Design and Implementation of a Low-Cost Real-Time Control Platform for Power Electronics Applications
<p>(<b>a</b>) Launchpad TMS320F28379D. (<b>b</b>) Overview of the proposed RTCP.</p> "> Figure 2
<p>Soldered Printed Circuit Board.</p> "> Figure 3
<p>Optical fibre driver circuit.</p> "> Figure 4
<p>Electrical protection based on comparators and logic gates.</p> "> Figure 5
<p>ADC Operation Diagram.</p> "> Figure 6
<p>(<b>a</b>) PWM block operation diagram. (<b>b</b>) PWM signal generation with Up-Down type counter.</p> "> Figure 7
<p>(<b>a</b>) Overview of the experimental setup. (<b>b</b>) AC-DC back-to-back converter topology.</p> "> Figure 8
<p>Proposed control algorithm.</p> "> Figure 9
<p>Experimental system implementation.</p> "> Figure 10
<p>Variable DC link voltage reference test.</p> "> Figure 11
<p>Steady-state operation.</p> "> Figure 12
<p>Variable DC current reference test.</p> "> Figure 13
<p>Experimental Results. (<b>a</b>) AC <span class="html-italic">d</span>-axis current. (<b>b</b>) AC <span class="html-italic">q</span>-axis current. (<b>c</b>) AC <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </semantics></math> currents. (<b>d</b>) DC load current.</p> "> Figure 14
<p>Over-voltage protection.</p> ">
Abstract
:1. Introduction
- A benchmark on the main off-the-shelf controllers for HIL and RCP applications is presented. To the best of the authors’ knowledge, the principal commercial alternatives have been included and compared in terms of the number of input-output capabilities, price and requirement of licensed software.
- An expansion board is designed to expand the capabilities of the Delfino TMS320F28379D microcontroller. This expansion board is equipped with analogue-to-digital measurements, optical fibre Pulse Wide Modulation (PWM), and hardware protections.
- The effectiveness of the proposed RTCP for power electronics applications is validated by experiments conducted with a 20 kVA power converter.
2. Design of the RTCP
- Dual-Core architecture with two TMS320C28x 32-Bit CPUs;
- 200 MHz Clock;
- 1 MB Memory flash;
- Analogue and control peripherals include Digital Analog Converter (DAC), PWM, Enhanced Capture (eCAP), Enhanced Quadrature Encoder Pulse (eQEP), and other peripherals;
- USB, CAN, I2C and SPI interface;
- 24 Analogue-to-Digital (AD) signal channels with 12 or 16 bit resolution;
- 24 PWM channels with 16 bit resolution and dead time support.
- 14 PWM channels with optical transmitters;
- 16 AD channels with 12 bit resolution;
- 16 hardware protections implemented with digital potentiometers;
- Dedicated connector to access USB, CAN, I2C and SPI communication in.
2.1. Electrical/Optical Stage for PWM Signals
2.2. Adaptation Stage for Analog Input Signals
2.3. Hardware Protections
2.4. ADC Configuration
2.5. PWM Configuration
3. Power Electronic Application to Test the RTCP
4. Experimental Results
4.1. Test 1: Rectifier Operation
4.2. Test 2: DC Current Control
4.3. Test 3: Full Power Testl
4.4. Test 4: Over-Voltage Protection
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rashid, M.H. Power electronics—Challenges and trends. In Proceedings of the 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT), Karachi, Pakistan, 5–7 April 2017. [Google Scholar] [CrossRef]
- Suntio, T.; Messo, T. Power electronics in renewable energy systems. Energies 2019, 12, 1852. [Google Scholar] [CrossRef] [Green Version]
- Revol, B.; Azzopardi, S.; Youssef, T.; Teu, J.S.N.; Gautier, C.; Khazaka, R.; Roggia, S. Overview and new trends in technology bricks for reliability enhancement in future wide band gap power converters for More Electrical Aircraft (MEA) and More Electrical Propulsion (MEP) systems. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 7128–7134. [Google Scholar] [CrossRef]
- Zhong, Q.; Matthews, C.; Nguyen, P.; Clarke, S. Low-cost Rapid Control Prototyping paradigm. In Proceedings of the UKACC International Conference on Control 2010, Coventry, UK, 7–10 September 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Lu, J.; Guo, Y.Q.; Wang, H.Q. Rapid prototyping real-time simulation platform for digital electronic engine control. In Proceedings of the 2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics, ISSCAA 2008, Shenzhen, China, 10–12 December 2008. [Google Scholar] [CrossRef]
- Power Electronics and Electric Drive Technology—dSPACE. Available online: https://www.dspace.com/en/pub/home/applicationfields/stories/electricaldrive.cfm (accessed on 5 March 2020).
