Comprehensive Passive Thermal Management Systems for Electric Vehicles
<p>(<b>a</b>). The image of the experimental system comprising of (1) a personal computer; (2) data logger; (3) prismatic cell; and (<b>b</b>) the location and dimension of the thermocouples on the cell surface.</p> "> Figure 2
<p>The image of the cell in (<b>a</b>) lack and (<b>b</b>) the presence of the natural convection and temperature curves in (<b>c</b>) lack and (<b>d</b>) the presence of the natural convection under the 8C discharging rate at 446 s.</p> "> Figure 3
<p>The picture of the cell embedded with the (<b>a</b>) Al mesh and (<b>b</b>) Cu mesh and temperature curves of (<b>c</b>) Al mesh (<b>d</b>) Cu mesh in the presence of the natural convection under the 8C discharging rate at 446 s.</p> "> Figure 4
<p>The picture of the cell embedded with the (<b>a</b>,<b>b</b>) PCM and PCM-graphite and the temperature curves (<b>c</b>,<b>d</b>) in the presence of the PCM and PCM-graphite under the 8C discharging rate at 446 s.</p> "> Figure 4 Cont.
<p>The picture of the cell embedded with the (<b>a</b>,<b>b</b>) PCM and PCM-graphite and the temperature curves (<b>c</b>,<b>d</b>) in the presence of the PCM and PCM-graphite under the 8C discharging rate at 446 s.</p> "> Figure 5
<p>The comparison of the different passive cooling systems for LTO cell in the 8C discharging rate (NC = Natural convection).</p> "> Figure 6
<p>Equivalent impedance model of the cell adapted from [<a href="#B18-energies-14-03881" class="html-bibr">18</a>].</p> "> Figure 7
<p>Thermal model validation of <span class="html-italic">T</span><sub>1</sub> thermocouple in the presence of the (<b>a</b>) natural convection, (<b>b</b>) PCM, and (<b>c</b>) PCM-graphite under the 8C discharging rate at 446 s (Sim, simulation; Exp, experimental).</p> "> Figure 8
<p>(<b>a</b>) Schematic of the battery module equipped with PCM and (<b>b</b>) mesh distribution.</p> "> Figure 9
<p>Temperature contour of the battery module in natural convection, PCM, and PCM-graphite under the 8C (184A) discharging rate at 446 s.</p> ">
Abstract
:1. Introduction
2. Experimental Setup
2.1. Experimental Results and Discussion
2.1.1. Lack and Presence of Natural Convection
2.1.2. Natural Convection Effect on Al and Cu Mesh
2.1.3. PCM and PCM-Graphite Cooling
2.1.4. Comparison Results
3. Simulation
3.1. Battery Thermal Modeling
3.2. Illustrative Equations for PCM
3.3. Validation of the Thermal Model for Natural Convection, PCM and PCM-Graphite
4. Performance of the Natural Convection, PCM, and PCM-Graphite in Module Level
4.1. Configuration Design of the Module
4.2. Simulation Results
4.2.1. Cooling Effect of Natural Convection, PCM and PCM-Graphite
4.2.2. Cooling Effect of Cell Spacing Using PCM and PCM-Graphite Methods
5. Conclusions
6. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirmohammadi, S.A.; Behi, M.R.; Suma, A.B.; Palm, B.E. Multi-Criteria Analysis, Evaluation and Modeling of Future Scenario for the Energy Generation Sector—A Case Study. In Proceedings of the ASME 2014 Power Conference, Baltimore, MD, USA, 28–31 July 2014. [Google Scholar] [CrossRef]
- Ghezelbash, R.; Farzaneh-Gord, M.; Behi, H.; Sadi, M.; Khorramabady, H.S. Performance assessment of a natural gas expansion plant integrated with a vertical ground-coupled heat pump. Energy 2015, 93, 2503–2517. [Google Scholar] [CrossRef]
- Feng, X.; Zheng, S.; Ren, D.; He, X.; Wang, L.; Cui, H.; Liu, X.; Jin, C.; Zhang, F.; Xu, C.; et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl. Energy 2019, 246, 53–64. [Google Scholar] [CrossRef]
- Khaleghi, S.; Karimi, D.; Beheshti, S.H.; Hosen, M.S.; Behi, H.; Berecibar, M.; van Mierlo, J. Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network. Appl. Energy 2021, 282, 116159. [Google Scholar] [CrossRef]
- Karimi, D.; Behi, H.; Jaguemont, J.; Berecibar, M.; van Mierlo, J. A refrigerant-based thermal management system for a fast charging process for lithium-ion batteries. In Proceedings of the International Conference on Renewable Energy Systems and Environmental Engineering, Brussels, Brussels, Belgium, 17–18 December 2020; Global Publisher: Brussels, Belgium, 2020; pp. 1–6. [Google Scholar]
