Economic Feasibility of Power/Heat Cogeneration by Biogas–Solid Oxide Fuel Cell (SOFC) Integrated Systems
<p>Scheme of the proposed cogeneration process using SOFC cell.</p> "> Figure 2
<p>SOFC size and operation characteristics: (<b>a</b>) SOFC operation potential and power density (values in parentheses denote power density as percentage of the SOFC’s maximum power density), (<b>b</b>) SOFC’s surface area, and (<b>c</b>) SOFC efficiency and total power generation, for the two examined scales of the integrated plant.</p> "> Figure 3
<p>Biogas plant power generation and its dependence on the employed SOFC unit size, for 250 m<sup>3</sup>·h<sup>−1</sup> biogas production.</p> "> Figure 4
<p>Biogas plant power generation and its dependence on the employed SOFC unit size, for 750 m<sup>3</sup>·h<sup>−1</sup> biogas production.</p> "> Figure 5
<p>Initial investment of: (<b>a</b>) the conventional biogas-CHP plant with ICE-CHP, for 250 m<sup>3</sup>·h<sup>−1</sup> biogas production capacity, and of the corresponding SOFC-CHP system, for (<b>b</b>) 2898 EUR·m<sup>−2</sup> SOFC area specific cost and (<b>c</b>) 5269 EUR·m<sup>−2</sup> SOFC area specific cost.</p> "> Figure 6
<p>Initial investment of: (<b>a</b>) the conventional biogas-CHP plant with ICE-CHP, for 750 m<sup>3</sup>·h<sup>−1</sup> biogas production capacity, and of the corresponding SOFC-CHP system, for (<b>b</b>) 2898 EUR·m<sup>−2</sup> SOFC area specific cost and (<b>c</b>) 5269 EUR·m<sup>−2</sup> SOFC area specific cost.</p> "> Figure 7
<p>Dependence of: (<b>a</b>) IRR, (<b>b</b>) NPV and (<b>c</b>) PBT of the smaller scale biogas plant (250 m<sup>3</sup>·h<sup>−1</sup> biogas), on the size of the employed SOFC unit and its area specific cost, and their comparison to conventional biogas-CHP of the same biogas capacity.</p> "> Figure 8
<p>Dependence of: (<b>a</b>) IRR, (<b>b</b>) NPV and (<b>c</b>) PBT, of the smaller scale biogas plant (750 m<sup>3</sup>·h<sup>−1</sup> biogas), on the size of the employed SOFC unit and its area specific cost, and their comparison to conventional biogas-CHP of the same biogas capacity.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. System Description and Process Simulation
- additional biogas purification, with respect to the purification required for diesel engine biogas-CHP;
- a biogas and an air blower;
- the biogas pre-reformer with incorporated heat exchange, utilizing a part of the anode’s exhaust, for the partial CH4 conversion to H2;
- the SOFC fuel cell system, including system balancing and power conditioning;
- a preheater for the cathodic air supply;
- an afterburner, for the complete combustion of the remaining fuel agents, that exit the SOFC’s anode unburnt;
- a steam turbine unit, for additional electricity generation.
2.1.1. Biogas Production
2.1.2. Biogas Pre-Reformer
2.1.3. SOFC
2.1.4. Afterburner
2.1.5. Steam Turbine
2.1.6. Other Equipment (Blowers and Heat Exchangers)
2.2. Cost Data
- the biogas cleaning system;
- the biogas and the air blowers;
- the air preheater;
- the afterburner;
- the pre-reformer;
- the SOFC unit;
- the steam turbine.
