Deep Learning Neural Networks for Short-Term PV Power Forecasting via Sky Image Method
<p>The PV power forecasting procedures, introducing Data Collection, Data Preprocessing, Model Building & Training, and Forecasting Processes.</p> "> Figure 2
<p>The use of the equipment (PV inverter, Weather Station, Whole Sky Imagers) and data collection schema (using Modbus TCP/IP).</p> "> Figure 3
<p>The results of the average distribution of each element.</p> "> Figure 4
<p>The cloud covering process.</p> "> Figure 5
<p>Case 1—(<b>a</b>) Forecasting results of 16 March 2021(sunny). (<b>b</b>) Forecasting results of 21 May 2021(mostly cloudy). The frequency of data collection was once per minute.</p> "> Figure 6
<p>Case 2—(<b>a</b>) Forecasting results of 16 March 2021 (sunny). (<b>b</b>) Forecasting results of 21 May 2021 (mostly cloudy). The frequency of data collection was once per minute.</p> "> Figure 7
<p>Case 3—(<b>a</b>) Forecasting results of 16 March 2021 (sunny). (<b>b</b>) Forecasting results of 21 May 2021 (mostly cloudy). The frequency of data collection was once per minute.</p> "> Figure 8
<p>Case 4—(<b>a</b>) Forecasting results of 16 March 2021 (sunny). (<b>b</b>) Forecasting results of 21 May 2021 (mostly cloudy). The frequency of data collection was once per minute.</p> "> Figure 9
<p>The comprehensive analysis and average degree of the MAPE change with different weather feature combinations.</p> "> Figure 10
<p>The forecasting results of the four cases from 7 June to 13 June 2021. The frequency of data collection was once per minute. (<b>a</b>) One week forecasting results of Case 1 (six weather values). (<b>b</b>) One week forecasting results of Case 2 (five weather values (without coverage rate)). (<b>c</b>) One week forecasting results of Case 3 (five weather values (without UVI)). (<b>d</b>) One week forecasting results of Case 4 (only coverage rate and relatively humidity).</p> "> Figure 10 Cont.
<p>The forecasting results of the four cases from 7 June to 13 June 2021. The frequency of data collection was once per minute. (<b>a</b>) One week forecasting results of Case 1 (six weather values). (<b>b</b>) One week forecasting results of Case 2 (five weather values (without coverage rate)). (<b>c</b>) One week forecasting results of Case 3 (five weather values (without UVI)). (<b>d</b>) One week forecasting results of Case 4 (only coverage rate and relatively humidity).</p> ">
Abstract
:1. Introduction
2. Forecasting Procedures and Data Set
2.1. Data Collection
2.2. Data Processing
2.3. Model Building and Training Processes
2.4. Forecasting Processes
3. Methodology
3.1. Sky Image Coverage Processing Method
3.2. Cloud Covering Analysis Structure and Calculation Method
- (1)
- Calculate the Pixel Composition
- (2)
- Define the Sky Image Covering Limiting
- (3)
- Cloud Covering Calculation
- (4)
- Update the Threshold Value
3.3. Choice of The Deep Learning Model
3.4. Evaluation Indices
4. Numerical Results
4.1. Results of Sky Image Processing by RGB Formula
4.2. Results of Adjust Hyperparameters
4.3. Performance Comparison with Different Weather Features on Sunny and Cloudy Days
4.3.1. Case 1: Results of Six Weather Features