- Karimi, D.; Khaleghi, S.; Behi, H.; Beheshti, H.; Hosen, M.S.; Akbarzadeh, M.; van Mierlo, J.; Berecibar, M. Lithium-Ion Capacitor Lifetime Extension through an Optimal Thermal Management System for Smart Grid Applications. Energies 2021, 14, 2907. [Google Scholar] [CrossRef]
- Saw, L.H.; Ye, Y.; Tay, A.A.O.; Chong, W.T.; Kuan, S.H.; Yew, M.C. Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Appl. Energy. 2016, 177, 783–792. [Google Scholar] [CrossRef]
- Yahyaie, A.; Mirmohammadi, S.A.A.; Behi, M.R.; Sadi, M.; Behi, H.R. Theoretical investigation on producing work by applying different refrigerants in typical power cycle. In Proceedings of the Scientific Society of Measurement, Automation and Informatics, Branch of Thermal Engineering and Thermogrammetry, Budapest, Hungary, 1–3 July 2009; Available online: http://inis.iaea.org/search/search.aspx?orig_q=RN:40102982.03.07.2009 (accessed on 31 May 2021).
- Behi, H. Experimental and Numerical Study on Heat Pipe Assisted PCM Storage System. Master’s Thesis, Royal Institute of Technology, Stockholm, Sweden, 2015. Available online: http://www.diva-portal.org/smash/get/diva2:850104/FULLTEXT01.pdf (accessed on 30 May 2021).
- Behi, M.; Mirmohammadi, S.A.; Ghanbarpour, M.; Behi, H.; Palm, B. Evaluation of a novel solar driven sorption cooling/heating system integrated with PCM storage compartment. Energy 2018, 164, 449–464. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Jaguemont, J.; Gandoman, F.H.; Khaleghi, S.; van Mierlo, J.; Berecibar, M. Aluminum Heat Sink Assisted Air-Cooling Thermal Management System for High Current Applications in Electric Vehicles. In Proceedings of the 2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Turin, Italy, 18–20 November 2020; pp. 1–6. [Google Scholar]
- Mirmohammadi, S.A.; Behi, M.; Ghanbarpour, M. Cooling performance study of a novel heat exchanger in an absorption system. Energy Convers. Manag. 2019, 180, 1001–1012. [Google Scholar] [CrossRef]
- Behi, H.; Ghanbarpour, M.; Behi, M. Investigation of PCM-assisted heat pipe for electronic cooling. Appl. Therm. Eng. 2017, 127, 1132–1142. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Behi, M.; Jaguemont, J.; Ghanbarpour, M.; Behnia, M.; Berecibar, M.; van Mierlo, J. Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles. J. Energy Storage 2020, 32, 101893. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Jaguemont, J.; Berecibar, M.; van Mierlo, J. Experimental study on cooling performance of flat heat pipe for lithium-ion battery at various inclination angels. Energy Perspect. 2020, 1, 77–92. [Google Scholar]
- Behi, H.; Karimi, D.; Behi, M.; Ghanbarpour, M.; Jaguemont, J.; Sokkeh, M.A.; Gandoman, F.H.; Berecibar, M.; van Mierlo, J. A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Appl. Therm. Eng. 2020, 174, 115280. [Google Scholar] [CrossRef]
- Behi, H.; Behi, M.; Karimi, D.; Jaguemont, J.; Ghanbarpour, M.; Behnia, M.; Berecibar, M.; van Mierlo, J. Heat pipe air-cooled thermal management system for lithium-ion batteries: High power applications. Appl. Therm. Eng. 2020, 183, 116240. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Jaguemont, J.; Gandoman, F.H.; Kalogiannis, T.; Berecibar, M.; van Mierlo, J. Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications. Energy 2021, 224, 120165. [Google Scholar] [CrossRef]
- Karimi, D.; Behi, H.; Jaguemont, J.; Berecibar, M.; van Mierlo, J. Investigation of extruded heat sink assisted air cooling system for lithium-ion capacitor batteries. In Proceedings of the International Conference on Renewable Energy Systems and Environmental Engineering, Brussels, Belgium, 17–18 December 2020; Global Publisher: Brussels, Belgium, 2020; pp. 1–6. [Google Scholar]
- Karimi, D.; Behi, H.; Jaguemont, J.; Berecibar, M.; van Mierlo, J. Optimized air-cooling thermal management system for high power lithium-ion capacitors. Energy 2020. Available online: http://globalpublisher.org/journals-1006/ (accessed on 31 May 2021).
