Impact of Lossy Compression Techniques on the Impedance Determination
"> Figure 1
<p>Principle of the network impedance measurement/identification.</p> "> Figure 2
<p>Impedance identification circuit for 20 <math display="inline"><semantics> <mi>kV</mi> </semantics></math> medium voltage level.</p> "> Figure 3
<p>Impedance identification measurement device for 20 kV medium voltage level.</p> "> Figure 4
<p>Measurement results with <math display="inline"><semantics> <msub> <mi>U</mi> <mi>DS</mi> </msub> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <msub> <mi>I</mi> <mi>DS</mi> </msub> </semantics></math> (<b>b</b>).</p> "> Figure 5
<p>SVD of data matrix <b>DS</b>.</p> "> Figure 6
<p>Overview of <math display="inline"><semantics> <msub> <mi>U</mi> <mi>DS</mi> </msub> </semantics></math> and generated <math display="inline"><semantics> <msub> <mi>U</mi> <mi>Base</mi> </msub> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <msub> <mi>U</mi> <mi>Noise</mi> </msub> </semantics></math> (<b>b</b>).</p> "> Figure 7
<p>Flowchart of the novel paper approach.</p> "> Figure 8
<p>Comparison of <math display="inline"><semantics> <msub> <mi>U</mi> <mi>DS</mi> </msub> </semantics></math> and the resulting compression outputs <math display="inline"><semantics> <mrow> <mo>∑</mo> <mo>(</mo> <msub> <mi>U</mi> <mi>base</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mrow> <mi>noise</mi> <mo>(</mo> <mi>DC</mi> <mo>)</mo> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math> of the different lossy approaches.</p> "> Figure 9
<p>Comparison of <math display="inline"><semantics> <msub> <mi>I</mi> <mi>DS</mi> </msub> </semantics></math> and the resulting compression output of the different lossy approaches <math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>DS</mi> <mo>(</mo> <mi>DC</mi> <mo>)</mo> </mrow> </msub> </semantics></math>.</p> "> Figure 10
<p>Impedance measurement results of the original (ori = original dataset and their impedance <math display="inline"><semantics> <msub> <mi>Z</mi> <mn>1</mn> </msub> </semantics></math>) and decompression results using WT (WT = WT decompressed dataset and their impedance <span class="html-italic">Z</span>). The absolute impedance <math display="inline"><semantics> <mfenced open="|" close="|"> <mi>Z</mi> </mfenced> </semantics></math> (<b>a</b>), the impedance angle <math display="inline"><semantics> <mrow> <mo>∠</mo> <mo>(</mo> <mi>Z</mi> <mo>)</mo> </mrow> </semantics></math> = <math display="inline"><semantics> <msub> <mi>φ</mi> <mi mathvariant="normal">Z</mi> </msub> </semantics></math> (<b>b</b>), and the absolute deviation <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mfenced separators="" open="|" close="|"> <mi>Z</mi> <mn>1</mn> <mo>−</mo> <mi>Z</mi> </mfenced> </mrow> </semantics></math> (<b>c</b>) over the frequency <span class="html-italic">f</span> are shown.</p> "> Figure 11
<p>Impedance measurement results of the SVD, for explanation see <a href="#energies-13-03661-f010" class="html-fig">Figure 10</a>.</p> ">
Abstract
:1. Introduction
2. Mid Voltage Impedance Measurement System
2.1. Impedance Identification
2.2. Impedance Identification of Three Phase Systems
- At first, the open circuit is measured to obtain the reference . Hence, the load is not pulsed and is zero,
- Then, a pulse pattern is applied to the three loops of phase a to b, phase b to c, and phase c to a.
- //: current phase a/b/c
- //: voltage phase a/b/c to earth
3. Lossy Compression Techniques
3.1. SVD—Singular Value Decomposition
3.2. WT—Wavelet Transformation
3.3. TFA—Triangular Function Algorithm
4. Proposed Approach and Key Metrics
4.1. Novel Approach
4.2. Key Metrics
5. Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CR | Compression Ratio |
FIR | Finite Impulse Response |
IGBT | Insulated Gate Bipolar Transistor |
MAE | Mean Absolute Error |
NIM | Network Impedance Measurement |
PCC | Point of Common Coupling |
PEC | Power Electronic Components |
PWM | Pulse Width Modulation |
RFA | Rectangular Function Algorithm |
SVD | Singular Value Decomposition |
TFA | Triangular Function Algorithm |
WT | Wavelet Transform |
References
- Blaabjerg, F.; Yang, Y.; Yang, D.; Wang, X. Distributed Power-Generation Systems and Protection. Proc. IEEE 2017, 105, 1311–1331. [Google Scholar] [CrossRef] [Green Version]
- Azzouz, M.A.; El-Saadany, E.F. Multivariable Grid Admittance Identification for Impedance Stabilization of Active Distribution Networks. IEEE Trans. Smart Grid 2017, 8, 1116–1128. [Google Scholar] [CrossRef]
- Jordan, M.; Grumm, F.; Kaatz, G.; Meyer, M.F.; Wilken, H.; Schulz, D. Online Network Impedance Spectrometer for the Medium-Voltage Level. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/ICPS Europe), Palermo, Italy, 12–15 June 2018. [Google Scholar]
