Optimum Synthesis of a BOA Optimized Novel Dual-Stage PI − (1 + ID) Controller for Frequency Response of a Microgrid
<p>Schematic representation of <span class="html-italic">IHμGS</span>.</p> "> Figure 2
<p>Flow diagram of butterfly optimization technique (BOA).</p> "> Figure 3
<p>Proposed (<span class="html-italic">PI − (1 + ID)</span>) controller.</p> "> Figure 4
<p>Comparative system dynamics analysis of different controllers (proportional-integral (<span class="html-italic">PI</span>), <span class="html-italic">PI</span>-derivative (<span class="html-italic">PID</span>), (<span class="html-italic">PI − (1 + ID)</span>) (<b>a</b>) deviation in system frequency (Δ<span class="html-italic">f</span>), (<b>b</b>) change in extractable power of bio-diesel power generator (<span class="html-italic">BDPG</span>) and <span class="html-italic">SOFC</span>, (<b>c</b>) change in extractable power of <span class="html-italic">HP</span> and <span class="html-italic">RFZ</span>, (<b>d</b>) Comparative converged objective function (<span class="html-italic">J<sub>min</sub></span>).</p> "> Figure 5
<p>Comparative system dynamics analysis of different algorithmic techniques (PSO, GOA, BOA) (<b>a</b>) Real recorded wind speed and other multiple disturbances, (<b>b</b>) deviation of system frequency (Δ<span class="html-italic">f</span>), (<b>c</b>) change in extractable power of <span class="html-italic">BDPG</span>, (<b>d</b>) change in extractable power of <span class="html-italic">SOFC</span>, (<b>e</b>) change in extractable power of <span class="html-italic">HP</span> and <span class="html-italic">RFZ</span>.</p> ">
Abstract
:1. Introduction
- (a)
- Developing a frequency controller for a WG-ST-BDPG-SOFC-HP-RFZ-based IHμGS;
- (b)
- To establish a new transfer function model of a dual-stage PI − (1 + ID) controller;
- (c)
- Comparative system dynamic analysis of different controllers such as PI, PID and PI − (1 + ID) controllers under a BOA algorithmic tool;
- (d)
- Comparative system dynamic analysis of different algorithms (PSO, GOA and BOA), leveraging the acquired superior controller in (c);
- (e)
- Study system dynamics under real recorded wind data and other random disturbances.
2. Frequency Response Modeling of the Proposed Dual-Stage Controller
2.1. Wind Generator (WG)
2.2. Solar Tower (ST)
2.3. Biodiesel Power Generator (BDPG)
2.4. Solid-Oxide-Based Fuel Cell (SOFC)
2.5. Thermostatically Controllable Loads (HP and RFZ)
2.6. IHμGS Dynamic Model
2.7. Objective Function Formulation
3. Optimization Techniques
3.1. Particle Swarm Technique (PSO)
3.2. Grasshopper Algorithmic Technique (GOA)
3.3. Butterfly Optimization Technique (BOA) and Proposed Dual-Stage Controller
4. Frequency Response Studies and Analysis
4.1. Scenario 1: Performance Analysis of All Controllers during Non-Accessibility of All RERs
4.2. Scenario 2: Performance analysis of Different Algorithms Under Concurrent Random Changes of WG (Utilization of Real-Recorded Data), ST and Critical Load Demand
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Global Energy Review 2020, International Energy Agency (IEA), Paris. 2020. Available online: https://www.iea.org/reports/global-energy-review-2020 (accessed on 2 July 2020).
- Global Energy & CO2 Status Report 2019, International Energy Agency (IEA), Paris. 2019. Available online: https://www.iea.org/reports/global-energy-co2-status-report-2019 (accessed on 2 July 2020).
