Partial Discharge Localization Techniques: A Review of Recent Progress
<p>IEC 60270 circuit.</p> "> Figure 2
<p>PRPD representation [<a href="#B51-energies-16-02863" class="html-bibr">51</a>].</p> "> Figure 3
<p>Simplified sketch of spiral antenna design.</p> "> Figure 4
<p>PMA structure.</p> "> Figure 5
<p>Different orders of Hilbert fractal curves.</p> "> Figure 6
<p>Flowchart of MUSIC algorithm [<a href="#B31-energies-16-02863" class="html-bibr">31</a>].</p> "> Figure 7
<p>TDR fault measurement.</p> "> Figure 8
<p>SVM classification for 2 classes.</p> "> Figure 9
<p>DT on classification processes.</p> "> Figure 10
<p>RNN structure.</p> "> Figure 11
<p>LSTM unit.</p> ">
Abstract
:1. Introduction
2. PD Detection
2.1. Conventional PD Detection
2.2. Radio Frequency Detection
2.3. Acoustic Detection
2.4. Optical Detection
2.5. Antenna Detection
2.5.1. Spiral Antenna
2.5.2. Planar Monopole Antenna (PMA)
2.5.3. Fractal Antenna
Design | Variations | Reference |
---|---|---|
Spiral | Cosine slot Archimedean spiral antenna | [64] |
Archimedean spiral antenna | [76] | |
Log-periodic spiral slot antenna | [77] | |
Archimedean spiral antenna | [61] | |
Two-arm equiangular spiral antenna | [78] | |
PMA | Ultra-wideband microstrip patch antenna | [79] |
Bio-inspired by the Jatropha mollissima (Pohl) Baill leaf | [66] | |
Wing-shaped ultra-wide band monopole antenna | [73] | |
Bio-inspired by Inga Marginata leaf | [65] | |
Ultra-Wide Band Antenna | [80] | |
Fractal | 4th-order Hilbert antenna | [75] |
4th-order Hilbert antenna | [54] | |
Moore fractal antenna | [81] | |
3rd-order stacked Hilbert antenna | [82] | |
4th-order Hilbert antenna | [83] |
3. Conventional Localization Technique
3.1. Time Difference of Arrival (TDOA)
3.2. Angle of Arrival (AOA)
3.3. Time Reversal (TR)
- During the forward time step, PD signals are emitted from one or multiple sources at a distance and captured by single or multiple sensors.
- The captured signal undergoes time reversing.
- The time-reversed signal is back injected into the medium in the backpropagation step.
- The criterion algorithm such as maximum field, minimum entropy, or cross-correlation [25] can be applied to locate the focal spot created by constructive interference to locate the PD coordinate, based on the notion that the waves will refocus at the primary source site both in time and space.
3.4. Received Signal Strength Index (RSSI)
3.5. Reflectometry
3.6. Others
Ref. | Application | Type of Sensors | Method (Algorithm) | Proposed Method Outperforms the Following Algorithm | Simulation/ Experimental | Performance |
---|---|---|---|---|---|---|
[23] | Transformer | 1 Acoustic sensor (TR) | ATR (3D) | ATR (2D) | Simulation | Correctly identified in a simulated 0.4 × 1 × 0.4 m space |
[86] | Transformer | 1 Acoustic Sensor (TR) | ATR | TDOA | Both | Correctly identified PD in the presence of noise |
[39] | Transformer | 4 Acoustic sensors (TDOA) | Singular spectrum analysis-independent component analysis (SSA-ICA) with cumulative energy function | Customed SSA Ensemble empirical mode decomposition-independent component analysis (EEMD-ICA) | Both | Lowest error of 132.20 mm |
[98] | Transformer | 8 fibre-optic acoustic sensors (TDOA) | Levenberg–Marquardt algorithm using FEM simulation results | No comparison performed | Simulation | 5 cm error |
[40] | Transformer | 4 Acoustic sensors (TDOA) | Correction-Iterative Method | Newton’s method Genetic algorithm (GA) Imperial competitive algorithm (ICA) | Both | Maximum error: 49.97 mm |
[99] | Transformer | lattice-rogowski-coil sensor | Measuring and identify the highest voltage value among different location in transformer as the PD | No comparison performed | Experimental | Maximum peak value of voltage showed the closest distance from sensor to PD source |
[85] | Transformer | 5 Acoustic sensors (TDOA) | Optimized L-TSVD | Direct TSVD method Newton iteration method | Experimental | 15.52 cm error |
[41] | Transformer | 4 UHF sensors (TDOA) | CHAN algorithm | No comparison performed | Both | 15 cm error |
[43] | Transformer | 8 Ultrasonic sensors (TDOA) | Semidefinite Relaxation Convex Optimization | CHAN PSO | Both | Localization error of 0.1 m |
[42] | Transformer | 2 RFCTs | OPTICS + MM | No comparison performed | Experimental | The values able to identify the near or far between sensor and PD source |
[21] | Transformer | 1 RF antenna + 3 Acoustic sensors (TDOA) | EK-SVSF | Extended Kalman filter (EKF) Unscented Kalman filter (UKF) Smooth variable structure filter (SVSF) UK-SVSF | Experimental | EK-SVSF achieved faster convergence and lower RMSE than others |
[25] | Transformer | 1 sensor (TR) | 2D-FDTD + MFC | TDOA | Both | Localization error of 10 mm (corresponding to λ_min/10) |
[22] | Transformer | 2 Acoustic sensors (TR) | 2D-FDTD + MEC | No comparison performed | Simulation | Accurately located PD in a simulated 0.4 × 1 m dimension |
[24] | Transformer | 4 UHF probes (TDOA) | Time Window Contrast Function (TWCF) | Average time window threshold (ATWT) Modified Dynamic cumulative sum (DCS) | Experimental | Error in the range of 10 cm |
[44] | Transformer | 3 Acoustic + 1 Electrical sensors | Noniterative acoustic-electrical | Newton iterative method Non-iterative method (used in all-acoustic system with 4 sensors—time-difference approach) | Experimental | computational time |