- Wang, H.; Tao, T.; Xu, J.; Mei, X.; Liu, X.; Gou, P. Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries. Appl. Therm. Eng. 2020, 178, 115591. [Google Scholar] [CrossRef]
- Karimi, D.; Behi, H.; Jaguemont, J.; el Baghdadi, M.; van Mierlo, J.; Hegazy, O. Thermal Concept Design of MOSFET Power Modules in Inverter Subsystems for Electric Vehicles. In Proceedings of the 2019 9th International Conference on Power and Energy Systems (ICPES), Perth, WA, Australia, 10–12 December 2019. [Google Scholar]
- Karimi, D.; Behi, H.; Hosen, M.S.; Jaguemont, J.; Berecibar, M.; van Mierlo, J. A compact and optimized liquid-cooled thermal management system for high power lithium-ion capacitors. Appl. Therm. Eng. 2021, 185, 116449. [Google Scholar] [CrossRef]
- Gandoman, F.H.; Behi, H.; Berecibar, M.; Jaguemont, J.; Aleem, S.H.E.A.; Behi, M.; van Mierlo, J. Chapter 16—Reliability evaluation of Li-ion batteries for electric vehicles applications from the thermal perspectives. In Uncertainties in Modern Power Systems; Zobaa, A.F., Aleem, S.H.E.A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 563–587. [Google Scholar] [CrossRef]
- Karimi, D.; Jaguemont, J.; Behi, H.; Berecibar, M.; van den Bossche, P.; van Mierlo, J. Passive cooling based battery thermal management using phase change materials for electric vehicles. In Proceedings of the EVS33 International Electric Vehicle Symposium, Portland, OR, USA, 14–17 June 2020; The Electric Drive Transportation Association EDTA: Portland, OR, USA, 2020. [Google Scholar]
- Heyhat, M.M.; Mousavi, S.; Siavashi, M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle. J. Energy Storage 2020, 28, 101235. [Google Scholar] [CrossRef]
- Behi, M.; Shakorian-poor, M.; Mirmohammadi, S.A.; Behi, H.; Rubio, J.I.; Nikkam, N.; Farzaneh-Gord, M.; Gan, Y.; Behnia, M. Experimental and numerical investigation on hydrothermal performance of nanofluids in micro-tubes. Energy 2020, 193, 116658. [Google Scholar] [CrossRef]
- Mirmohammadi, S.; Behi, M. Investigation on Thermal Conductivity, Viscosity and Stability of Nanofluids. 2012. Available online: http://kth.diva-portal.org/smash/record.jsf?pid=diva2:537164 (accessed on 30 May 2021).