- Xie, H.; Zheng, S.; Ni, M. Microgrid Development in China: A method for renewable energy and energy storage capacity configuration in a megawatt-level isolated microgrid. IEEE Electr. Mag. 2017, 5, 28–35. [Google Scholar] [CrossRef]
- Ustun, T.S.; Nakamura, Y.; Hashimoto, J.; Otani, K. Performance analysis of PV panels based on different technologies after two years of outdoor exposure in Fukushima, Japan. Renew. Energy 2019, 136, 159–178. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, X.; Jiang, T. Adaptive Consensus Algorithm for Distributed Heat-Electricity Energy Management of an Islanded Microgrid. Energies 2018, 11, 2236. [Google Scholar] [CrossRef]
- Das, D.C.; Sinha, N.; Roy, A.K. Automatic Generation Control of an Organic Rankine Cycle Solar–Thermal/Wind–Diesel Hybrid Energy System. Energy Technol. 2014, 2, 721–731. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Lather, J.S.; Marwaha, S. Multi objective load frequency control using hybrid bacterial foraging and particle swarm optimized PI controller. Int. J. Electr. Power Energy Syst. 2016, 79, 196–209. [Google Scholar] [CrossRef]
- Ghafouri, A.; Milimonfared, J.; Gharehpetian, G.B. Fuzzy-adaptive frequency control of power system including microgrids, wind farms, and conventional power plants. IEEE Syst. J. 2017, 12, 2772–2781. [Google Scholar] [CrossRef]
- Das, D.C.; Roy, A.K.; Sinha, N. GA based frequency controller for solar thermal–diesel–wind hybrid energy generation/energy storage system. Int. J. Electr. Power Energy Syst. 2012, 43, 262–279. [Google Scholar] [CrossRef]
- Nadeem, F.; Hussain SM, S.; Tiwari, P.K.; Goswami, A.K.; Ustun, T.S. Comparative Review of Energy Storage Systems, Their Roles, and Impacts on Future Power Systems. IEEE Access 2019, 7, 4555–4585. [Google Scholar] [CrossRef]
- Singh, K.; Amir, M.; Ahmad, F.; Khan, M.A. An Integral Tilt Derivative Control Strategy for Frequency Control in Multimicrogrid System. IEEE Syst. J. 2020. [Google Scholar] [CrossRef]
- Das, D.C.; Sinha, N.; Roy, A.K. Small signal stability analysis of dish-Stirling solar thermal based autonomous hybrid energy system. Int. J. Electr. Power Energy Syst. 2014, 63, 485–498. [Google Scholar] [CrossRef]
- Hussain, I.; Ranjan, S.; Das, D.C.; Sinha, N. Performance Analysis of Flower Pollination Algorithm Optimized PID Controller for Wind-PV-SMES-BESS-Diesel Autonomous Hybrid Power System. Int. J. Renew. Energy Res. 2017, 7, 643–651. [Google Scholar]
- Latif, A.; Pramanik, A.; Das, D.C.; Hussain, I.; Ranjan, S. Plug in hybrid vehicle-wind-diesel autonomous hybrid power system: Frequency control using FA and CSA optimized controller. Int. J. Syst. Assur. Eng. Manag. 2018, 9, 1147–1158. [Google Scholar] [CrossRef]
- Khooban, M.H.; Gheisarnejad, M. A Novel Deep Reinforcement Learning Controller Based Type-II Fuzzy System: Frequency Regulation in Microgrids. IEEE Trans. Emerg. Top. Comput. Intel. 2020. [Google Scholar] [CrossRef]
- Pahasa, S.; Ngamroo, I. Coordinated Control of Wind Turbine Blade Pitch Angle and PHEVs Using MPCs for Load Frequency Control of Microgrid. IEEE Syst. J. 2016, 10, 97–105. [Google Scholar] [CrossRef]
- Latif, A.; Das, D.C.; Ranjan, S.; Barik, A. Comparative performance evaluation of WCA-optimised non-integer controller employed with WPG-DSPG-PHEV based isolated two-area interconnected microgrid system. IET Renew. Power Gener. 2019, 13, 725–736. [Google Scholar] [CrossRef]
- Latif, A.; Das, D.C.; Barik, A.K.; Ranjan, S. Maiden co-ordinated load frequency control strategy for ST-AWEC-GEC-BDDG based independent three-area interconnected microgrid system with the combined effect of diverse energy storage and DC link using BOA optimized PFOID controller. IET Renew. Power Gener. 2019, 13, 2634–2646. [Google Scholar] [CrossRef]
- Ray, P.K.; Mohanty, A. A robust firefly–swarm hybrid optimization for frequency control in wind/PV/FC based microgrid. Appl. Soft Comput. 2019, 85, 105823. [Google Scholar] [CrossRef]
- Atawi, I.E.; Kassem, A.M.; Zaid, S.A. Modeling, Management, and Control of an Autonomous Wind/Fuel Cell Micro-Grid System. Processes 2019, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Barik, A.; Das, D.C. Expeditious frequency control of solar photobiotic/biogas/biodiesel generator based isolated renewable microgrid using grasshopper optimisation algorithm. IET Renew. Power Gener. 2018, 12, 1659–1667. [Google Scholar] [CrossRef]
- Latif, A.; Hussain, S.M.S.; Das, D.C.; Ustun, T.S. State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems. Appl. Energy 2020, 266, 114858. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Wind Speed Data. Available online: http://niwe.res.in:8080/NIWE_WRA_DATA/DataTable_D4.jsf (accessed on 2 July 2020).