3. Results and Discussion
3.1. Process Performance
3.2. Cost of Investment and Operational Expenses
3.3. Feasibility Evaluation
3.3.1. Economic Feasibility of the Small Scale Biogas-CHP Plant
3.3.2. Economic Feasibility of the Large Scale Biogas-CHP Plant
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Thermodynamic Calculations
CP, kJ·kmol−1·K−1 | Δho | Δso | Δgo | ||||
---|---|---|---|---|---|---|---|
a | b | c | d | kJ·kmol−1 | kJ·kmol−1·K−1 | kJ·kmol−1 | |
CH4 | 19.890 | 5.02 × 10−2 | 1.27 × 10−5 | −1.10 × 10−8 | −74,520 | −80.94 | −50,400 |
CO2 | 22.260 | 5.98 × 10−2 | −3.50 × 10−5 | 7.47 × 10−9 | −393,514 | 2.92 | −394,384 |
H2O(g) | 32.240 | 1.92 × 10−3 | 1.06 × 10−5 | −3.60 × 10−9 | −241,826 | −44.41 | −228,592 |
N2 | 28.990 | −1.57 × 10−3 | 8.08 × 10−6 | −2.87 × 10−9 | |||
H2S | 34.200 | −20,100 | |||||
NH3 | 27.568 | 2.56 × 10−2 | 9.91 × 10−6 | −6.69 × 10−9 | −46,200 | ||
O2 | 25.480 | 1.52 × 10−2 | −7.16 × 10−6 | 1.31 × 10−9 | |||
H2 | 29.110 | −1.92 × 10−3 | 4.00 × 10−6 | −8.70 × 10−10 | |||
CO | 28.160 | 1.68 × 10−3 | 5.37 × 10−6 | −2.22 × 10−9 | −110,525 | 89.75 | −137,269 |
Ar | 20.785 | ||||||
SO2 | 25.780 | 5.80 × 10−2 | −3.81 × 10−5 | 8.61 × 10−9 | −296,100 |
References
- Bremond, U.; Bertrandias, A.; Steyer, J.; Bernet, N. A vision of European biogas sector development towards 2030: Trends and challenges. J. Clean. Prod. 2021, 287, 125065. [Google Scholar] [CrossRef]
- Gustafsson, M.; Anderberg, S.; Gustafsson, M.; Anderberg, S. Biogas policies and production development in Europe: A comparative analysis of eight countries Biogas policies and production development in Europe: A comparative analysis of eight countries. Biofuels 2022, 13, 931–944. [Google Scholar] [CrossRef]
- Kampman, B.; Leguijt, C.; Scholten, T.; Tallat-Kelpsaite, J.; Brückmann, R.; Maroulis, G.; Lesschen, J.P.; Meesters, K.; Sikirica, N.; Elbersen, B. Optimal Use of Biogas from WASTE Streams: An Assessment of the Potential of Biogas from Digestion in the EU beyond 2020; Directorate-General for Energy, European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Mertins, A.; Wawer, T. How to use biogas? A systematic review of biogas utilization pathways and business models. Bioresour. Bioprocess. 2022, 9, 59. [Google Scholar] [CrossRef]
- Saadabadi, S.A.; Thallam, A.; Fan, L.; Lindeboom, R.E.F.; Spanjers, H.; Aravind, P.V. Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints. Renew. Energy 2019, 134, 194–214. [Google Scholar] [CrossRef]
- Lantz, M. The economic performance of combined heat and power from biogas produced from manure in Sweden—A comparison of different CHP technologies. Appl. Energy 2012, 98, 502–511. [Google Scholar] [CrossRef]
- Lanzini, A.; Madi, H.; Chiodo, V.; Papurello, D.; Maisano, S.; Santarelli, M.; Van Herle, J. Dealing with fuel contaminants in biogas-fed solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) plants: Degradation of catalytic and electro-catalytic active surfaces and related gas purification methods. In Progress in Energy and Combustion Science; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 61, pp. 150–188. [Google Scholar] [CrossRef] [Green Version]