- Real-Time Simulation|OPAL-RT. Available online: https://www.opal-rt.com/ (accessed on 5 March 2020).
- Herrera, L.; Li, C.; Yao, X.; Wang, J. FPGA-Based Detailed Real-Time Simulation of Power Converters and Electric Machines for EV HIL Applications. IEEE Trans. Ind. Appl. 2015, 51, 1702–1712. [Google Scholar] [CrossRef]
- RT Box|Plexim. Available online: https://www.plexim.com/products/rt_box (accessed on 3 March 2020).
- Control Products—Imperix. Available online: https://imperix.ch/products/control (accessed on 3 March 2020).
- About Us|PED-Board. Available online: http://www.ped-board.com/about-us/ (accessed on 3 March 2020).
- HIL Hardware|Typhoon HIL. Available online: https://www.typhoon-hil.com/hil-hardware/ (accessed on 4 March 2020).
- Home—rtds-Technologies. Available online: https://www.rtds.com/ (accessed on 4 March 2020).
- Galassini, A.; Lo Calzo, G.; Formentini, A.; Gerada, C.; Zanchetta, P.; Costabeber, A. UCube: Control platform for power electronics. In Proceedings of the 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2017, Nottingham, UK, 20–21 April 2017; pp. 216–221. [Google Scholar] [CrossRef]
- Wendel, S.; Geiger, A.; Liegmann, E.; Arancibia, D.; Duren, E.; Kreppel, T.; Rojas, F.; Popp-Nowak, F.; Diaz, M.; Dietz, A.; et al. UltraZohm—A powerful real-time computation platform for MPC and multi-level inverters. In Proceedings of the PRECEDE 2019: 2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics, Quanzhou, China, 31 May–2 June 2019. [Google Scholar] [CrossRef]
- Wang, Y.; Nguyen, T.L.; Xu, Y.; Li, Z.; Tran, Q.; Caire, R. Cyber-Physical Design and Implementation of Distributed Event-Triggered Secondary Control in Islanded Microgrids. IEEE Trans. Ind. Appl. 2019, 55, 5631–5642. [Google Scholar] [CrossRef]
- Wang, Y.; Syed, M.H.; Guillo-Sansano, E.; Xu, Y.; Burt, G.M. Inverter-Based Voltage Control of Distribution Networks: A Three-Level Coordinated Method and Power Hardware-in-the-Loop Validation. IEEE Trans. Sustain. Energy 2019. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Wu, X.; Monti, A. Implementation of a low-cost real-time virtue test bed for hardware-in-the-loop testing. In Proceedings of the 31st Annual Conference of IEEE Industrial Electronics Society, IECON 2005, Raleigh, NC, USA, 6–10 November 2005. [Google Scholar] [CrossRef]
- Lu, B.; Wu, X.; Figueroa, H.; Monti, A. A Low-Cost Real-Time Hardware-in-the-Loop Testing Approach of Power Electronics Controls. IEEE Trans. Ind. Electron. 2007, 54, 919–931. [Google Scholar] [CrossRef]
- Bastos, R.F.; Fuzato, G.H.; Aguiar, C.R.; Neves, R.V.A.; Machado, R.Q. Model, design and implementation of a low-cost HIL for power converter and microgrid emulation using DSP. IET Power Electron. 2019, 12, 3833–3841. [Google Scholar] [CrossRef]
- Jacobs, I.; Miller, S.E. Communications: Optical transmission of voice and data: Bandwidth and noise immunity are up; size, weight, and costs are down. IEEE Spectrum 1977, 14, 33–41. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Brothers, J.A.; Fu, L.; Perales, M.; Wu, J.; Wang, J. A Gate Drive With Power Over Fiber-Based Isolated Power Supply and Comprehensive Protection Functions for 15-kV SiC MOSFET. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 946–955. [Google Scholar] [CrossRef]
- Modeling Basics—MATLAB & Simulink—MathWorks. Available online: https://es.mathworks.com/help/supportpkg/texasinstrumentsc2000/modeling-basics.html?category=modeling-basics&s_tid=CRUX_gn_documentation_modeling-basics (accessed on 3 March 2020).