[8] | Transformer | 4 UHF sensors (TDOA) | CRP based Self-Similarity-RQA of non-iterative method | Cross-correlation-CRP | Both | Efficient TDOA estimation under low SNR |
[97] | Transformer | PD detector | Ladder Network Model | No comparison performed | Both | Accurately located PD from the maximum correlation |
[1] | Transformer | 3 Acoustic sensors (TDOA) | EKF-MLE | EKF | Experimental | MLE-EKF performed better in the presence of barrier in front of sensor |
[3] | Substation | 2 UHF sensors (DOA + TDOA) | Improved PSO | Direct PSO Iterative grid search solution Spatial grid search Error Probability Distribution- localization | Experimental | 0.21 m error |
[6] | Substation | 4 UHF sensors (TDOA) | 3σ-Two Step algorithm | PSO Hybrid DE-PSO Probability-based combine K-means RSSI | Experimental | Lab test: 0.21 m error for 2 PDs 0.45 m error for 3 PDs Field test: 0.6–2 m error |
[19] | Substation | 3 UHF sensors (AOA + RSSI) | MUSIC | AOA + RSSI without MUSIC | Experimental | error less than 1 degree |
[32] | Substation | 4 UHF sensors (TDOA) | generalized S-transform (GST) + Newton Iterative | Without denoising WT (db2) WT (db8) | Both | Errors in 3D and 2D are 1.59 m and 0.11 m respectively |
[20] | Substation | 5 UHF Antennas (TDOA) | Tikhonov Regularization Method (with centralization and row balance) | Gaussian elimination direct regularization method | Both | Simulation: 2.99 m error Experiment: 2.33 m error |
[33] | Substation | 5 UHF sensors (TDOA) | Truncated singular value decomposition (TSVD) Regularization with generalized cross-validation (GCV) | Gaussian elimination method direct TSVD regularization method Tikhonov regularization method | Both | Simulation: 2.02 m error Experimental: 2.07 m error |
[18] | Substation | N × N UHF sensor array; 1 < N < 5 (DOA) | CS + MUSIC + Peak Search | No comparison performed | Both | Error reduced from 12 degree to 4 degree |
[93] | Cable | 1 HFCT (TR) | EMTR-1D TLM | No comparison performed | Both | Without/With noise: 0.14%/0.5% error |
[100] | Cable | - (EMTR) | TLM | No comparison performed | Simulation | Error < 1.5% |
[89] | Cable | 2 Photodetector (TDOA) | Cross-Correlation | No comparison performed | Experimental | ±80 m for 6 km cable |
[96] | Cable | 1 HFCT (TDR) | Power Ratio (PR) with PSO + TDR | No comparison performed | Experimental | Maximum of 5% error |
[95] | Cable | - | Linear frequency modulation (LFM) + Pulse Compression technique | TDR | Experimental | LFM: error from 0.09–1.43 m TDR: error from 0.48–4.77 m |
4. Machine Learning Localization
4.1. Fuzzy Logic (FL)
- Fuzzification: convert the crisp input set into a fuzzy set using the predefined membership function.
- Inference: apply the antecedent (IF) and consequent (THEN) rules using different fuzzy operators onto the “If” condition.
- Defuzzification: the output value (PD location) can be obtained.
4.2. Support Vector Machine (SVM)
4.3. Ensemble Model—Decision Tree (DT) and Random Forest (RF)
4.4. Others
Ref. | Application | Type of Sensors | Method (Algorithm) | Proposed Method Outperforms the Following Algorithm | Simulation/ Experimental | Performance |
---|---|---|---|---|---|---|
[52] | Substation | 4 UHF sensors (TDOA) | PGS | Active Search with Nearest-Neighbour (NN) Active Search without Nearest-Neighbour (NN) | Both | Laboratory errors: Active-Set without NN: 5.98% Active-Set with NN: 3.83% Probabilistic Grid-Search: 2.12% |
[110] | Substation | 3 RF monopole antenna | CFS + KNN | KNN without CFS | Experimental | Error reduced by 36.54% |
[27] | Substation | 3 UHF sensors | WPT + RRF | Regression tree algorithm Bootstrap aggregating method | Experimental | 91% accuracy within 0.31–3.0 m error |
[34] | Substation | 4 UHF sensors (TDOA) | SOFM + CC | No comparison performed | Experimental | Multiple PD detection lab: average 94.9% field: average 91.6% Localization error lab: 1.3% field: 1.33% |
[102] | Substation | 3 omnidirectional antennas (RSS) | LSSVR | Multilayer perceptron (MLP) Radial basis function (RBF) neural network | Experimental | Error less than 2 m |
[35] | Substation | 4 UHF sensors (RSS) | PSO-BP + CS | PSO-BP BP | Experimental | 0.89 m and 90.4% localization errors are less than 2 m |
[45] | Transformer | 3 Acoustic Sensors (TOA) | FLTS | TOA Fuzzy logic Mamdani (FLM) | Experimental | Accuracy is between 96% and 97% for locations 2 and 1 |
[17] | Transformer | 8 Acoustic Sensors (TDOA) | AFC-DPC | Simulation: Density-Based Spatial Clustering of Applications with Noise (DBSCAN) K-Means DPC Experimental: Newton-Raphson CHAN GA ICA | Both | Simulation error 1.7 cm Experimental error 5.30 cm |
[29] | Transformer | 5 Optical sensors | S-Transform + Random Forest | Inductive inference algorithm Wavelet Transform Rough Set theory | Both | 5 features: 95.6% 10 features: 98.2%. 15 features: 100% |
[26] | GIL | 9 Optical sensors | Bagging—kernel extreme learning machine (KELM) | Traditional KELM Back propagation neural network (BPNN) | Both | Error of 0.93 cm |
[49] | GIL | 4 Actual Sensors + 5 Virtual Sensors | ANFIS | UHF Optical Acoustic | Both | ~Error reduced by 54.8% by adding virtual sensors with localization error of 19.69 mm |
[28] | GIS | 2 UHF sensors (TDOA + AOA) | Canny algorithm + SVM | No comparison performed | Both | 100% circumferential accuracy |