- Yingjian, L.; Qi, Q.; Xianghu, H.; Jiezhi, L. Energy balance and efficiency analysis for power generation in internal combustion engine sets using biogas. Sustain. Energy Technol. Assess. 2014, 6, 25–33. [Google Scholar] [CrossRef]
- Van Herle, J.; Maréchal, F.; Leuzenberger, S.; Membrez, Y.; Bucheli, O.; Favrat, D. Process flow model of solid oxide fuel cell system supplied with sewage biogas. J. Power Sources 2004, 131, 127–141. [Google Scholar] [CrossRef]
- Wongchanapai, S.; Iwai, H.; Saito, M.; Yoshida, H. Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system. J. Power Sources 2013, 223, 9–17. [Google Scholar] [CrossRef]
- Cigolotti, V.; Matteo Genovese, M.; Fragiacomo, P. Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems. Energies 2021, 14, 4963. [Google Scholar] [CrossRef]
- Hagen, A.; Langnickel, H.; Sun, X. Operation of solid oxide fuel cells with alternative hydrogen carriers. Int. J. Hydrog. Energy 2019, 44, 18382–18392. [Google Scholar] [CrossRef]
- Cigolotti, V.; Massi, E.; Moreno, A.; Polettini, A.; Reale, F. Biofuels as opportunity for MCFC niche market application. Int. J. Hydrog. Energy 2008, 33, 2999–3003. [Google Scholar] [CrossRef]
- Ciccoli, R.; Cigolotti, V.; Lo Presti, R.; Massi, E.; Mcphail, S.J.; Monteleone, G.; Moreno, A.; Naticchioni, V.; Paoletti, C.; Simonetti, E.; et al. Molten carbonate fuel cells fed with biogas: Combating H2S. Waste Manag. 2010, 30, 1018–1024. [Google Scholar] [CrossRef]
- Mc Phail, S.J.; Aarva, A.; Devianto, H.; Bove, R.; Moreno, A. SOFC and MCFC: Commonalities and opportunities for integrated research. Int. J. Hydrog. Energy 2010, 36, 10337–10345. [Google Scholar] [CrossRef]
- Hydrogen Europe. Strategic Research and Innovation Agenda Final Draft; Hydrogen Europe: Brussels, Belgium, 2020. [Google Scholar]
- Wasajja, H.; Lindeboom, R.E.F.; Van Lier, J.B.; Aravind, P.V. Techno-economic review of biogas cleaning technologies for small scale off- grid solid oxide fuel cell applications. Fuel Process. Technol. 2020, 197, 106215. [Google Scholar] [CrossRef]
- Abanades, S.; Abbaspour, H.; Ahmadi, A.; Das, B.; Ehyael, M.; Esmaeilion, F.; El Haj Assad, M.; Hajilounezhad, T.; Jamali, D.; Hmida, A.; et al. A critical review of biogas production and usage with legislations framework across the globe Ministry of Finance. Int. J. Environ. Sci. Technol. 2022, 19, 3377–3400. [Google Scholar] [CrossRef]
- Staniforth, J.; Kendall, K. Biogas powering a small tubular solid oxide fuel cell. J. Power Sources 1998, 71, 275–277. [Google Scholar] [CrossRef]
- Van Herle, J.; Marechal, F.; Leuenberger, S.; Favrat, D. Energy balance model of a SOFC cogenerator operated with biogas. J. Power Sources 2003, 118, 375–383. [Google Scholar] [CrossRef]
- Van Herle, J.; Membrez, Y.; Bucheli, O. Biogas as a fuel source for SOFC co-generators. J. Power Sources 2004, 127, 300–312. [Google Scholar] [CrossRef]