- Mirmohammadi, S.A.; Behi, M.; Gan, Y.; Shen, L. Particle-shape-, temperature-, and concentration-dependent thermal conductivity and viscosity of nanofluids. Phys. Rev. E 2019, 99, 43109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi, D.; Behi, H.; Jaguemont, J.; Sokkeh, M.A.; Kalogiannis, T.; Hosen, M.S.; Berecibar, M.; van Mierlo, J. Thermal performance enhancement of phase change material using aluminum-mesh grid foil for lithium-capacitor modules. J. Energy Storage 2020, 30, 101508. [Google Scholar] [CrossRef]
- Jaguemont, J.; Karimi, D.; van Mierlo, J. Investigation of a passive thermal management system for lithium-ion capacitors. IEEE Trans. Veh. Technol. 2019, 68, 1. [Google Scholar] [CrossRef]
- Al Hallaj, S.; Selman, J.R. A novel thermal management system for electric vehicle batteries using phase-change material. J. Electrochem. Soc. 2000, 147, 3231. [Google Scholar] [CrossRef]
- Babapoor, A.; Azizi, M.; Karimi, G. Thermal management of a Li-ion battery using carbon fiber-PCM composites. Appl. Therm. Eng. 2015, 82, 281–290. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Xin, C.; Rao, Z. An experimental study on thermal management of lithium ion battery packs using an improved passive method. Appl. Therm. Eng. 2018, 134, 163–170. [Google Scholar] [CrossRef]
- Huang, Q.; Li, X.; Zhang, G.; Zhang, J.; He, F.; Li, Y. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system. Appl. Therm. Eng. 2018, 141, 1092–1100. [Google Scholar] [CrossRef]
- Weng, J.; Ouyang, D.; Yang, X.; Chen, M.; Zhang, G.; Wang, J. Optimization of the internal fin in a phase-change-material module for battery thermal management. Appl. Therm. Eng. 2020, 167, 114698. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Gandoman, F.H.; Akbarzadeh, M.; Khaleghi, S.; Kalogiannis, T.; Hosen, M.S.; Jaguemont, J.; van Mierlo, J.; Berecibar, M. PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles. Case Stud. Therm. Eng. 2021, 25, 100920. [Google Scholar] [CrossRef]
- El Idi, M.M.; Karkri, M.; Tankari, M.A. A passive thermal management system of Li-ion batteries using PCM composites: Experimental and numerical investigations. Int. J. Heat Mass Transf. 2021, 169, 120894. [Google Scholar] [CrossRef]
- Wu, W.; Yang, X.; Zhang, G.; Chen, K.; Wang, S. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Convers. Manag. 2017, 138, 486–492. [Google Scholar] [CrossRef]
- Samimi, F.; Babapoor, A.; Azizi, M.; Karimi, G. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers. Energy 2016, 96, 355–371. [Google Scholar] [CrossRef]
- Behi, M.; Mirmohammadi, S.A.; Suma, A.B.; Palm, B.E. Optimized Energy Recovery in Line with Balancing of an ATES. In Proceedings of the ASME 2014 Power Conference, Baltimore, MD, USA, 28–31 July 2014. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, L.; Wang, Y.; Huang, Q.; Sun, Y.; Yin, Z. Heat dissipation performance of silicon solar cells by direct dielectric liquid immersion under intensified illuminations. Sol. Energy 2011, 85, 922–930. [Google Scholar] [CrossRef]
- Hosen, M.S.; Karimi, D.; Kalogiannis, T.; Pirooz, A.; Jaguemont, J.; Berecibar, M.; van Mierlo, J. Electro-aging model development of nickel-manganese-cobalt lithium-ion technology validated with light and heavy-duty real-life profiles. J. Energy Storage 2020, 28, 101265. [Google Scholar] [CrossRef]
- Soltani, M.; Ronsmans, J.; Jaguemont, J.; van Mierlo, J.; van den Bossche, P.; Omar, N. A Three-dimensional thermal model for a commercial lithium-ion capacitor battery pack with non-uniform temperature distribution. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC, Australia, 13–15 February 2019; pp. 1126–1131. [Google Scholar] [CrossRef]
