.; Li, Q.; Wang, L.; Cheng, X.; Zuo, P.; Du, C.; Gao, Y.; Yin., G. Fabrication and Electrochemical Properties of Li4Ti5O12@Li6PS5Cl for All-solid-state Lithium Batteries using Simple Mechanical Method. Int. J. Electrochem. Sci. 2017, 12, 7795–7806. [Google Scholar] [CrossRef]
- Choi, S.; Ann, J.; Do, J.; Lim, S.; Park, C.; Shin, D. Application of Rod-Like Li6PS5Cl Directly Synthesized by a Liquid Phase Process to Sheet-Type Electrodes for All-Solid-State Lithium Batteries. J. Electrochem. Soc. 2018, 166, A5193. [Google Scholar] [CrossRef]
- Zhang, J.; Zhong, H.; Zheng, C.; Xia, Y.; Liang, C.; Huang, H.; Gan, Y.; Tao, X.; Zhang, W. All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content. J. Power Sources 2018, 391, 73–79. [Google Scholar] [CrossRef]
- Ohno, S.; Bernges, T.; Buchheim, J.; Duchardt, M.; Hatz, A.-K.; Kraft, M.A.; Kwak, H.; Santhosha, A.L.; Liu, Z.; Minafra, N.; et al. How Certain Are the Reported Ionic Conductivities of Thiophosphate-Based Solid Electrolytes? An Interlaboratory Study. ACS Energy Lett. 2020, 5, 910–915. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, L.; Liu, Y.; Yu, C.; Yan, X.; Xu, B.; Wang, L. Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries. J. Alloys Compd. 2018, 747, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Cronau, M.; Szabo, M.; König, C.; Wassermann, T.B.; Roling, B. How to Measure a Reliable Ionic Conductivity? The Stack Pressure Dilemma of Microcrystalline Sulfide-Based Solid Electrolytes. ACS Energy Lett. 2021, 6, 3072–3077. [Google Scholar] [CrossRef]
- Zhang, W.; Weber, D.A.; Weigand, H.; Arlt, T.; Manke, I.; Schröder, D.; Koerver, R.; Leichtweiss, T.; Hartmann, P.; Zeier, W.G.; et al. Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 2017, 9, 17835–17845. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Minafra, N.; Zeier, W.G.; Nazar, L.F. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries. Acc. Chem. Res. 2021, 54, 2717–2728. [Google Scholar] [CrossRef] [PubMed]
- Baktash, A.; Demir, B.; Yuan, Q.; Searles, D.J. Effect of defects and defect distribution on Li-diffusion and elastic properties of anti-perovskite Li3OCl solid electrolyte. Energy Storage Mater. 2021, 41, 614–622. [Google Scholar] [CrossRef]
- Zaman, W.; Hatzell, K.B. Processing and manufacturing of next generation lithium-based all solid-state batteries. Curr. Opin. Solid State Mater. Sci. 2022, 26, 101003. [Google Scholar] [CrossRef]
- Dixit, M.; Beamer, C.; Amin, R.; Shipley, J.; Eklund, R.; Muralidharan, N.; Lindqvist, L.; Fritz, A.; Essehli, R.; Balasubramanian, M.; et al. The Role of Isostatic Pressing in Large-Scale Production of Solid-State Batteries. ACS Energy Lett. 2022, 7, 3936–3946. [Google Scholar] [CrossRef]
- Hassan, E.; Amiriyan, M.; Frisone, D.; Dunham, J.; Farahati, R.; Farhad, S. Effects of Coating on the Electrochemical Performance of a Nickel-Rich Cathode Active Material. Energies 2022, 15, 4886. [Google Scholar] [CrossRef]
- Ayoola, O.M.; Buldum, A.; Farhad, S.; Ojo, S.A. A Review on the Molecular Modeling of Argyrodite Electrolytes for All-Solid-State Lithium Batteries. Energies 2022, 15, 7288. [Google Scholar] [CrossRef]