4.3.2. Case 2: The Results of Five Weather Features (without Coverage Rate)
4.3.3. Case 3: Results of Five Weather Feature (without UVI)
4.3.4. Case 4: The Results of Only Coverage Rate and Relative Humidity
4.4. Performance Comparison with Different Weather Features in One Week
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, R.; Mithulananthan, N.; Bansal, R.C.; Ramachandaramurthy, V.K. A review of key power system stability challenges for large-scale PV integration. Renew. Sustain. Energy Rev. 2015, 41, 1423–1436. [Google Scholar] [CrossRef]
- Zhang, Y.; Beaudin, M.; Taheri, R.; Zareipour, H.; Wood, D. Day-ahead power output forecasting for small-scale solar photovoltaic electricity generators. IEEE Trans. Smart Grid 2015, 6, 2253–2262. [Google Scholar] [CrossRef]
- Verma, T.; Tiwana, A.; Reddy, C.; Arora, V.; Devanand, P. Data Analysis to Generate Models Based on Neural Network and Regression for Solar Power Generation Forecasting. In Proceedings of the 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Bangkok, Thailand, 25–27 January 2016; IEEE: New York, NY, USA, 2016; pp. 97–100. [Google Scholar]
- Alluhaidah, B.M.; Shehadeh, S.; El-Hawary, M. Most Influential Variables for Solar Radiation Forecasting Using Artificial Neural Networks. In Proceedings of the 2014 IEEE Electrical Power and Energy Conference, Toronto, ON, Canada, 10–11 October 2014; IEEE: New York, NY, USA, 2014; pp. 71–75. [Google Scholar]
- Nitisanon, S.; Hoonchareon, N. Solar Power Forecast with Weather Classification Using Self-Organized Map. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; IEEE: New York, NY, USA, 2017; pp. 1–5. [Google Scholar]
- Agoua, X.G.; Girard, R.; Kariniotakis, G. Short-term spatio-temporal forecasting of photovoltaic power production. IEEE Trans. Sustain. Energy 2017, 9, 538–546. [Google Scholar] [CrossRef] [Green Version]
- Suksamosorn, S.; Hoonchareon, N.; Songsiri, J. Influential Variable Selection for Improving Solar Forecasts from Numerical Weather Prediction. In Proceedings of the 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Rai, Thailand, 18–21 July 2018; IEEE: New York, NY, USA, 2018; pp. 333–336. [Google Scholar]
- Ghonima, M.; Urquhart, B.; Chow, C.; Shields, J.; Cazorla, A.; Kleissl, J. A method for cloud detection and opacity classification based on ground based sky imagery. Atmos. Meas. Tech. 2012, 5, 2881–2892. [Google Scholar] [CrossRef] [Green Version]
- Shields, J.E.; Karr, M.E.; Burden, A.R.; Johnson, R.W.; Mikuls, V.W.; Streeter, J.R.; Hodgkiss, W.S. Research toward Multi-Site Characterization of Sky Obscuration by Clouds; Scripps Institution of Oceanography La Jolla Ca Marine Physical Lab: La Jolla, CA, USA, 2009. [Google Scholar]
- Ghanbarzadeh, A.; Noghrehabadi, A.; Assareh, E.; Behrang, M. Solar Radiation Forecasting Based on Meteorological Data Using Artificial Neural Networks. In Proceedings of the 2009 7th IEEE International Conference on Industrial Informatics, Cardiff, UK, 23–36 June 2009; IEEE: New York, NY, USA, 2009; pp. 227–231. [Google Scholar]