- Girona, K.; Laurencin, J.; Petitjean, M.; Fouletier, J.; Lefebvre-Joud, F. SOFC running on biogas: Identification and experimental validation of “Safe” operating conditions. ECS Trans. 2009, 25, 1041–1050. [Google Scholar] [CrossRef]
- Murphy, D.; Richards, A.; Colclasure, A.; Rosensteel, W.; Sullivan, N. Biogas Fuel Reforming for Solid Oxide Fuel Cells. ECS Trans. 2011, 35, 2653–2667. [Google Scholar] [CrossRef]
- Xu, C.; Zondlo, J.; Gong, M.; Elizalde-Blancas, F.; Liu, X.; Celik, I. Tolerance tests of H2S-laden biogas fuel on solid oxide fuel cells. J. Power Sources 2010, 195, 4583–4592. [Google Scholar] [CrossRef]
- Shiratori, Y.; Oshima, T.; Sasaki, K. Feasibility of direct-biogas SOFC. Int. J. Hydrog. Energy 2008, 33, 6316–6321. [Google Scholar] [CrossRef]
- Laycock, C.; Staniforth, J.; Ormerod, M. Improving the Sulphur Tolerance of Nickel Catalysts for Running Solid Oxide Fuel Cells on Waste Biogas. ECS Trans. 2009, 16, 177. [Google Scholar] [CrossRef]
- Jahn, M.; Michaelis, A.; Näke, R.; Weder, A.; Heddrich, M. Simple and robust biogas-fed SOFC system with 50% electric efficiency—Modelling and Experimental results. In Proceedings of the 10th European SOFC Forum, Lucerne, Switzerland, 26–29 June 2012. [Google Scholar]
- Hagen, A.A.; Winiwarter, A.; Langnickel, H.; Johnson, G. SOFC operation with real biogas. Fuel Cell. 2017, 17, 854–861. [Google Scholar] [CrossRef] [Green Version]
- Papurello, D.; Borchiellini, R.; Bareschino, P.; Chiodo, V.; Freni, S.; Lanzini, A.; Pepe, F.; Ortigoza, G.; Santarelli, M. Performance of a solid oxide fuel cell short-stack with biogas feeding. Appl. Energy 2014, 125, 254–263. [Google Scholar] [CrossRef]
- Piroonlerkgul, P.; Assabumrungrat, S.; Laosiripojana, N.; Adesina, A.A. Selection of appropriate fuel processor for biogas-fuelled SOFC system. Chem. Eng. J. 2008, 140, 341–351. [Google Scholar] [CrossRef]
- Shiratori, Y.; Ijichi, T.; Oshima, T.; Sasaki, K. Internal reforming SOFC running on biogas. Int. J. Hydrog. Energy 2010, 35, 7905–7912. [Google Scholar] [CrossRef]
- Tjaden, B.; Gandiglio, M.; Lanzini, A.; Santarelli, M.; Jarvinen, M. Small-scale biogas-SOFC plant: Technical analysis and assessment of different fuel reforming options. Energy Fuels 2014, 28, 4216–4232. [Google Scholar] [CrossRef]
- Farhad, S.; Yoo, Y.; Hamdullahpur, F. Effects of fuel processing methods on industrial scale biogas-fuelled solid oxide fuel cell system for operating in wastewater treatment plants. J. Power Sources 2010, 195, 1446–1453. [Google Scholar] [CrossRef]
- De Arespacochaga, N.; Valderrama, C.; Peregrina, C.; Mesa, C.; Bouchy, L.; Cortina, J.L. Evaluation of a pilot-scale sewage biogas powered 2.8 kWe Solid Oxide Fuel Cell: Assessment of heat-to-power ratio and influence of oxygen content. J. Power Sources 2015, 300, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Gandiglio, M.; Lanzini, A.; Santarelli, M.; Pierluigi Leone, P. Design and Balance-of-Plant of a Demonstration Plant with a Solid Oxide Fuel Cell Fed by Biogas from Waste-Water and Exhaust Carbon Recycling for Algae Growth. J. Fuel Cell Sci. Technol. 2014, 11, 031003–031016. [Google Scholar] [CrossRef]