- El-Fergany, A.A.; El-Hameed, A.M. Efficient frequency controllers for autonomous two-area hybrid microgrid system using social-spider optimizer. IET Gener. Transm. Distrib. 2017, 11, 637–648. [Google Scholar] [CrossRef]
- Dutta, D.; Figueira, J.R. Graph partitioning by muti-objective real-valued metaheuristic: A comparative study. Appl. Soft Comput. 2011, 11, 3976–3987. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimization algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
Symbol | Nomenclature | Value |
---|---|---|
ΔPCL | Change in critical load power in p.u. | - |
∆f | Aberration of frequency in Hz | - |
ΔPG | Change in net generated power | - |
ΔPDM | Change in net power difference from ΔPG and ΔPCL | - |
KVR | Gain of Valve actuator | 1 |
KBE | Engine gain | 1 |
TVR | Valve regulator delay time | 0.08 s |
TCE | Time constant of bio-diesel power generator (BDPG) | 0.4 s |
KWG | Gain of wind-driven generator (WG) | 1 |
TWG | Time constant of WG | 5 s |
KRF, KRV | Gain value of refocus and receiver | 1, 1 |
KG, KT | Gain value of governor and turbine | 1, 1 |
TRF, TRV | Time constant of refocus and receiver | 1.33 s, 4 s |
TG, TT | Time constant of governor and turbine | 0.08 s, 1 s |
KSOFC | Gain of solid-oxide fuel cell (SOFC) | 1 |
TSOFC | Time constant of SOFC | 0.2 s |
KHP | Gain of heat pump (HP) | 1 |
THP | Time constant of HP | 0.1 s |
KRFZ | Gain of refrigerator (RFZ) | 1 |
TRFZ | Time constant of RFZ | 0.265 s |
tsim | Simulation time of IHμGS | 100 s |
Controllers | PI | PID | PI − (1 + ID) | |
---|---|---|---|---|
Peak Overshoot(+OP) | ||||
ΔF (in Hz) | 0.0544 | 0.0136 | 0.0006 | |
Peak Undershoot(-UP) | ||||
ΔF (in Hz) | 0.0669 | 0.0389 | 0.0190 | |
Settling Time (TST) | ||||
ΔF (in s) | 3.976 | 4.097 | 2.581 | |
Minimization of J (Jmin) | ||||
7.79 × 10−4 | 2.92 × 10−5 | 2.91 × 10−5 | ||
Figure of Demerits (JFOD) | ||||
15.816 | 16.787 | 6.662 | ||
Optimal Controller Parameters | ||||
Controller-1 | KP1 | 3.010 | 0.502 | 0.325 |
KI1 | 5.103 | 12.11 | 10.702 | |
KD1 | - | 0.108 | - | |
KI12 | - | - | 0.513 | |
KD12 | - | - | 0.118 | |
Controller-2 | KP2 | 18.116 | 5.001 | 1.508 |
KI2 | 20.207 | 5.509 | 4.109 | |
KD2 | - | 1.624 | - | |
KI22 | - | - | 1.128 | |
KD22 | - | - | 2.219 |
Techniques | PSO | GOA | BOA | |
---|---|---|---|---|
Optimal controller parameters | ||||
Controller-1 | KP1 | 0.3112 | 0.2986 | 0.3210 |
KI1 | 5.0070 | 20.051 | 25.053 | |
KI12 | 0.5021 | 0.5170 | 0.5087 | |
KD12 | 0.1085 | 0.1153 | 0.1078 | |
Controller-2 | KP2 | 0.5170 | 2.5171 | 4.6087 |
KI2 | 4.1850 | 4.1751 | 4.1098 | |
KI22 | 1.1190 | 1.2015 | 1.1069 | |
KD22 | 2.2191 | 2.2276 | 2.2183 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latif, A.; Hussain, S.M.S.; Das, D.C.; Ustun, T.S. Optimum Synthesis of a BOA Optimized Novel Dual-Stage PI − (1 + ID) Controller for Frequency Response of a Microgrid. Energies 2020, 13, 3446. https://doi.org/10.3390/en13133446
Latif A, Hussain SMS, Das DC, Ustun TS. Optimum Synthesis of a BOA Optimized Novel Dual-Stage PI − (1 + ID) Controller for Frequency Response of a Microgrid. Energies. 2020; 13(13):3446. https://doi.org/10.3390/en13133446
Chicago/Turabian StyleLatif, Abdul, S. M. Suhail Hussain, Dulal Chandra Das, and Taha Selim Ustun. 2020. "Optimum Synthesis of a BOA Optimized Novel Dual-Stage PI − (1 + ID) Controller for Frequency Response of a Microgrid" Energies 13, no. 13: 3446. https://doi.org/10.3390/en13133446
APA StyleLatif, A., Hussain, S. M. S., Das, D. C., & Ustun, T. S. (2020). Optimum Synthesis of a BOA Optimized Novel Dual-Stage PI − (1 + ID) Controller for Frequency Response of a Microgrid. Energies, 13(13), 3446. https://doi.org/10.3390/en13133446