4.5. Deep Learning
Recurrent Neural Network
Ref. | Application | Type of Sensors | Method (Algorithm) | Proposed Method Outperforms the Following Algorithm | Simulation/ Experimental | Performance |
---|---|---|---|---|---|---|
[36] | Substation | 4 UHF sensors (TDOA) | VMM + MDNNM | MDNNM [84] VMM + MDNNM [114] | Both | Location accuracy of 1° for time difference up to 10 ns |
[84] | Substation | 4 UHF sensors (TDOA) | Improved Pre-Classified Multi-DNN | Simple DNN | Simulation | Achieved global optimal solutions than simple DNN from the random created PD sources |
[114] | Substation | 4 UHF sensors (TDOA) | VMM + MDNNM | MDNN | Simulation | Average error values Δr, Δθ, ΔΦ, and Δd percentage decrease by 32%, 24%, 39%, and 44% respectively |
[37] | Substation | 3 ultrasonic sensors (TDOA + DOA) | RBF-SVM + Faster R-CNN | Linear Discriminant Analysis (LDA) classifier Naïve Bayes (NB) classifier | Experimental | 0.1 m error with 0.2 m spacing between L-shaped sensors |
[113] | Substation | 3 RF sensors (SSR) | GRNN | MLP K-nearest neighbour Weighted K-nearest neighbour models | Experimental | Errors GRNN: 1.81 m MLP: 2.07 m KNN: 2.12 m WKNN: 2.06 m |
[115] | Cable | - | Neural network + CRNN | Standalone CRNN | Experimental | PDD: 99% FR: 94~100% |
[46] | Transformer | 4 pizo-acoustic sensors (TDOA) | Newton Iterative + ANN | Noniterative model Cross correlation function Genetic/pattern search (GA/PA) Min Search Function (fmin) | Experimental | Maximum error of 2.74 cm at noise level up to 20% |
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wadi, A.; Al-Masri, W.; Siyam, W.; Abdel-Hafez, M.F.; El-Hag, A.H. Accurate Estimation of Partial Discharge Location using Maximum Likelihood. IEEE Sens. Lett. 2018, 2, 5501004. [Google Scholar] [CrossRef]
- IEC 60270:2000; High-Voltage Test Techniques: Partial Discharge Measurements. Electrotechnical Sector Committee: Geneva, Switzerland, 2001.
- Li, P.; Peng, X.; Yin, K.; Xue, Y.; Wang, R.; Ma, Z. 3D Localization Method of Partial Discharge in Air-Insulated Substation Based on Improved Particle Swarm Optimization Algorithm. Symmetry 2022, 14, 1241. [Google Scholar] [CrossRef]
- Stenerhag, B. On the Meaning of PDIV and PDEV. IEEE Trans. Electr. Insul. 1986, EI-21, 101–104. [Google Scholar] [CrossRef]
- D’Antona, G.; Perfetto, L. Partial Discharge Localization in Insulated Switchgears by Eigenfunction Expansion Method. IEEE Trans. Instrum. Meas. 2019, 68, 1294–1301. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, S.; Xiong, H.; Qiu, R.; Sun, Y.; Zheng, S.; Yang, Z. Localization of Multiple Partial Discharge Sources in Air-Insulated Substation Space by RF Antenna Sensors Array. IEEE Sens. J. 2022, 22, 14481–14490. [Google Scholar] [CrossRef]
- Mladenovic, I.; Weindl, C. Determination of the Characteristic Life Time of Paper-insulated MV-Cables based on a Partial Discharge and tan(delta) Diagnosis. In Proceedings of the 13th International Power Electronics and Motion Control Conference, Poznan, Poland, 1–3 September 2008; pp. 2022–2027. [Google Scholar]
- Desai, B.M.A.; Sarathi, R. Identification and localisation of incipient discharges in transformer insulation adopting UHF technique. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1924–1931. [Google Scholar] [CrossRef]
- IEC TS 62478:2016; High Voltage Test Techniques—Measurement of Partial Discharges by Electromagnetic and Acoustic Methods. IEC: Geneva, Switzerland, 2016; p. 68.
- Tenbohlen, S.; Denissov, D.; Hoek, S.M.; Markalous, S.M. Partial discharge measurement in the ultra high frequency (UHF) range. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1544–1552. [Google Scholar] [CrossRef]
- Markalous, S.M.; Tenbohlen, S.; Feser, K. Detection and location of partial discharges in power transformers using acoustic and electromagnetic signals. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1576–1583. [Google Scholar] [CrossRef]
- Sinaga, H.H.; Phung, B.T.; Blackburn, T.R. Partial discharge localization in transformers using UHF detection method. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1891–1900. [Google Scholar] [CrossRef]
- Li, G.; Wang, X.; Li, X.; Yang, A.; Rong, M. Partial Discharge Recognition with a Multi-Resolution Convolutional Neural Network. Sensors 2018, 18, 3512. [Google Scholar] [CrossRef] [Green Version]
- Baug, A.; Choudhury, N.R.; Ghosh, R.; Dalai, S.; Chatterjee, B. Identification of single and multiple partial discharge sources by optical method using mathematical morphology aided sparse representation classifier. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3703–3712. [Google Scholar] [CrossRef]
- Wan, L.; Han, G.; Shu, L.; Chan, S.; Feng, N. PD Source Diagnosis and Localization in Industrial High-Voltage Insulation System via Multimodal Joint Sparse Representation. IEEE Trans. Ind. Electron. 2016, 63, 2506–2516. [Google Scholar] [CrossRef]
- Guofeng, L.; Dalin, C.; Can, Z.; Jiankun, C.; Jianqiao, Y.; Yuwei, S. Partial Discharge Positioning Based on Statistical Analysis of UHF RSSI Values. In Proceedings of the 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE), Hangzhou, China, 15–17 April 2022; pp. 1598–1603. [Google Scholar]
- Wang, S.; He, Y.; Yin, B.; Zeng, W.; Deng, Y.; Hu, Z. A Partial Discharge Localization Method in Transformers Based on Linear Conversion and Density Peak Clustering. IEEE Access 2021, 9, 7447–7459. [Google Scholar] [CrossRef]