- Jaguemont, J.; Boulon, L.; Dubé, Y. Characterization and modeling of a hybrid-electric-vehicle lithium-ion battery pack at low temperatures. IEEE Trans. Veh. Technol. 2016, 65, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Akbarzadeh, M.; Jaguemont, J.; Kalogiannis, T.; Karimi, D.; He, J.; Jin, L.; Xie, P.; van Mierlo, J.; Berecibar, M. A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles. Energy Convers. Manag. 2021, 231, 113862. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, J.; Li, Y.; Liu, Q.; Li, W. Experimental investigation of a lithium battery cooling system. Sustainability 2019, 11, 5020. [Google Scholar] [CrossRef] [Green Version]
Factor | Value |
---|---|
Chemistry | LTO |
Shape | Prismatic |
Nominal voltage (V) | 2.3 |
Capacity (Ah) | 23 |
Specific energy (Wh/kg) | 96 |
Energy density (Wh/L) | 202 |
Weight (kg) | 0.550 |
Volume (L) | 0.260 |
Dimensions L × W × H (mm) | 115 × 22 × 103 |
Heat specific capacity (J/kg·K) | 1150 |
Thermal conductivity x,y,z (W/m·K) | 31, 0.8, 31 |
Parameter | Value |
---|---|
Melting point (°C) | 25–32 |
Heat storage capacity (kJ/kg) | 220 |
Specific heat capacity (kJ/kg K) | 2.5 |
Density at 15 °C (kg/L) | 0.8 |
Density at 80 °C (kg/L) | 0.85 |
Thermal conductivity-solid (W/m·K) | 0.25 |
Thermal conductivity-liquid (W/m·K) | 0.4 |
Container thickness (mm) | 8 |
Container dimensions (L × W × H) (mm) | 130 × 40 × 105 |
Parameter | Value |
---|---|
Melting point (°C) | 25–32 |
Heat storage capacity (kJ/kg) | 210 |
Specific heat capacity (kJ/kg·K) | 2.5 |
Density at 15 °C (kg/L) | 0.71 |
Density at 80 °C (kg/L) | 0.75 |
Thermal conductivity-solid (W/m·K) | 0.5 |
Thermal conductivity-liquid (W/m·K) | 1 |
Container thickness (mm) | 8 |
Container dimension (L × W × H) (mm) | 130 × 40 × 105 |
Parameter | Value |
---|---|
Number of cells in series | 30 |
Nominal voltage of the module (V) | 69 |
Weight (kg) | 16.5 |
Volume (L) | 7.8 |
Stored energy in the module (KWh) | 1.6 |
Spacing (Cells) | Module Temperature (PCM) | Module Temperature (PCM-Graphite) | Temperature Reduction (PCM) | Temperature Reduction (PCM-Graphite) | Energy Density (Wh/L) |
---|---|---|---|---|---|
0 mm | 49.9 °C | 48.6 °C | - | - | 659.2 |
2 mm | 47.5 °C | 46.4 °C | 4.8% | 4.5% | 608.7 |
4 mm | 45.7 °C | 44.6 °C | 8.4% | 8.2% | 565.5 |
6 mm | 44.4 °C | 43.1 °C | 11% | 11.3% | 528 |
8 mm | 43.4 °C | 41.9 °C | 13% | 13.7% | 495.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behi, H.; Karimi, D.; Youssef, R.; Suresh Patil, M.; Van Mierlo, J.; Berecibar, M. Comprehensive Passive Thermal Management Systems for Electric Vehicles. Energies 2021, 14, 3881. https://doi.org/10.3390/en14133881
Behi H, Karimi D, Youssef R, Suresh Patil M, Van Mierlo J, Berecibar M. Comprehensive Passive Thermal Management Systems for Electric Vehicles. Energies. 2021; 14(13):3881. https://doi.org/10.3390/en14133881
Chicago/Turabian StyleBehi, Hamidreza, Danial Karimi, Rekabra Youssef, Mahesh Suresh Patil, Joeri Van Mierlo, and Maitane Berecibar. 2021. "Comprehensive Passive Thermal Management Systems for Electric Vehicles" Energies 14, no. 13: 3881. https://doi.org/10.3390/en14133881
APA StyleBehi, H., Karimi, D., Youssef, R., Suresh Patil, M., Van Mierlo, J., & Berecibar, M. (2021). Comprehensive Passive Thermal Management Systems for Electric Vehicles. Energies, 14(13), 3881. https://doi.org/10.3390/en14133881