- Pawar, P.; Cortés, C.; Murray, K.; Kleissl, J. Detecting clear sky images. Sol. Energy 2019, 183, 50–56. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, H.; Wang, H.; Zhu, T.; Zhang, K. 3D-CNN-based feature extraction of ground-based cloud images for direct normal irradiance prediction. Sol. Energy 2019, 181, 510–518. [Google Scholar] [CrossRef]
- Mammoli, A.; Terren-Serrano, G.; Menicucci, A.; Caudell, T.P.; Martínez-Ramón, M. An experimental method to merge far-field images from multiple longwave infrared sensors for short-term solar forecasting. Sol. Energy 2019, 187, 254–260. [Google Scholar] [CrossRef]
- Kamadinata, J.O.; Ken, T.L.; Suwa, T. Sky image-based solar irradiance prediction methodologies using artificial neural networks. Renew. Energy 2019, 134, 837–845. [Google Scholar] [CrossRef]
- Quesada-Ruiz, S.; Chu, Y.; Tovar-Pescador, J.; Pedro, H.; Coimbra, C. Cloud-tracking methodology for intra-hour DNI forecasting. Sol. Energy 2014, 102, 267–275. [Google Scholar] [CrossRef]
- Zhang, J.; Verschae, R.; Nobuhara, S.; Lalonde, J.-F. Deep photovoltaic nowcasting. Sol. Energy 2018, 176, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Jia, Y.; Dong, Z.Y.; Meng, K.; Chai, S. Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting. Appl. Energy 2020, 280, 115875. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.; Chai, H.; Yu, Y.; Lu, X.; Wang, T.; Lin, Y. Deep Learning Based Irradiance Mapping Model for Solar PV Power Forecasting Using Sky Image. In Proceedings of the 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA, 29 September–3 October 2019; IEEE: New York, NY, USA, 2019; pp. 1–9. [Google Scholar]
- Zhen, Z.; Liu, J.; Zhang, Z.; Wang, F.; Chai, H.; Yu, Y.; Lu, X.; Wang, T.; Lin, Y. Deep learning based surface irradiance mapping model for solar PV power forecasting using sky image. IEEE Trans. Ind. Appl. 2020, 56, 3385–3396. [Google Scholar] [CrossRef]
- Wen, H.; Du, Y.; Chen, X.; Lim, E.; Wen, H.; Jiang, L.; Xiang, W. Deep learning based multistep solar forecasting for PV ramp-rate control using sky images. IEEE Trans. Ind. Inform. 2020, 17, 1397–1406. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Chen, Z.; Yang, Y. Assessing forecast accuracy measures. Prepr. Ser. 2004, 2010, 2004–2010. [Google Scholar]
Item | Limit Condition | Pixel Status | Pixel Status |
---|---|---|---|
Δ (pixel composition) ≥ Threshold (TS) | Sun | Remain | |
Cloud | Cover | ||
Δ (pixel composition) < Threshold (TS) | B > R ∩ B > G | Sky | Remain |
Others | Ex: Tree | Cover |
TS | Sky Image Cover Result | Coverage Rate |
---|---|---|
12 | | 32.52% |
14 | | 44.83% |
16 | | 45.95% |
18 | | 61.53% |
Index | Equations (2): TS = n × 30 | Equations (5): TS = n × 90 |
---|---|---|
n = 1 | | |
n = 2 | | |
n = 3 | | |
Index | Equations (2): TS = n × 30 | Equations (5): TS = n × 90 |
---|---|---|
n = 1 | | |
n = 2 | | |
n = 3 | | |
Index | Model | Adjust Parameters | Fixed Parameters | Evaluation | |||||
---|---|---|---|---|---|---|---|---|---|
Input Time | Layers | Epochs | Learning Rate | Batch Size | MAE | RMSE | MAPE | ||
1 | ANN | 1 h | 5 | 3000 | 16 | 0.026 | 0.046 | 18.94% | |
2 | LSTM | 2 h | 7 | 1500 | 16 | 0.027 | 0.049 | 14.33% | |
3 | GRU | 3 h | 6 | 2500 | 16 | 0.015 | 0.030 | 10.54% |
Index | Model | Six Weather Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sunny | Cloudy | Average | ||||||||