- Zhou, N.; Luo, L.; Sheng, G.; Jiang, X. Direction of arrival estimation method for multiple UHF partial discharge sources based on virtual array extension. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1526–1534. [Google Scholar] [CrossRef]
- Zheng, Q.; Luo, L.; Song, H.; Sheng, G.; Jiang, X. A RSSI-AOA-Based UHF Partial Discharge Localization Method Using MUSIC Algorithm. IEEE Trans. Instrum. Meas. 2021, 70, 9002309. [Google Scholar] [CrossRef]
- Wang, S.; He, Y.; Yin, B.; Ning, S.; Zeng, W. Partial Discharge Localization in Substations Using a Regularization Method. IEEE Trans. Power Deliv. 2021, 36, 822–830. [Google Scholar] [CrossRef]
- Avzayesh, M.; Abdel-Hafez, M.F.; Al-Masri, W.M.F.; AlShabi, M.; El-Hag, A.H. A Hybrid Estimation-Based Technique for Partial Discharge Localization. IEEE Trans. Instrum. Meas. 2020, 69, 8744–8753. [Google Scholar] [CrossRef]
- Karami, H.; Rachidi, F.; Azadifar, M.; Rubinstein, M. An Acoustic Time Reversal Technique to Locate a Partial Discharge Source: Two-Dimensional Numerical Validation. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 2203–2205. [Google Scholar] [CrossRef]
- Karami, H.; Aviolat, F.Q.; Azadifar, M.; Rubinstein, M.; Rachidi, F. Partial discharge localization in power transformers using acoustic time reversal. Electr. Power Syst. Res. 2022, 206, 107801. [Google Scholar] [CrossRef]
- Ariannik, M.; Azirani, M.A.; Werle, P.; Azirani, A.A. UHF Measurement in Power Transformers: An Algorithm to Optimize Accuracy of Arrival Time Detection and PD Localization. IEEE Trans. Power Deliv. 2019, 34, 1530–1539. [Google Scholar] [CrossRef]
- Azadifar, M.; Karami, H.; Wang, Z.; Rubinstein, M.; Rachidi, F.; Karami, H.; Ghasemi, A.; Gharehpetian, G.B. Partial Discharge Localization Using Electromagnetic Time Reversal: A Performance Analysis. IEEE Access 2020, 8, 147507–147515. [Google Scholar] [CrossRef]
- Zang, Y.; Qian, Y.; Zhou, X.; Xu, A.; Sheng, G.; Jiang, X. A novel partial discharge localization method for GIL based on the 3D optical signal irradiance fingerprint and bagging-KELM. IET Gener. Transm. Distrib. 2021, 15, 2240–2249. [Google Scholar] [CrossRef]
- Iorkyase, E.T.; Tachtatzis, C.; Glover, I.A.; Lazaridis, P.; Upton, D.; Saeed, B.; Atkinson, R.C. Improving RF-Based Partial Discharge Localization via Machine Learning Ensemble Method. IEEE Trans. Power Deliv. 2019, 34, 1478–1489. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, X.; Yang, A.; Rong, M. Partial Discharge Source Localization in GIS Based on Image Edge Detection and Support Vector Machine. IEEE Trans. Power Deliv. 2019, 34, 1795–1802. [Google Scholar] [CrossRef]
- Bag, S.; Pradhan, A.K.; Das, S.; Dalai, S.; Chatterjee, B. S-Transform Aided Random Forest Based PD Location Detection Employing Signature of Optical Sensor. IEEE Trans. Power Deliv. 2019, 34, 1261–1268. [Google Scholar] [CrossRef]
- Lu, S.; Chai, H.; Sahoo, A.; Phung, B.T. Condition Monitoring Based on Partial Discharge Diagnostics Using Machine Learning Methods: A Comprehensive State-of-the-Art Review. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1861–1888. [Google Scholar] [CrossRef]
- Long, J.; Wang, X.; Zhou, W.; Zhang, J.; Dai, D.; Zhu, G. A Comprehensive Review of Signal Processing and Machine Learning Technologies for UHF PD Detection and Diagnosis (I): Preprocessing and Localization Approaches. IEEE Access 2021, 9, 69876–69904. [Google Scholar] [CrossRef]
- Wang, S.; He, Y.; Yin, B.; Zeng, W.; Li, C.; Ning, S. Multi-Resolution Generalized S-Transform Denoising for Precise Localization of Partial Discharge in Substations. IEEE Sens. J. 2021, 21, 4966–4980. [Google Scholar] [CrossRef]
- Ning, S.; He, Y.; Yuan, L.; Sui, Y.; Huang, Y.; Cheng, T. A Novel Localization Method of Partial Discharge Sources in Substations Based on UHF Antenna and TSVD Regularization. IEEE Sens. J. 2021, 21, 17040–17052. [Google Scholar] [CrossRef]
- Mishra, D.K.; Dhara, S.; Koley, C.; Roy, N.K.; Chakravorti, S. Self-organizing feature map based unsupervised technique for detection of partial discharge sources inside electrical substations. Measurement 2019, 147, 106818. [Google Scholar] [CrossRef]
- Li, Z.; Luo, L.; Liu, Y.; Sheng, G.; Jiang, X. UHF partial discharge localization algorithm based on compressed sensing. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 21–29. [Google Scholar] [CrossRef]
- Zaki, A.U.M.; Hu, Y.; Jiang, X. Accurate partial discharge localisation using a multi-deep neural network model trained with a novel virtual measurement method. IET Sci. Meas. Technol. 2021, 15, 352–363. [Google Scholar] [CrossRef]
- Samaitis, V.; Mažeika, L.; Jankauskas, A.; Rekuvienė, R. Detection and Localization of Partial Discharge in Connectors of Air Power Lines by Means of Ultrasonic Measurements and Artificial Intelligence Models. Sensors 2020, 21, 20. [Google Scholar] [CrossRef] [PubMed]
- Darabad, V.P.; Vakilian, M.; Blackburn, T.R.; Phung, B.T. An efficient PD data mining method for power transformer defect models using SOM technique. Int. J. Electr. Power Energy Syst. 2015, 71, 373–382. [Google Scholar] [CrossRef]
- Cai, J.; Zhou, L.; Zhang, Y.; Wang, D.; Liao, W.; Zhang, C. Convenient Online Approach to Multisource Partial Discharge Localization in Transformer. IEEE Trans. Ind. Electron. 2022, 69, 9440–9450. [Google Scholar] [CrossRef]