- Gandiglio, M.; Lanzini, A.; Santarelli, M.; Acri, M.; Hakala, T.; Rautanen, M. Results from an industrial size biogas-fed SOFC plant (the DEMOSOFC project). Int. J. Hydrog. Energy 2019, 45, 5449–5464. [Google Scholar] [CrossRef]
- Aravind, P.V.; Cavalli, A.; Patel, H.C.; Recalde, M.; Saadabadi, A.; Tabish, A.N.; Botta, G.; Thallam Tattai, A.; Teodoru, A.; Hajimolana, Y.; et al. Opportunities and Challenges in Using SOFCs in Waste to Energy Systems. ECS Trans. 2017, 78, 209–218. [Google Scholar] [CrossRef]
- Langnickel, H.; Rautanen, M.; Gandiglio, M.; Santarelli, M.; Hakala, T.; Acri, M.; Kiviaho, J. Efficiency analysis of 50 kWe SOFC systems fueled with biogas from waste water. J. Power Sources Adv. 2020, 2, 100009. [Google Scholar] [CrossRef]
- Santarelli, M.; Gandiglio, M.; Acri, M.; Hakala, T.; Rautanen, M.; Hawkes, A. Results from industrial size biogas-fed SOFC plant (DEMOSOFC project). Ecs Trans. 2019, 91, 107–116. [Google Scholar] [CrossRef]
- Gandiglio, M.; Drago, D.; Santarelli, M. Techno-economic Analysis of a Solid Oxide Fuel Cell Installation in a Biogas Plant Fed by Agricultural Residues and Comparison with Alternative Biogas Exploitation Paths. Energy Procedia 2016, 101, 1002–1009. [Google Scholar] [CrossRef] [Green Version]
- Baldinelli, A.; Barelli, L.; Bidini, G. On the feasibility of on-farm biogas-to-electricity conversion: To what extent is solid oxide fuel cells durability a threat to break even the initial investment? Int. J. Hydrog. Energy 2018, 43, 16971–16985. [Google Scholar] [CrossRef]
- Papadias, D.D.; Ahmed, S.; Kumar, R. Fuel quality issues with biogas energy: An economic analysis for a stationary fuel cell system. Energy 2012, 44, 257–277. [Google Scholar] [CrossRef]
- Trendewicz, A.A.; Braun, R.J. Techno-economic analysis of solid oxide fuel cell-based combined heat and power systems for biogas utilization at wastewater treatment facilities. J. Power Sources 2013, 233, 380–393. [Google Scholar] [CrossRef]
- Sechi, S.; Giarola, S.; Lanzini, A.; Gandiglio, M.; Santarelli, M.; Oluleye, G.; Hawkes, A. A bottom-up appraisal of the technically installable capacity of biogas-based solid oxide fuel cells for self-power generation in wastewater treatment plants. J. Environ. Manag. 2021, 279, 111753. [Google Scholar] [CrossRef]
- Oluleye, G.; Gandiglio, M.; Santarelli, M.; Hawkes, A. Pathways to commercialisation of biogas fuelled solid oxide fuel cells in European wastewater treatment plants. Appl. Energy 2021, 282, 116127. [Google Scholar] [CrossRef]
- Economic Calculation Tool for Biogas Plants. Available online: https://www.big-east.eu/downloads/downloads.html (accessed on 24 June 2022).
- Alves, H.; Bley, C., Jr.; Niklevicz, R.; Frigo, E.; Frigo, M.; Coimbra-Araújo, C. Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int. J. Hydrog. Energy 2013, 38, 5215–5225. [Google Scholar] [CrossRef]