- Frisone, D.; Amiriyan, M.; Hassan, E.; Dunham, J.; Farahati, R.; Farhad, S. Effect of LiNbO3 Coating on Capacity and Cycling of Nickel-Rich NMC Cathode Active Material. In Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition (IMECE), Virtual, 1–5 November 2021. [Google Scholar] [CrossRef]
- Dunham, J.; Frisone, D.; Amiriyan, M.; Hassan, E.; Feng Hu, J.; Farahati, R.; Farhad, S. Effect of Pressure and Tempera-ture on the Performance of Argyrodite Li6PS5Cl0.5Br0.5 Electrolyte for All-Solid-State Lithium Battery. In Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition (IMECE), Virtual, 1–5 November 2021. [Google Scholar] [CrossRef]
Conductivity | Pelletizing Pressure | Operating Pressure | Reference | Notes |
---|---|---|---|---|
(mS/cm) | (MPa) | (MPa) | ||
0.22–3.02 | 50–370 | 5–70 | Doux [15] | Li6PS5Cl |
4.96 | 1000 | - | Yu [21] | Li6PS5Cl |
1.33 | 333 | - | Boulineau [22] | Li6PS5Cl |
1.40 | 360 | - | Yubuchi [23] | Li6PS5Cl |
3.15 | 150 | - | Wang [24] | Li6PS5Cl |
1.10 | 750 | - | Sakuda [25] | Li6PS5Cl |
1.60 | 330 | - | Hwang [26] | Li6PS5Cl |
1.40 | 140 | - | Choi [27] | Li6PS5Cl |
1.29 | 350 | - | Zhang [28] | Li6PS5Cl |
1.79 | 380 | 50 | Ohno [29] | Li6PS5Cl |
1.53 | 375 | - | Ohno [29] | Li6PS5Cl |
2.6 | 370 | 75 | Ohno [29] | Li6PS5Cl |
1.9 | 720 | 0 | Ohno [29] | Li6PS5Cl |
2.14 | 325 | 0 | Ohno [29] | Li6PS5Cl, isostatic pelletizing |
0.443 | 275 | - | Ohno [29] | Li6PS5Cl |
2.98 | 441 | 315 | Ohno [29] | Li6PS5Cl |
0.79 | - | - | Wang [12] | Li6PS5Cl |
0.63 | 1000 | 10 | Ohno [29] | Li6PS5Cl |
1.00 | 300 | - | Zhang [30] | Li6PS5Cl without modified synthesizing process |
1.80 | 300 | - | Zhang [30] | Li6PS5Cl with modified synthesizing process |
0.50 | 300 | - | Zhang [30] | Li6PS5Br without modified synthesizing process |
1.30 | 300 | - | Zhang [30] | Li6PS5Br with modified synthesizing process |
0.36 | - | - | Wang [12] | Li6PS5Br |
0.30–2.45 | 100–500 | 5–500 | Cronau [31] | Li6PS5Br, with and without annealing at 550 °C (similar results reported whether using high operating pressure with no annealing or low operating pressure with annealing) |
3.63 | - | - | Wang [12] | Li6PS5Cl0.5Br0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunham, J.; Carfang, J.; Yu, C.-Y.; Ghahremani, R.; Farahati, R.; Farhad, S. Ionic Conductivity of the Li6PS5Cl0.5Br0.5 Argyrodite Electrolyte at Different Operating and Pelletizing Pressures and Temperatures. Energies 2023, 16, 5100. https://doi.org/10.3390/en16135100
Dunham J, Carfang J, Yu C-Y, Ghahremani R, Farahati R, Farhad S. Ionic Conductivity of the Li6PS5Cl0.5Br0.5 Argyrodite Electrolyte at Different Operating and Pelletizing Pressures and Temperatures. Energies. 2023; 16(13):5100. https://doi.org/10.3390/en16135100
Chicago/Turabian StyleDunham, Joshua, Joshua Carfang, Chan-Yeop Yu, Raziyeh Ghahremani, Rashid Farahati, and Siamak Farhad. 2023. "Ionic Conductivity of the Li6PS5Cl0.5Br0.5 Argyrodite Electrolyte at Different Operating and Pelletizing Pressures and Temperatures" Energies 16, no. 13: 5100. https://doi.org/10.3390/en16135100
APA StyleDunham, J., Carfang, J., Yu, C.-Y., Ghahremani, R., Farahati, R., & Farhad, S. (2023). Ionic Conductivity of the Li6PS5Cl0.5Br0.5 Argyrodite Electrolyte at Different Operating and Pelletizing Pressures and Temperatures. Energies, 16(13), 5100. https://doi.org/10.3390/en16135100