- Zhou, L.; Cai, J.; Hu, J.; Lang, G.; Guo, L.; Wei, L. A Correction-Iteration Method for Partial Discharge Localization in Transformer Based on Acoustic Measurement. IEEE Trans. Power Deliv. 2021, 36, 1571–1581. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, J.; Li, J.; Yang, X.; Albarracín-Sánchez, R.; Ranjan, P.; Zhang, C. Propagation and localisation of partial discharge in transformer bushing based on ultra-high frequency technique. High Volt. 2021, 6, 684–692. [Google Scholar] [CrossRef]
- Ali, N.H.N.; Ariffin, A.M.; Rapisarda, P.; Lewin, P.L. Partial Discharges Identification and Localisation within Transformer Windings. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 2095–2103. [Google Scholar] [CrossRef]
- Jia, J.; Hu, C.; Yang, Q.; Lu, Y.; Wang, B.; Zhao, H. Localization of Partial Discharge in Electrical Transformer Considering Multimedia Refraction and Diffraction. IEEE Trans. Ind. Inform. 2021, 17, 5260–5269. [Google Scholar] [CrossRef]
- Antony, D.; Punekar, G.S. Noniterative Method for Combined Acoustic-Electrical Partial Discharge Source Localization. IEEE Trans. Power Deliv. 2018, 33, 1679–1688. [Google Scholar] [CrossRef]
- Hashim, A.H.M.; Azis, N.; Jasni, J.; Radzi, M.A.M.; Kozako, M.; Jamil, M.K.M.; Yaakub, Z. Partial Discharge Localization in Oil Through Acoustic Emission Technique Utilizing Fuzzy Logic. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 623–630. [Google Scholar] [CrossRef]
- Taha, I.B.M.; Dessouky, S.S.; Ghaly, R.N.R.; Ghoneim, S.S.M. Enhanced partial discharge location determination for transformer insulating oils considering allocations and uncertainties of acoustic measurements. Alex. Eng. J. 2020, 59, 4759–4769. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, J.; Li, J.; Yang, X.; Bie, Y.; Ranjan, P.; Zhang, C.; Schwarz, H. Partial Discharge Detection and Diagnosis of Transformer Bushing Based on UHF Method. IEEE Sens. J. 2021, 21, 16798–16806. [Google Scholar] [CrossRef]
- Yao, Y.; Tang, J.; Pan, C.; Song, W.; Luo, Y.; Yan, K.; Wu, Q. Optimized extraction of PD fingerprints for HVDC XLPE cable considering voltage influence. Int. J. Electr. Power Energy Syst. 2021, 127, 106644. [Google Scholar] [CrossRef]
- Zang, Y.; Qian, Y.; Wang, H.; Xu, A.; Zhou, X.; Sheng, G.; Jiang, X. A Novel Optical Localization Method for Partial Discharge Source Using ANFIS Virtual Sensors and Simulation Fingerprint in GIL. IEEE Trans. Instrum. Meas. 2021, 70, 3522411. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, J.; Yang, Z.; Qi, Z.; Wang, J.; Geng, Y. A Novel Domain Adversarial Graph Convolutional Network for Insulation Defect Diagnosis in Gas-Insulated Substations. IEEE Trans. Power Deliv. 2023, 38, 442–452. [Google Scholar] [CrossRef]
- Barrios, S.; Buldain, D.; Comech, M.P.; Gilbert, I.; Orue, I. Partial Discharge Classification Using Deep Learning Methods—Survey of Recent Progress. Energies 2019, 12, 2485. [Google Scholar] [CrossRef] [Green Version]
- Dhara, S.; Koley, C.; Chakravorti, S. A UHF Sensor Based Partial Discharge Monitoring System for Air Insulated Electrical Substations. IEEE Trans. Power Deliv. 2021, 36, 3649–3656. [Google Scholar] [CrossRef]
- Jia, J.; Fu, H.; Wang, B.; Li, Y.; Yu, Y.; Cao, Y.; Jiang, D. Acoustic-Electrical Joint Localization Method of Partial Discharge in Power Transformer Considering Multi-Path Propagation Impact. Front. Energy Res. 2022, 10, 190. [Google Scholar] [CrossRef]
- Salah, W.S.; Gad, A.H.; Attia, M.A.; Eldebeikey, S.M.; Salama, A.R. Design of a compact ultra-high frequency antenna for partial discharge detection in oil immersed power transformers. Ain Shams Eng. J. 2022, 13, 101568. [Google Scholar] [CrossRef]
- Bua-Nunez, I.; Posada-Roman, J.E.; Garcia-Souto, J.A. Multichannel Detection of Acoustic Emissions and Localization of the Source with External and Internal Sensors for Partial Discharge Monitoring of Power Transformers. Energies 2021, 14, 7873. [Google Scholar] [CrossRef]
- Mondal, M.; Kumbhar, G.B. Partial Discharge Localization in a Power Transformer: Methods, Trends, and Future Research. IETE Tech. Rev. 2017, 34, 504–513. [Google Scholar] [CrossRef]
- Upton, D.W.; Mistry, K.K.; Mather, P.J.; Zaharis, Z.D.; Atkinson, R.C.; Tachtatzis, C.; Lazaridis, P.I. A Review of Techniques for RSS-Based Radiometric Partial Discharge Localization. Sensors 2021, 21, 909. [Google Scholar] [CrossRef]
- Muhr, M.; Schwarz, R. Experience with optical partial discharge detection. Mater. Sci. 2009, 27, 1139–1146. [Google Scholar]
- Wang, P.; Ma, S.J.; Akram, S.; Zhou, K.; Chen, Y.D.; Nazir, M.T. Design of Archimedes Spiral Antenna to Optimize for Partial Discharge Detection of Inverter Fed Motor Insulation. IEEE Access 2020, 8, 193202–193213. [Google Scholar] [CrossRef]
- Ghanakota, K.C.; Yadam, Y.R.; Ramanujan, S.; Vishnu Prasad, V.J.; Arunachalam, K. Study of Ultra High Frequency Measurement Techniques for Online Monitoring of Partial Discharges in High Voltage Systems. IEEE Sens. J. 2022, 22, 11698–11709. [Google Scholar] [CrossRef]
- Zhou, W.Y.; Wang, P.; Zhao, Z.J.; Wu, Q.; Cavallini, A. Design of an Archimedes Spiral Antenna for PD Tests under Repetitive Impulsive Voltages with Fast Rise Times. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 423–430. [Google Scholar] [CrossRef]