- Bocci, E.; Di Carlo, A.; McPhail, S.J.; Gallucci, K.; Foscolo, P.U.; Moneti, M.; Villarini, M.; Carlini, M. Biomass to fuel cells state of the art: A review of the most innovative technology solutions. Int. J. Hydrog. Energy 2014, 39, 21876–21895. [Google Scholar] [CrossRef]
- Abatzoglou, N.; Boivin, S. A review of biogas purification processes. Biofuels Bioprod. Biorefining 2009, 3, 42–71. [Google Scholar] [CrossRef]
- Lanzini, A.; Leone, P. Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells. Int. J. Hydrog. Energy 2010, 35, 2463–2476. [Google Scholar] [CrossRef]
- Lin, Y.; Zhan, Z.; Liu, J.; Barnett, S.A. Direct operation of solid oxide fuel cells with methane fuel. Solid State Ion. 2005, 176, 1827–1835. [Google Scholar] [CrossRef]
- Klein, J.M.; Hénault, M.; Roux, C.; Bultel, Y.; Georges, S. Direct methane solid oxide fuel cell working by gradual internal steam reforming: Analysis of operation. J. Power Sources 2009, 193, 331–337. [Google Scholar] [CrossRef]
- Lanzini, A.; Kreutz, T.G.; Martelli, E.; Santarelli, M. Energy and economic performance of novel integrated gasifier fuel cell (IGFC) cycles with carbon capture. Int. J. Greenh. Gas Control 2014, 26, 169–184. [Google Scholar] [CrossRef]
- Borello, D.; Evangelisti, S.; Tortora, E. Modelling of a CHP SOFC system fed with biogas from anaerobic digestion of municipal waste integrated with solar collectors and storage unit. Int. J. Thermodyn. 2013, 16, 28–35. [Google Scholar] [CrossRef]
- Marnellos, G.E.; Athanasiou, C.; Makridis, S.; Kikkinides, S. Integration of Hydrogen Energy Technologies in Autonomous Power Systems. In Hydrogen-Based Autonomous Power Systems; Emmanuel, I.Z., Ed.; Springer: London, UK, 2008; ISBN 978-1-84800-246-3. [Google Scholar]
- Lisbona, P.; Corradetti, A.; Bove, R.; Lunghi, P. Analysis of a solid oxide fuel cell system for combined heat and power applications under non-nominal conditions. Electrochim. Acta 2007, 53, 1920–1930. [Google Scholar] [CrossRef]
- Bolhàr-Nordenkampf, M.; Hofbauer, H. Biomass Gasification Combined Cycle Thermodynamic Optimisation Using Integrated Drying. In Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria, 14–17 June 2004. [Google Scholar]
- Athanasiou, C.; Stamatelatou, A. Biogas. In Biofuels—Sustainable Energy; Karnavos, N., Lappas, A., Marnellos, G., Eds.; Tziolas Publishing: Thessaloniki, Greece, 2014; pp. 273–301. ISBN 978-960-418-445-3. [Google Scholar]
- Available online: http://www.matche.com/equipcost/Blower.html (accessed on 11 July 2022).
- Available online: www.matche.com/equipcost/Exchanger.html (accessed on 11 July 2022).
- Whiston, M.; Azevedo, I.; Litster, S.; Samaras, C.; Whitefoot, K.; Whitacre, J. Meeting U.S. Solid Oxide Fuel Cell Targets. Joule 2019, 3, 2053–2065. [Google Scholar] [CrossRef]
- Available online: https://www.worldcat.org/title/waste-water-treatment-technologies-a-general-review/oclc/55489914 (accessed on 26 August 2022).
- Morandin, M.; Maréchal, F.; Giacomini, S. Synthesis and thermo-economic design optimization of wood-gasifier-SOFC systems for small scale applications. Biomass Bioenergy 2013, 49, 299–314. [Google Scholar] [CrossRef]