- Eskandari, M.; Li, L.; Moradi, M.; Siano, P.; Blaabjerg, F. Optimal Voltage Regulator for Inverter Interfaced Distributed Generation Units Part: Control System. IEEE Trans. Sustain. Energy 2020. [Google Scholar] [CrossRef]
- Eskandari, M.; Li, L.; Moradi, M.; Siano, P.; Blaabjerg, F. Optimal Voltage Regulator for Inverter Interfaced Distributed Generation Units Part: Application. IEEE Trans. Sustain. Energy 2020. [Google Scholar] [CrossRef]
- Xin, H.; Li, Z.; Dong, W.; Wang, Z.; Zhang, L. A Generalized-Impedance Based Stability Criterion for Three-Phase Grid-Connected Voltage Source Converters. arXiv 2017, arXiv:1703.10514. [Google Scholar]
- Wen, B.; Dong, D.; Boroyevich, D.; Burgos, R.; Mattavelli, P.; Shen, Z. Impedance-based analysis of grid-synchronization stability for three-phase paralleled converters. IEEE Trans. Power Electron. 2016, 31, 26–38. [Google Scholar] [CrossRef]
- Sumner, M.; Palethorpe, B.; Thomas, D. Impedance Measurement for Improved Power Quality—Part 1: The Measurement Technique. IEEE Trans. Power Deliv. 2004, 19, 1442–1448. [Google Scholar] [CrossRef]
- Guyot, P.; Batista, L.; Djermoune, E.H.; Moureaux, J.M.; Bastogne, T.; Doerr, L.; Beckler, M. Comparison of compression methods for impedance and field potential signals of cardiomyocytes. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 5 April 2018. [Google Scholar]
- Do, T.T. Measurement Device for Mobile Identification of the Grid Impedance; VDE-Verlag: Berlin, Germany, 2014; ISBN 978-38007-3633-1. [Google Scholar]
- Wilken, H.; Jordan, M.; Schulz, D. Spectral Grid Impedance Identification on the Low-, Medium-and High-Voltage Level–System Design, Realization and Measurement Results of Grid Impedance Measurement Devices. Adv. Sci. Technol. Eng. Syst. J. 2019, 4, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Storer, J. Data Compression: Methods and Theory; Computer Science Press: New York, NY, USA, 1988. [Google Scholar]
- Salomon, D.; Motta, G. Handbook of Data Compression, 5th ed.; Springer Science & Business Media: London, UK, 2010. [Google Scholar]
- Blelloch, E. Introduction to Data Compression; Computer Science Department, Carnegie Mellon University: Pittsburgh, PA, USA, 2010. [Google Scholar]
- Pu, I. Fundamental Data Compression; Butterworth-Heinemann: London, UK, 2005. [Google Scholar]
- Tate, J. Preprocessing and Golomb–Rice Encoding for Lossless Compression of Phasor Angle Data. IEEE Trans. Smart Grid 2016, 7, 718–729. [Google Scholar] [CrossRef]
- Clements, A.; McCulloch, M.; Nixon, K. Low-loss, high-compression of energy profiles. In Proceedings of the Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015. [Google Scholar]
- de Souza, C.; Assis, T.; Pal, B. Data compression in smart distribution systems via singular value decomposition. IEEE Trans. Smart Grid 2017, 8, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Zhou, K.; Yang, S.; Li, L. Compression of smart meter big data: A survey. Renew. Sustain. Energy Rev. 2018, 91, 59–69. [Google Scholar] [CrossRef]
- Engel, D. Wavelet-based Load Profile Representation for Smart Meter Privacy. In Proceedings of the IEEE PES Innovative Smart Grid Technologies (ISGT’13), Washington, DC, USA, 24–27 February 2013. [Google Scholar]
- Engel, D.; Eibl, G. Wavelet-Based Multiresolution Smart Meter Privacy. IEEE Trans. Smart Grid 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Plenz, M.; Dong, C.; Grumm, F.; Meyer, M.F.; Schumann, M.; McCulloch, M.; Jia, H.; Schulz, D. Framework Integrating Lossy Compression and Perturbation for the Case of Smart Meter Privacy. Electronics 2020, 9, 465. [Google Scholar] [CrossRef] [Green Version]
Type | CR (U) | MAE (U) | t (U) | CR (I) | MAE (I) | t (I) |
---|---|---|---|---|---|---|
SVD | 4.1:1 | 0.36 | 120 s | 4.2:1 | 0.001 | 113 s |
WT | 4.0:1 | 0.39 | 8 s | 4.0:1 | 0.002 | 31 s |
TFA | 4.2:1 | 0.29 | 101 s | 4.7:1 | 0.17 | 261 s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plenz, M.; Meyer, M.F.; Grumm, F.; Becker, D.; Schulz, D.; McCulloch, M. Impact of Lossy Compression Techniques on the Impedance Determination. Energies 2020, 13, 3661. https://doi.org/10.3390/en13143661
Plenz M, Meyer MF, Grumm F, Becker D, Schulz D, McCulloch M. Impact of Lossy Compression Techniques on the Impedance Determination. Energies. 2020; 13(14):3661. https://doi.org/10.3390/en13143661
Chicago/Turabian StylePlenz, Maik, Marc Florian Meyer, Florian Grumm, Daniel Becker, Detlef Schulz, and Malcom McCulloch. 2020. "Impact of Lossy Compression Techniques on the Impedance Determination" Energies 13, no. 14: 3661. https://doi.org/10.3390/en13143661
APA StylePlenz, M., Meyer, M. F., Grumm, F., Becker, D., Schulz, D., & McCulloch, M. (2020). Impact of Lossy Compression Techniques on the Impedance Determination. Energies, 13(14), 3661. https://doi.org/10.3390/en13143661