- Volakis, J.L.; Nurnberger, M.W.; Filipovic, D.S. Slot spiral antenna. IEEE Antennas Propag. Mag. 2001, 43, 15–26. [Google Scholar] [CrossRef]
- Mashaal, O.A.; Rahim, S.K.A.; Abdulrahman, A.Y.; Sabran, M.I.; Rani, M.S.A.; Hall, P.S. A Coplanar Waveguide Fed Two Arm Archimedean Spiral Slot Antenna With Improved Bandwidth. IEEE Trans. Antennas Propag. 2013, 61, 939–943. [Google Scholar] [CrossRef]
- Yadam, Y.R.; Sarathi, R.; Arunachalam, K. Planar Ultrawideband Circularly Polarized Cosine Slot Archimedean Spiral Antenna for Partial Discharge Detection. IEEE Access 2022, 10, 35701–35711. [Google Scholar] [CrossRef]
- Cruz, J.D.N.; Serres, A.J.R.; de Oliveira, A.C.; Xavier, G.V.R.; de Albuquerque, C.C.R.; da Costa, E.G.; Freire, R.C.S. Bio-inspired Printed Monopole Antenna Applied to Partial Discharge Detection. Sensors 2019, 19, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobrega, L.A.M.M.; Xavier, G.V.R.; Aquino, M.V.D.; Serres, A.J.R.; Albuquerque, C.C.R.; Costa, E.G. Design and Development of a Bio-Inspired UHF Sensor for Partial Discharge Detection in Power Transformers. Sensors 2019, 19, 653. [Google Scholar] [CrossRef] [Green Version]
- Xavier, G.V.R.; Costa, E.G.d.; Serres, A.J.R.; Nobrega, L.A.M.M.; Oliveira, A.C.; Sousa, H.F.S. Design and Application of a Circular Printed Monopole Antenna in Partial Discharge Detection. IEEE Sens. J. 2019, 19, 3718–3725. [Google Scholar] [CrossRef]
- Mishra, D.K.; Sarkar, B.; Koley, C.; Roy, N.K. An unsupervised Gaussian mixer model for detection and localization of partial discharge sources using RF sensors. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2589–2598. [Google Scholar] [CrossRef]
- Ahmed, O.M.H.; Sebak, A. A Novel Maple-Leaf Shaped UWB Antenna with a 5.0–6.0 GHz Band-Notch Characteristic. Prog. Electromagn. Res. C 2009, 11, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, O.M.H.; Sebak, A. Numerical and Experimental Investigation of a Novel Ultrawideband Butterfly Shaped Printed Monopole Antenna with Bandstop Function. Prog. Electromagn. Res. C 2011, 18, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Ebnabbasi, K. A Bio-Inspired Printed-Antenna Transmission-Range Detection System [Education Column]. IEEE Antennas Propag. Mag. 2013, 55, 193–200. [Google Scholar] [CrossRef]
- Xavier, G.V.R.; Oliveira, A.C.D.; Silva, A.D.C.; Nobrega, L.A.M.M.; Costa, E.G.D.; Serres, A.J.R. Application of Time Difference of Arrival Methods in the Localization of Partial Discharge Sources Detected Using Bio-Inspired UHF Sensors. IEEE Sens. J. 2021, 21, 1947–1956. [Google Scholar] [CrossRef]
- Azam, S.M.K.; Othman, M.B.; Latef, T.A.; Ain, M.F.; Qasaymeh, Y. Wing-Shaped Ultra-Wide Band Antenna for Dual Band-Notch Operations. In Proceedings of the 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 27–29 November 2021; pp. 1–5. [Google Scholar]
- Saktioto; Soerbakti, Y.; Syahputra, R.F.; Gamal, M.D.H.; Irawan, D.; Putra, E.H.; Darwis, R.S.; Okfalisa. Improvement of low-profile microstrip antenna performance by hexagonal-shaped SRR structure with DNG metamaterial characteristic as UWB application. Alex. Eng. J. 2022, 61, 4241–4252. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, G.; Ming, C.; He, L.; Liu, Y.; Liu, J.; Zhang, X. Design of a Flexible UHF Hilbert Antenna for Partial Discharge Detection in Gas-insulated Switchgear. IEEE Antennas Wirel. Propag. Lett. 2022, 1–5. [Google Scholar] [CrossRef]
- Park, S.; Jung, K.Y. y Design of a Circularly-Polarized UHF Antenna for Partial Discharge Detection. IEEE Access 2020, 8, 81644–81650. [Google Scholar] [CrossRef]
- Zachariades, C.; Shuttleworth, R.; Giussani, R.; Loh, T.H. A Wideband Spiral UHF Coupler With Tuning Nodules for Partial Discharge Detection. IEEE Trans. Power Deliv. 2019, 34, 1300–1308. [Google Scholar] [CrossRef] [Green Version]
- Li, T.H.; Rong, M.Z.; Zheng, C.; Wang, X.H. Development Simulation and Experiment Study on UHF Partial Discharge Sensor in GIS. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1421–1430. [Google Scholar] [CrossRef]
- Uwiringiyimana, J.P.; Khayam, U.; Suwarno; Montanari, G.C. Design and Implementation of Ultra-Wide Band Antenna for Partial Discharge Detection in High Voltage Power Equipment. IEEE Access 2022, 10, 10983–10994. [Google Scholar] [CrossRef]
- Yang, F.; Peng, C.; Yang, Q.; Luo, H.; Ullah, I.; Yang, Y. An uwb printed antenna for partial discharge uhf detection in high voltage switchgears. Prog. Electromagn. Res. C 2016, 69, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Q.; Wang, Z.; Li, J.F. UHF Moore Fractal Antennas for Online GIS PD Detection. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 852–855. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; Jiang, T.Y.; Bao, L.W.; He, Z.M. UHF Stacked Hilbert Antenna Array for Partial Discharge Detection. IEEE Trans. Antennas Propag. 2013, 61, 5798–5801. [Google Scholar] [CrossRef]
- Li, J.; Jiang, T.Y.; Cheng, C.K.; Wang, C.S. Hilbert Fractal Antenna for UHF Detection of Partial Discharges in Transformers. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2017–2025. [Google Scholar] [CrossRef]
- Liu, J.T.; Hu, Y.; Peng, H.; Zaki, A.U. Data-driven method using DNN for PD location in substations. IET Sci. Meas. Technol. 2020, 14, 314–321. [Google Scholar] [CrossRef]