- Bartoli, A.; Cavicchioli, D.; Kremmydas, D.; Rozakis, S.; Olper, A. The impact of different energy policy options on feedstock price and land demand for maize silage: The case of biogas in Lombardy. Energy Policy 2016, 96, 351–363. [Google Scholar] [CrossRef]
- Giarola, S.; Forte, O.; Lanzini, A.; Gandiglio, M.; Santarelli, M.; Hawkes, A. Techno-economic assessment of biogas-fed solid oxide fuel cell combined heat and power system at industrial scale. Appl. Energy 2018, 211, 689–704. [Google Scholar] [CrossRef]
- Cengel, Y.; Boles, M. Thermodynamics: An Engineering Approach, 8th ed.; Mc Graw-Hill Education: New York, NY, USA, 2015; ISBN 978-0-07-339817-4. [Google Scholar]
System Component | ΔP (kPa) |
---|---|
fuel purification unit | 0.10 |
pre-reformer (fuel stream/heat exchanger stream) | 0.02/0.02 |
stack (anode/cathode) | 0.02/0.07 |
air preheater (air stream/exhaust gases stream) | 0.05/0.05 |
afterburner | 0.02 |
boiler | 0.05 |
Stream | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
P, bar | 1.01 | 0.91 | 1.19 | 1.19 | 1.17 | 1.15 | 1.15 | 1.15 | 1.01 | 1.27 |
T, °C | 37.0 | 37.0 | 56.7 | 555.3 | 800 | 800 | 800 | 800 | 25.0 | 50.9 |
YCH4, % | 60.00 | 60.15 | 60.15 | 18.80 | 4.99 | - | - | - | - | - |
YCO2, % | 35.91 | 36.00 | 36.00 | 41.31 | 43.10 | 43.72 | 43.72 | 43.72 | 0.04 | 0.04 |
YH2, % | 0.50 | 0.50 | 0.50 | 8.50 | 46.78 | 12.14 | 12.14 | 12.14 | - | - |
YH2O, % | 2.34 | 2.35 | 2.35 | 30.91 | 4.87 | 43.90 | 43.90 | 43.90 | 1.28 | 1.28 |
YN2, % | 0.50 | 0.50 | 0.50 | 0.32 | 0.26 | 0.24 | 0.24 | 0.24 | 77.81 | 77.81 |
YO2, % | 0.50 | 0.50 | 0.50 | 0.16 | - | - | - | - | 20.87 | 20.87 |
YAr, % | - | - | - | - | - | - | - | - | 0.09 | 0.09 |
V250 1, m3·h−1 | 284.0 | 314.3 | 255.9 | 2055.7 | 3385.7 | 3788.1 | 1894.0 | 1894.0 | 8334.8 | 7209.5 |
V750 1, m3·h−1 | 852.1 | 943.0 | 767.6 | 6167.2 | 10,157.0 | 11,364.2 | 5682.1 | 5682.1 | 25,004.4 | 21,628.4 |
Stream | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
P, bar | 1.22 | 1.15 | 1.13 | 1.11 | 1.06 | 1.01 | 0.60 | 0.60 | 40.00 | 40.00 |
T, °C | 504.6 2 | 800 | 860.2 | 755.8 | 388.20 3 | 120.0 | 85.5 | 85.5 | 86.8 | 328.2 4 |
YCH4, % | - | - | - | - | - | - | - | - | - | - |
YCO2, % | 0.04 | 0.04 | 3.08 | 3.08 | 3.08 | 3.08 | - | - | - | - |
YH2, % | - | - | - | - | - | - | - | - | - | - |
YH2O, % | 1.28 | 1.32 | 5.14 | 5.14 | 5.14 | 5.14 | 100.00 5 | 100.00 6 | 100.00 6 | 100.00 7 |
YN2, % | 77.81 | 80.63 | 75.37 | 75.37 | 75.37 | 75.37 | - | - | - | - |
YO2, % | 20.87 | 18.01 | 16.41 | 16.41 | 16.41 | 16.41 | - | - | - | - |
YAr, % | 0.09 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | - | - | - | - |
V250 1, m3·h−1 | 18,009.5 | 25,438.7 | 29,253.1 | 27,034.4 | 18,193.3 | 11,349.0 | 39.4 | 0.02 | 0.02 | 1.06 8 |
V750 1, m3·h−1 | 54,028.6 | 76,316.0 | 87,759.2 | 81,103.3 | 54,579.9 | 34,047.0 | 118.1 | 0.05 | 0.05 | 3.17 9 |
CH4 | CO2 | H2O | N2 | H2S | NH3 | O2 | H2 |
---|---|---|---|---|---|---|---|
60.00 | 35.91 | 2.34 | 0.50 | 0.20 | 0.05 | 0.50 | 0.50 |
Ν2 | O2 | CO2 | H2O | Ar |