MAPE% | MAE | RMSE | MAPE% | MAE | RMSE | MAPE% | MAE | RMSE | ||
1 | ANN | 6.544 | 0.017 | 0.029 | 11.763 | 0.052 | 0.115 | 9.154 | 0.035 | 0.072 |
2 | LSTM | 8.869 | 0.024 | 0.046 | 12.439 | 0.046 | 0.088 | 10.654 | 0.035 | 0.067 |
3 | GRU | 7.779 | 0.019 | 0.032 | 10.253 | 0.039 | 0.078 | 9.016 | 0.029 | 0.055 |
Index | Model | Five Weather Value (without Coverage Rate) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sunny | Cloudy | Average | ||||||||
MAPE% | MAE | RMSE | MAPE% | MAE | RMSE | MAPE% | MAE | RMSE | ||
1 | ANN | 7.857 | 0.019 | 0.032 | 16.251 | 0.071 | 0.135 | 12.054 | 0.045 | 0.084 |
2 | LSTM | 7.233 | 0.020 | 0.035 | 12.861 | 0.049 | 0.101 | 10.047 | 0.035 | 0.068 |
3 | GRU | 7.628 | 0.022 | 0.039 | 15.953 | 0.0614 | 0.122 | 11.791 | 0.042 | 0.081 |
Index | Model | Five Weather Values (without UVI) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sunny | Cloudy | Average | ||||||||
MAPE% | MAE | RMSE | MAPE% | MAE | RMSE | MAPE%% | MAE | RMSE | ||
1 | ANN | 4.001 | 0.009 | 0.019 | 11.492 | 0.041 | 0.096 | 7.747 | 0.025 | 0.058 |
2 | LSTM | 6.023 | 0.019 | 0.033 | 15.749 | 0.057 | 0.114 | 10.886 | 0.038 | 0.074 |
3 | GRU | 8.799 | 0.021 | 0.036 | 15.902 | 0.587 | 0.112 | 12.351 | 0.304 | 0.074 |
Index | Model | Only Coverage Rate and Relatively Humidity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sunny | Cloudy | Average | ||||||||
MAPE% | MAE | RMSE | MAPE% | MAE | RMSE | MAPE% | MAE | RMSE | ||
1 | ANN | 3.933 | 0.008 | 0.015 | 10.342 | 0.036 | 0.069 | 7.138 | 0.022 | 0.042 |
2 | LSTM | 7.195 | 0.021 | 0.035 | 15.377 | 0.069 | 0.129 | 11.286 | 0.045 | 0.082 |
3 | GRU | 7.130 | 0.021 | 0.036 | 13.939 | 0.046 | 0.087 | 10.535 | 0.034 | 0.062 |
Index | Model | Case1 1 | Case2 2 | Case3 3 | Case4 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAPE (%) | MAE | RMSE | MAPE (%) | MAE | RMSE | MAPE (%) | MAE | RMSE | MAPE (%) | MAE | RMSE | ||
1 | ANN | 19.635 | 0.048 | 0.095 | 22.295 | 0.054 | 0.106 | 20.928 | 0.055 | 0.102 | 21.517 | 0.056 | 0.114 |
2 | LSTM | 16.969 | 0.048 | 0.098 | 18.856 | 0.054 | 0.109 | 24.536 | 0.058 | 0.107 | 20.745 | 0.061 | 0.119 |
3 | GRU | 16.679 | 0.049 | 0.098 | 18.565 | 0.529 | 0.105 | 17.962 | 0.057 | 0.106 | 18.731 | 0.056 | 0.106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, W.-C.; Chen, C.-H.; Chen, S.-Y.; Wang, C.-C. Deep Learning Neural Networks for Short-Term PV Power Forecasting via Sky Image Method. Energies 2022, 15, 4779. https://doi.org/10.3390/en15134779
Kuo W-C, Chen C-H, Chen S-Y, Wang C-C. Deep Learning Neural Networks for Short-Term PV Power Forecasting via Sky Image Method. Energies. 2022; 15(13):4779. https://doi.org/10.3390/en15134779
Chicago/Turabian StyleKuo, Wen-Chi, Chiun-Hsun Chen, Sih-Yu Chen, and Chi-Chuan Wang. 2022. "Deep Learning Neural Networks for Short-Term PV Power Forecasting via Sky Image Method" Energies 15, no. 13: 4779. https://doi.org/10.3390/en15134779
APA StyleKuo, W.-C., Chen, C.-H., Chen, S.-Y., & Wang, C.-C. (2022). Deep Learning Neural Networks for Short-Term PV Power Forecasting via Sky Image Method. Energies, 15(13), 4779. https://doi.org/10.3390/en15134779