- Ning, S.; He, Y.; Farhan, A.; Wu, Y.; Tong, J. A Method for the Localization of Partial Discharge Sources in Transformers Using TDOA and Truncated Singular Value Decomposition. IEEE Sens. J. 2021, 21, 6741–6751. [Google Scholar] [CrossRef]
- Rathod, V.B.; Kumbhar, G.B.; Bhalja, B.R. Performance analysis of acoustic sensors based time reversal technique for partial discharge localization in power transformers. Electr. Power Syst. Res. 2022, 215, 108965. [Google Scholar] [CrossRef]
- Cai, J.; Zhou, L.; Hu, J.; Zhang, C.; Liao, W.; Guo, L. High-accuracy localisation method for PD in transformers. IET Sci. Meas. Technol. 2020, 14, 104–110. [Google Scholar] [CrossRef]
- Zhu, M.X.; Wang, Y.B.; Liu, Q.; Zhang, J.N.; Deng, J.B.; Zhang, G.J.; Shao, X.J.; He, W.L. Localization of multiple partial discharge sources in air-insulated substation using probability-based algorithm. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 157–166. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Zhang, Z.; Zhang, W.; Yao, J. Research on Optical Fiber Sensor Localization Based on the Partial Discharge Ultrasonic Characteristics in Long-Distance XLPE Cables. IEEE Access 2020, 8, 184744–184751. [Google Scholar] [CrossRef]
- Wei, B.; Guo Fu, Y.; Liu, F.; Hao Jie, S.; Li, H.J. Research on Location Method of PD Signal for Metal-Clad Switchgear. Appl. Mech. Mater. 2017, 864, 231–236. [Google Scholar] [CrossRef]
- Hou, H.; Sheng, G.; Miao, P.; Li, X.; Hu, Y.; Jiang, X. Partial discharge location based on radio frequency antenna array in substation. Gaodianya Jishu/High Volt. Eng. 2012, 38, 1334–1340. [Google Scholar]
- Li, P.; Zhou, W.; Yang, S.; Liu, Y.; Tian, Y.; Wang, Y. A Novel Method for Partial Discharge Localization in Air-insulated Substations. IET Sci. Meas. Technol. 2017, 11, 331–338. [Google Scholar] [CrossRef]
- Ragusa, A.; Sasse, H.G.; Duffy, A.; Rubinstein, M. Application to Real Power Networks of a Method to Locate Partial Discharges Based On Electromagnetic Time Reversal. IEEE Trans. Power Deliv. 2022, 37, 2738–2746. [Google Scholar] [CrossRef]
- Zhu, H.; Alsharari, T. An Improved RSSI-Based Positioning Method Using Sector Transmission Model and Distance Optimization Technique. Int. J. Distrib. Sens. Netw. 2015, 11, 587195. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shi, Y.; Guo, J.; Wang, Y. Application of Pulse Compression Technique in Fault Detection and Localization of Leaky Coaxial Cable. IEEE Access 2018, 6, 66709–66714. [Google Scholar] [CrossRef]
- Robles, G.; Shafiq, M.; Martínez-Tarifa, J.M. Multiple Partial Discharge Source Localization in Power Cables Through Power Spectral Separation and Time-Domain Reflectometry. IEEE Trans. Instrum. Meas. 2019, 68, 4703–4711. [Google Scholar] [CrossRef]
- Mondal, M.; Kumbhar, G.B.; Kulkarni, S.V. Localization of Partial Discharges Inside a Transformer Winding Using a Ladder Network Constructed From Terminal Measurements. IEEE Trans. Power Deliv. 2018, 33, 1035–1043. [Google Scholar] [CrossRef]
- Besharatifard, H.; Hasanzadeh, S.; Heydarian-Forushani, E.; Muyeen, S.M. Acoustic Based Localization of Partial Discharge Inside Oil-Filled Transformers. IEEE Access 2022, 10, 55288–55297. [Google Scholar] [CrossRef]
- Sharifinia, S.; Allahbakhshi, M.; Ghanbari, T.; Akbari, A.; Mirzaei, H.R. A New Application of Rogowski Coil Sensor for Partial Discharge Localization in Power Transformers. IEEE Sens. J. 2021, 21, 10743–10751. [Google Scholar] [CrossRef]
- Ragusa, A.; Sasse, H.G.; Duffy, A. On-Line Partial Discharge Localization in Power Cables Based on Electromagnetic Time Reversal Theory—Numerical Validation. IEEE Trans. Power Deliv. 2022, 37, 2911–2920. [Google Scholar] [CrossRef]
- Zang, Y.; Qian, Y.; Wang, H.; Xu, A.; Sheng, G.; Jiang, X. An Optical Partial Discharge Localization Method Based on Simulation and Machine learning in GIL. In Proceedings of the 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), Xi’an, China, 15–17 October 2020; pp. 174–179. [Google Scholar]
- Iorkyase, E.T.; Tachtatzis, C.; Lazaridis, P.; Glover, I.A.; Atkinson, R.C. Radio location of partial discharge sources: A support vector regression approach. IET Sci. Meas. Technol. 2018, 12, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Roj, J. Estimation of the artificial neural network uncertainty used for measurand reconstruction in a sampling transducer. IET Sci. Meas. Technol. 2014, 8, 23–29. [Google Scholar] [CrossRef]
- Mohanty, S.; Ghosh, S. Artificial neural networks modelling of breakdown voltage of solid insulating materials in the presence of void. Sci. Meas. Technol. IET 2010, 4, 278–288. [Google Scholar] [CrossRef]
- Laoudias, C.; Kemppi, P.; Panayiotou, C.G. Localization Using Radial Basis Function Networks and Signal Strength Fingerprints in WLAN. In Proceedings of the GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–6. [Google Scholar]
- Nerguizian, C.; Despins, C.; Affès, S. Indoor Geolocation with Received Signal Strength Fingerprinting Technique and Neural Networks. In Proceedings of the Telecommunications and Networking—ICT 2004, Berlin, Heidelberg, 1–6 August 2004; pp. 866–875. [Google Scholar]
- Biswas, S.; Dey, D.; Chatterjee, B.; Chakravorti, S. An approach based on rough set theory for identification of single and multiple partial discharge source. Int. J. Electr. Power Energy Syst. 2013, 46, 163–174. [Google Scholar] [CrossRef]