---|---|---|---|---|
77.81 | 20.87 | 0.04 | 1.28 | 0.093 |
Dan | 2.13 × 10−8 | A·m−2 | man | 0.25 | Ean | 110,000 | J·mol−1 |
Dcath | 1.49 × 1011 | A·m−2 | mcath | 0.25 | Ecath | 160,000 | J·mol−1 |
Ai, Ωm | βi, K | li, μm | ρi, Ωm | |
---|---|---|---|---|
YSZ | 0.0000029 | 10,350 | 50 | 1.876 × 10−10 |
Ni/YSZ | 0.000003 | 1392 | 545 | 8.198 × 10−7 |
LSM/YSZ | 0.0000081 | −600 | 400 | 1.417 × 10−5 |
LaCrO3 | 0.001256 | −469 | 100 | 9.937 × 10−2 |
% of IT | |
---|---|
Installation, buildings and site preparation | 34.15 |
Machinery purchase | 26.83 |
Electronic equipment | 8.29 |
Project design and supervision | 8.78 |
CHP system | 21.95 |
Biogas Capacity, m3·h−1 | 250.00 | ||||
---|---|---|---|---|---|
ICE | SOFC | ||||
Operation point | MPD | 70% MPD | |||
SOFC size, m2 | 230 | 515 | |||
nel, % | 40 | 45.21 | 62.99 | ||
Net elec. power, MWel | 0.558 | 0.635 | 0.901 | ||
Net thermal power, MWth | 0.504 | 0.327 | 0.061 | ||
SOFC spec. cost, EUR·kW−1 | 1100 | 2000 | 1100 | 2000 | |
SOFC spec. cost, EUR·m−2 | 2897.91 | 5268.93 | 2897.91 | 5268.93 | |
Investment, EUR M | 1.68 | 4.70 | 5.45 | 5.80 | 7.47 |
Operation exp. (1), MEUR·a−1 | 0.62 | 0.68 | 0.69 | 0.74 | 0.76 |
IRR (2), % | 34.36 | 8.13 | 5.33 | 13.38 | 8.04 |
NPV (3), EUR M | 3.420 | 0.775 | −0.055 | 3.070 | 1.212 |
PBT (4), yr | 3.08 | 11.29 | 15.20 | 7.73 | 11.59 |
Biogas Capacity, m3·h−1 | 750.00 | ||||
---|---|---|---|---|---|
ICE | SOFC | ||||
Operation point | MPD | 70% MPD | |||
SOFC size, m2 | 710 | 1.540 | |||
nel, % | 40 | 45.21 | 62.99 | ||
Net elec. power, MWel | 1.674 | 1.944 | 2.701 | ||
Net thermal power, MWth | 1.512 | 0.941 | 0.184 | ||
SOFC spec. cost, €·kW−1 | 1100 | 2000 | 1100 | 2000 | |
SOFC spec. cost, €·m−2 | 2897.91 | 5268.93 | 2897.91 | 5268.93 | |
Investment, M€ | 4.62 | 11.32 | 14.55 | 13.62 | 19.55 |
Operation exp. (1), M€·a−1 | 1.75 | 1.93 | 1.95 | 2.10 | 2.15 |
IRR (2), % | 34.41 | 24.05 | 18.51 | 25.25 | 16.75 |
NPV (3), M€ | 9.25 | 15.02 | 12.46 | 20.97 | 15.41 |
PBT (4), yr | 2.27 | 4.72 | 6.25 | 4.33 | 6.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasiou, C.; Drosakis, C.; Booto, G.K.; Elmasides, C. Economic Feasibility of Power/Heat Cogeneration by Biogas–Solid Oxide Fuel Cell (SOFC) Integrated Systems. Energies 2023, 16, 404. https://doi.org/10.3390/en16010404
Athanasiou C, Drosakis C, Booto GK, Elmasides C. Economic Feasibility of Power/Heat Cogeneration by Biogas–Solid Oxide Fuel Cell (SOFC) Integrated Systems. Energies. 2023; 16(1):404. https://doi.org/10.3390/en16010404
Chicago/Turabian StyleAthanasiou, Costas, Christos Drosakis, Gaylord Kabongo Booto, and Costas Elmasides. 2023. "Economic Feasibility of Power/Heat Cogeneration by Biogas–Solid Oxide Fuel Cell (SOFC) Integrated Systems" Energies 16, no. 1: 404. https://doi.org/10.3390/en16010404
APA StyleAthanasiou, C., Drosakis, C., Booto, G. K., & Elmasides, C. (2023). Economic Feasibility of Power/Heat Cogeneration by Biogas–Solid Oxide Fuel Cell (SOFC) Integrated Systems. Energies, 16(1), 404. https://doi.org/10.3390/en16010404