- Pan, L.; Zhang, C. An integrated multifunctional bidirectional AC/DC and DC/DC converter for electric vehicles applications. Energies 2016, 9, 493. [Google Scholar] [CrossRef] [Green Version]
- Fitri, I.R.; Kim, J.S.; Song, H. A robust suboptimal current control of an interlink converter for a hybrid AC/DC microgrid. Energies 2018, 11, 1382. [Google Scholar] [CrossRef] [Green Version]
- Díaz, M.; Cárdenas-Dobson, R. Dual current control strategy to fulfill LVRT requirements in WECS. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2014, 33, 1665–1677. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 2006, 53, 1398–1409. [Google Scholar] [CrossRef] [Green Version]
Model/ | Features | Approximately | Software | ||||
---|---|---|---|---|---|---|---|
Brand | AI | DO | DI | AO | Hardware | Price [USD] | |
OP4510/ | 16 | 32 | 32 | 16 | CPU Intel Xeon 4 cores, | 25.000 | Licensed |
OPAL-RT | FPGA Kintex-7 | software | |||||
RT-BOX/ | 16 | 32 | 32 | 16 | Xilinx Zynq Z-7030 | 9.800 | Licensed |
Plexim | (CPU 2 cores+FPGA) | software | |||||
MicroLabBox/ | 8 | 48 | 48 | 16 | PowerPC DualCore 2 GHz | 15.000 | Licensed |
dSPACE | shared | shared | Kintex-7 FPGA | software | |||
BoomBox/ | 16 | 16 | - | 4 | SOC Zynq XC7Z030-3FBG676E | 13.000 | Licensed |
Imperix | FPGA ProASIC3 | software | |||||
V3/ | 24 | 30 | 46 | 4 | SoM sbRIO-9651 | 1.500 | Licensed |
PED-Board | FPGA Zynq-7020 | software | |||||
HIL402/ | 16 | 32 | 32 | 16 | SOC Zynq XC7Z030 | 17.200 | Licensed |
Typhoon | software |
RTCP Cost | |||
---|---|---|---|
Item | Quantity | Cost per Unit (USD) | Total Cost (USD) |
Bare PCB | 1 | 5 | 5 |
Delfino board | 1 | 35 | 35 |
Fiber optic transmitters | 14 | 10 | 140 |
IC fiber optic drivers | 14 | 1 | 14 |
IC OP-AMP | 16 | 5 | 80 |
IC Comparators | 16 | 4 | 64 |
IC Logic gates | 20 | 0.2 | 10 |
Passive components | 1 | 20 | 20 |
Connectors | 1 | 30 | 30 |
Total cost | 398 |
Control Loop | ||
---|---|---|
Id Current loop | 100 | 0.707 |
Iq Current loop | 100 | 0.707 |
Vd Voltage Nested loop | 12 | 0.9 |
Idc Current loop | 20 | 0.9 |
Parameter | Value | Unit |
---|---|---|
Rated power | 20 | kVA |
AC Input voltage | 380 | V |
Maximum DC current | 150 | A |
Maximum DC voltage | 750 | V |
Switching frequency | 5 | kHz |
C_dc-link | 2 | mF |
Rf | 0.03 | |
Lf | 5 | mH |
Rl | 2 | |
Ll | 4 | mH |
Collector-emitter Voltage_IGBTs | 1200 | V |
Continuous DC collector current_FF300R12KT4 | 300 | A |
Continuous DC collector current_FF75R12R74 | 75 | A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aravena, J.; Carrasco, D.; Diaz, M.; Uriarte, M.; Rojas, F.; Cardenas, R.; Travieso, J.C. Design and Implementation of a Low-Cost Real-Time Control Platform for Power Electronics Applications. Energies 2020, 13, 1527. https://doi.org/10.3390/en13061527
Aravena J, Carrasco D, Diaz M, Uriarte M, Rojas F, Cardenas R, Travieso JC. Design and Implementation of a Low-Cost Real-Time Control Platform for Power Electronics Applications. Energies. 2020; 13(6):1527. https://doi.org/10.3390/en13061527
Chicago/Turabian StyleAravena, José, Dante Carrasco, Matias Diaz, Matias Uriarte, Felix Rojas, Roberto Cardenas, and Juan Carlos Travieso. 2020. "Design and Implementation of a Low-Cost Real-Time Control Platform for Power Electronics Applications" Energies 13, no. 6: 1527. https://doi.org/10.3390/en13061527
APA StyleAravena, J., Carrasco, D., Diaz, M., Uriarte, M., Rojas, F., Cardenas, R., & Travieso, J. C. (2020). Design and Implementation of a Low-Cost Real-Time Control Platform for Power Electronics Applications. Energies, 13(6), 1527. https://doi.org/10.3390/en13061527