- Abdel-Galil, T.K.; Sharkawy, R.M.; Salama, M.M.A.; Bartnikas, R. Partial discharge pulse pattern recognition using an inductive inference algorithm. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 320–327. [Google Scholar] [CrossRef]
- Lalitha, E.M.; Satish, L. Wavelet analysis for classification of multi-source PD patterns. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Iorkyase, E.; Tachtatzis, C.; Glover, I.; Atkinson, R. RF-Based Location of Partial Discharge Sources Using Received Signal Features. High Volt. 2019, 4, 28–32. [Google Scholar] [CrossRef]
- Kundu, P.; Kishore, N.K.; Sinha, A.K. A non-iterative partial discharge source location method for transformers employing acoustic emission techniques. Appl. Acoust. 2009, 70, 1378–1383. [Google Scholar] [CrossRef]
- Dessouky, S.S.; Ghoneim, S.S.M.; Elfaraskoury, A.A.; Ghaly, R.N.R. Determination of PD Source Location Inside Power Transformer Based on Time Difference of Arrival. WSEAS Trans. Power Syst. 2017, 12, 158–164. [Google Scholar]
- Iorkyase, E.T.; Tachtatzis, C.; Lazaridis, P.; Glover, I.A.; Atkinson, R.C. Low-complexity wireless sensor system for partial discharge localisation. IET Wirel. Sens. Syst. 2019, 9, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Zaki, A.U.M.; Hu, Y.; Jiang, X. Partial Discharge Localization in 3-D With a Multi-DNN Model Based on a Virtual Measurement Method. IEEE Access 2020, 8, 87434–87445. [Google Scholar] [CrossRef]
- Yeo, J.; Jin, H.; Mor, A.R.; Yuen, C.; Pattanadech, N.; Tushar, W.; Saha, T.K.; Ng, C.S. Localisation of Partial Discharge in Power Cables Through Multi-Output Convolutional Recurrent Neural Network and Feature Extraction. IEEE Trans. Power Deliv. 2022, 38, 177–188. [Google Scholar] [CrossRef]
- Klüss, J.; Elg, A.-P.; Wingqvist, C. Dataset for publication: High-Frequency Current Transformer Design and Implementation Considerations for Wideband Partial Discharge Applications. IEEE Trans. Instrum. Meas. 2021, 70, 6003809. [Google Scholar] [CrossRef]
- Ragusa, A.; Hugh, S.; Duffy, A. EmiT_SD_LEMCPA2021data_20210305. De Montfort University: Leicester, UK, 2021. [Google Scholar] [CrossRef]
- ABB. Transformer Monitoring System. TEC System. 2013. Available online: https://new.abb.com/docs/librariesprovider78/chile-documentos/jornadas-tecnicas-2013---presentaciones/1-inocencio-solteiro---transformer-monitoring-system-tec-system.pdf?sfvrsn=2 (accessed on 20 February 2023).
Equipment | Type of Defect |
---|---|
Substation | Tip discharge in oil [3], corona discharge [18,32,33,34,35,36,37] |
Transformer | Sphere cavity, cylindrical cavity, bubble in the oil, fixed metal particle [38], needle tip [24,39,40], surface discharge [38,41,42], corona discharge [1,17,21,38,43,44,45,46], void discharge, and floating discharge [42] |
Transformer bushing | Corona discharge, suspension discharge, creeping discharge, and interior discharge [47] |
Cable | Inner semiconducting layer breakage, internal cavity, insulating surface scratch [48], corona discharge [26,49] |
Gas Insulated Substation (GIS) | Metal tip, free particles, surface discharge, floating electrode [50], corona discharge [28] |
Regime/ Common Measurement In | Strength | Limitation |
---|---|---|
HV test (any) | Suitable in commission test | Experience electrical noise Contact measurement only Not portable |
Electromagnetic (substation) | Online and offline Noncontact and nonintrusive Smaller sensor | Required high sampling rate Tendency to have detection errors Experience EMI |
Acoustic (transformer) | Noncontact and nonintrusive measurement Immune against electrical noise and EMI | Signal attenuation at different medium Influenced by temperature, pressure, and external acoustic Limited by sensors’ distance |
Optical (cable) | Immune to EMI and acoustic interference Excellent signal detection in air and SF6 Isolate between LV and HV equipment | Poor signal detection in liquid or solid insulation Contact-type measurement Limit to small-range PD detection |
Issues | Conventional | ML | DL |
---|---|---|---|
Needs a large number of iterations | Yes | No | No |
Needs initial value to begin iterations | Yes | No | No |
Affected by signal arrival errors | Yes | Depends | No |
Needs denoising algorithm | Yes | Depends | Optional |
Manual feature extraction | - | Yes | No |
Training time | - | Medium | Long |
Deployment time | Slow | Fast | Fast |
Exploration of new solutions | Limited | Wide | Wide |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, J.Q.; Raymond, W.J.K.; Illias, H.A.; Othman, M. Partial Discharge Localization Techniques: A Review of Recent Progress. Energies 2023, 16, 2863. https://doi.org/10.3390/en16062863
Chan JQ, Raymond WJK, Illias HA, Othman M. Partial Discharge Localization Techniques: A Review of Recent Progress. Energies. 2023; 16(6):2863. https://doi.org/10.3390/en16062863
Chicago/Turabian StyleChan, Jun Qiang, Wong Jee Keen Raymond, Hazlee Azil Illias, and Mohamadariff Othman. 2023. "Partial Discharge Localization Techniques: A Review of Recent Progress" Energies 16, no. 6: 2863. https://doi.org/10.3390/en16062863
APA StyleChan, J. Q., Raymond, W. J. K., Illias, H. A., & Othman, M. (2023). Partial Discharge Localization Techniques: A Review of Recent Progress. Energies, 16(6), 2863. https://doi.org/10.3390/en16062863